首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
For range‐restricted species with disjunct populations, it is critical to characterize population genetic structure, gene flow, and factors that influence functional connectivity among populations in order to design effective conservation programs. In this study, we genotyped 314 individuals from 16 extant populations of Ivesia webberi, a United States federally threatened Great Basin Desert using six microsatellite loci. We assessed the effects of Euclidean distance, landscape features, and ecological dissimilarity on the pairwise genetic distance of the sampled populations, while also testing for a potential relationship between Iwebberi genetic diversity and diversity in the vegetative communities. The results show low levels of genetic diversity overall (H e = 0.200–0.441; H o = 0.192–0.605) and high genetic differentiation among populations. Genetic diversity was structured along a geographic gradient, congruent with patterns of isolation by distance. Populations near the species’ range core have relatively high genetic diversity, supporting in part a central‐marginal pattern, while also showing some evidence for a metapopulation dynamic. Peripheral populations have lower genetic diversity, significantly higher genetic distances, and higher relatedness. Genotype cluster admixture results suggest a complex dispersal pattern among populations with dispersal direction and distance varying on the landscape. Pairwise genetic distance strongly correlates with elevation, actual evapotranspiration, and summer seasonal precipitation, indicating a role for isolation by environment, which the observed phenological mismatches among the populations also support. The significant correlation between pairwise genetic distance and floristic dissimilarity in the germinated soil seed bank suggests that annual regeneration in the plant communities contribute to the maintenance of genetic diversity in Iwebberi.  相似文献   

2.
Many ectothermic species are currently expanding their geographic range due to global warming. This can modify the population genetic diversity and structure of these species because of genetic drift during the colonization of new areas. Although the genetic signatures of historical range expansions have been investigated in an array of species, the genetic consequences of natural, contemporary range expansions have received little attention, with the only studies available focusing on range expansions along a narrow front. We investigate the genetic consequences of a natural range expansion in the Mediterranean damselfly Coenagrion scitulum, which is currently rapidly expanding along a broad front in different directions. We assessed genetic diversity and genetic structure using 12 microsatellite markers in five centrally located populations and five recently established populations at the edge of the geographic distribution. Our results suggest that, although a marginal significant decrease in the allelic richness was found in the edge populations, genetic diversity has been preserved during the range expansion of this species. Nevertheless, edge populations were genetically more differentiated compared with core populations, suggesting genetic drift during the range expansion. The smaller effective population sizes of the edge populations compared with central populations also suggest a contribution of genetic drift after colonization. We argue and document that range expansion along multiple axes of a broad expansion front generates little reduction in genetic diversity, yet stronger differentiation of the edge populations.  相似文献   

3.
R Y Shirk  J L Hamrick  C Zhang  S Qiang 《Heredity》2014,112(5):497-507
Genetic diversity, and thus the adaptive potential of invasive populations, is largely based on three factors: patterns of genetic diversity in the species'' native range, the number and location of introductions and the number of founding individuals per introduction. Specifically, reductions in genetic diversity (‘founder effects'') should be stronger for species with low within-population diversity in their native range and few introductions of few individuals to the invasive range. We test these predictions with Geranium carolinianum, a winter annual herb native to North America and invasive in China. We measure the extent of founder effects using allozymes and microsatellites, and ask whether this is consistent with its colonization history and patterns of diversity in the native range. In the native range, genetic diversity is higher and structure is lower than expected based on life history traits. In China, our results provide evidence for multiple introductions near Nanjing, Jiangsu province, with subsequent range expansion to the west and south. Patterns of genetic diversity across China reveal weak founder effects that are driven largely by low-diversity populations at the expansion front, away from the introduction location. This suggests that reduced diversity in China has resulted from successive founder events during range expansion, and that the loss of genetic diversity in the Nanjing area was mitigated by multiple introductions from diverse source populations. This has implications for the future of G. carolinianum in China, as continued gene flow among populations should eventually increase genetic diversity within the more recently founded populations.  相似文献   

4.
To evaluate whether environmental heterogeneity contributes to the genetic heterogeneity in Anopheles triannulatus, larval habitat characteristics across the Brazilian states of Roraima and Pará and genetic sequences were examined. A comparison with Anopheles goeldii was utilised to determine whether high genetic diversity was unique to An. triannulatus. Student t test and analysis of variance found no differences in habitat characteristics between the species. Analysis of population structure of An. triannulatus and An. goeldii revealed distinct demographic histories in a largely overlapping geographic range. Cytochrome oxidase I sequence parsimony networks found geographic clustering for both species; however nuclear marker networks depicted An. triannulatus with a more complex history of fragmentation, secondary contact and recent divergence. Evidence of Pleistocene expansions suggests both species are more likely to be genetically structured by geographic and ecological barriers than demography. We hypothesise that niche partitioning is a driving force for diversity, particularly in An. triannulatus.  相似文献   

5.
In Europe, the Quaternary is characterized by climatic fluctuations known to have led to many cycles of contraction and expansion of species geographical ranges. In addition, during the Holocene, historical changes in human occupation such as colonization or abandonment of traditional land uses can also affect habitats. These climatically or anthropically induced geographic range changes are expected to produce considerable effective population size change, measurable in terms of genetic diversity and organization. The rock ptarmigan (Lagopus muta) is a small-bodied grouse occurring throughout Northern hemispheric arctic and alpine tundra. This species is not considered threatened at a continental scale, but the populations in the Pyrenees are of concern because of their small population size, geographical isolation and low genetic diversity. Here, we used 11 microsatellites to investigate genetic variations and differentiations and infer the overall demographic history of Pyrenean rock ptarmigan populations. The low genetic variability found in these populations has been previously thought to be the result of a bottleneck that occurred following the last glacial maximum (i.e., 10 000 years ago) or more recently (i.e., during the last 200 years). Our results clearly indicate a major bottleneck affecting the populations in the last tenth of the Holocene. We discuss how this decline can be explained by a combination of unfavorable and successive events that increased the degree of habitat fragmentation.  相似文献   

6.
We used a population genetic approach to detect the presence of genetic diversity among six populations of Anastrepha fraterculus across Brazil. To this aim, we used Simple Sequence Repeat (SSR) markers, which may capture the presence of differentiative processes across the genome in distinct populations. Spatial analyses of molecular variance were used to identify groups of populations that are both genetically and geographically homogeneous while also being maximally differentiated from each other. The spatial analysis of genetic diversity indicates that the levels of diversity among the six populations vary significantly on an eco-geographical basis. Particularly, altitude seems to represent a differentiating adaptation, as the main genetic differentiation is detected between the two populations present at higher altitudes and the other four populations at sea level. The data, together with the outcomes from different cluster analyses, identify a genetic diversity pattern that overlaps with the distribution of the known morphotypes in the Brazilian area.  相似文献   

7.
Theoretically, the dynamics of clonal and genetic diversities of clonal plant populations are strongly influenced by the competition among clones and rate of seedling recruitment, but little empirical assessment has been made of such dynamics through temporal genetic surveys. We aimed to quantify 3 years of evolution in the clonal and genetic composition of Zostera marina meadows, comparing parameters describing clonal architecture and genetic diversity at nine microsatellite markers. Variations in clonal structure revealed a decrease in the evenness of ramet distribution among genets. This illustrates the increasing dominance of some clonal lineages (multilocus lineages, MLLs) in populations. Despite the persistence of these MLLs over time, genetic differentiation was much stronger in time than in space, at the local scale. Contrastingly with the short-term evolution of clonal architecture, the patterns of genetic structure and genetic diversity sensu stricto (that is, heterozygosity and allelic richness) were stable in time. These results suggest the coexistence of (i) a fine grained (at the scale of a 20 × 30 m quadrat) stable core of persistent genets originating from an initial seedling recruitment and developing spatial dominance through clonal elongation; and (ii) a local (at the scale of the meadow) pool of transient genets subjected to annual turnover. This simultaneous occurrence of initial and repeated recruitment strategies highlights the different spatial scales at which distinct evolutionary drivers and mating systems (clonal competition, clonal growth, propagule dispersal and so on) operate to shape the dynamics of populations and the evolution of polymorphism in space and time.  相似文献   

8.
The Brazilian rosewood (Dalbergia nigra) is an endangered tree endemic to the central Brazilian Atlantic Forest, one of the world''s most threatened biomes. The population diversity, phylogeographic structure and demographic history of this species were investigated using the variation in the chloroplast DNA (cpDNA) sequences of 185 individuals from 19 populations along the geographical range of the species. Fifteen haplotypes were detected in the analysis of 1297 bp from two non-coding sequences, trnV-trnM and trnL. We identified a strong genetic structure (FST=0.62, P<0.0001), with a latitudinal separation into three phylogeographic groups. The two northernmost groups showed evidence of having maintained historically larger populations than the southernmost group. Estimates of divergence times between these groups pointed to vicariance events in the Middle Pleistocene (ca. 350 000–780 000 years ago). The recurrence of past climatic changes in the central part of the Atlantic forest, with cycles of forest expansion and contraction, may have led to repeated vicariance events, resulting in the genetic differentiation of these groups. Based on comparisons among the populations of large reserves and small, disturbed fragments of the same phylogeographic group, we also found evidence of recent anthropogenic effects on genetic diversity. The results were also analysed with the aim of contributing to the conservation of D. nigra. We suggest that the three phylogeographic groups could be considered as three distinct management units. Based on the genetic diversity and uniqueness of the populations, we also indicate priority areas for conservation.  相似文献   

9.

Backgound and Aims

Extending the cultivation of forage legume species into regions where they are close to the margin of their natural distribution requires knowledge of population responses to environmental stresses. This study was conducted at three north European sites (Iceland, Sweden and the UK) using AFLP markers to analyse changes in genetic structure over time in two population types of red and white clover (Trifolium pratense and T. repens, respectively): (1) standard commercial varieties; (2) wide genetic base (WGB) composite populations constructed from many commercial varieties plus unselected material obtained from germplasm collections.

Methods

At each site populations were grown in field plots, then randomly sampled after 3–5 years to obtain survivor populations. AFLP markers were used to calculate genetic differentiation within and between original and survivor populations.

Key Results

No consistent changes in average genetic diversity were observed between original and survivor populations. In both species the original varieties were always genetically distinct from each other. Significant genetic shift was observed in the white clover ‘Ramona’ grown in Sweden. The WGB original populations were more genetically similar. However, genetic differentiation occurred between original and survivor WGB germplasm in both species, particularly in Sweden. Regression of climatic data with genetic differentiation showed that low autumn temperature was the best predictor. Within the set of cold sites the highest level of genetic shift in populations was observed in Sweden.

Conclusions

The results suggest that changes in population structure can occur within a short time span in forage legumes, resulting in the rapid formation of distinct survivor populations in environmentally challenging sites.  相似文献   

10.
The risks of gene flow between interfertile native and introduced plant populations are greatest when there is no spatial isolation of pollen clouds and phenological patterns overlap completely. Moreover, invasion probabilities are further increased if introduced populations are capable of producing seeds by selfing. Here we investigated the mating system and patterns of pollen-mediated gene flow among populations of native ash (Fraxinus excelsior) and mixed plantations of non-native ash (F. angustifolia and F. excelsior) as well as hybrid ash (F. excelsior × F. angustifolia) in Ireland. We analysed the flowering phenology of the mother trees and genotyped with six microsatellite loci in progeny arrays from 132 native and plantation trees (1493 seeds) and 444 potential parents. Paternity analyses suggested that plantation and native trees were pollinated by both native and introduced trees. No signs of significant selfing in the introduced trees were observed and no evidence of higher male reproductive success was found for introduced trees compared with native ones either. A small but significant genetic structure was found (φft=0.05) and did not correspond to an isolation-by-distance pattern. However, we observed a significant temporal genetic structure related to the different phenological groups, especially with early and late flowering native trees; each phenological group was pollinated with distinctive pollen sources. Implications of these results are discussed in relation to the conservation and invasiveness of ash and the spread of resistance genes against pathogens such as the fungus Chalara fraxinea that is destroying common ash forests in Europe.  相似文献   

11.
Genetic effects of habitat fragmentation may be undetectable because they are generally a recent event in evolutionary time or because of confounding effects such as historical bottlenecks and historical changes in species'' distribution. To assess the effects of demographic history on the genetic diversity and population structure in the Neotropical tree Dipteryx alata (Fabaceae), we used coalescence analyses coupled with ecological niche modeling to hindcast its distribution over the last 21 000 years. Twenty-five populations (644 individuals) were sampled and all individuals were genotyped using eight microsatellite loci. All populations presented low allelic richness and genetic diversity. The estimated effective population size was small in all populations and gene flow was negligible among most. We also found a significant signal of demographic reduction in most cases. Genetic differentiation among populations was significantly correlated with geographical distance. Allelic richness showed a spatial cline pattern in relation to the species'' paleodistribution 21 kyr BP (thousand years before present), as expected under a range expansion model. Our results show strong evidences that genetic diversity in D. alata is the outcome of the historical changes in species distribution during the late Pleistocene. Because of this historically low effective population size and the low genetic diversity, recent fragmentation of the Cerrado biome may increase population differentiation, causing population decline and compromising long-term persistence.  相似文献   

12.
Understanding the processes by which new diseases are introduced in previously healthy areas is of major interest in elaborating prevention and management policies, as well as in understanding the dynamics of pathogen diversity at large spatial scale. In this study, we aimed to decipher the dispersal processes that have led to the emergence of the plant pathogenic fungus Microcyclus ulei, which is responsible for the South American Leaf Blight (SALB). This fungus has devastated rubber tree plantations across Latin America since the beginning of the twentieth century. As only imprecise historical information is available, the study of population evolutionary history based on population genetics appeared most appropriate. The distribution of genetic diversity in a continental sampling of four countries (Brazil, Ecuador, Guatemala and French Guiana) was studied using a set of 16 microsatellite markers developed specifically for this purpose. A very strong genetic structure was found (Fst=0.70), demonstrating that there has been no regular gene flow between Latin American M. ulei populations. Strong bottlenecks probably occurred at the foundation of each population. The most likely scenario of colonization identified by the Approximate Bayesian Computation (ABC) method implemented in 𝒟ℐ𝒴𝒜ℬ𝒞 suggested two independent sources from the Amazonian endemic area. The Brazilian, Ecuadorian and Guatemalan populations might stem from serial introductions through human-mediated movement of infected plant material from an unsampled source population, whereas the French Guiana population seems to have arisen from an independent colonization event through spore dispersal.  相似文献   

13.
Over the past century, the Brazilian Atlantic forest has been reduced to small, isolated fragments of forest. Reproductive isolation theories predict a loss of genetic diversity and increases in inbreeding and spatial genetic structure (SGS) in such populations. We analysed eight microsatellite loci to investigate the pollen and seed dispersal patterns, genetic diversity, inbreeding and SGS of the tropical tree Copaifera langsdorffii in a small (4.8 ha), isolated population. All 112 adult trees and 128 seedlings found in the stand were sampled, mapped and genotyped. Seedlings had significantly lower levels of genetic diversity (A=16.5±0.45, mean±95% s.e.; He=0.838±0.006) than did adult trees (A=23.2±0.81; He=0.893±0.030). Parentage analysis did not indicate any seed immigration (mseeds=0) and the pollen immigration rate was very low (mpollen=0.047). The average distance of realized pollen dispersal within the stand was 94 m, with 81% of the pollen travelling <150 m. A significant negative correlation was found between the frequency and distance of pollen dispersal (r=−0.79, P<0.01), indicating that short-distance pollinations were more frequent. A significant SGS for both adults (∼50 m) and seedlings (∼20 m) was also found, indicating that most of the seeds were dispersed over short distances. The results suggested that the spatial isolation of populations by habitat fragmentation can restrict seed and pollen gene flow, increase SGS and affect the genetic diversity of future generations.  相似文献   

14.
Twelve populations of Heterodera glycines from the United States (8), China (2), Japan (1), and Colombia (1) were surveyed for phenotypic intraspecific variability in 42 enzyme systems. Activity of 20 enzymes was detected following isoelectric focusing in polyacrylamide gels of extracts from mass homogenates and single females. Five enzymes, aspartate aminotransferase, phosphoglucose isomerase, α- and β-esterases, and hexokinase were the most useful for detecting intraspecific variability. Phenotypic variability between single females was best demonstrated with α- and β-esterases and acid phosphatase enzyme systems. These results suggest that isoelectric focusing in conjunction with sensitive enzyme systems can be used to detect phenotypic variation between individual nematodes from the same population. The unusual phenotypic variability detected in the H. glycines population from Virginia indicates that the genetic diversity of this population is complex.  相似文献   

15.
In species with large geographic ranges, genetic diversity of different populations may be well studied, but differences in loci and sample sizes can make the results of different studies difficult to compare. Yet, such comparisons are important for assessing the status of populations of conservation concern. We propose a simple approach of using a single well-studied reference population as a ‘yardstick'' to calibrate results of different studies to the same scale, enabling comparisons. We use a well-studied large carnivore, the brown bear (Ursus arctos), as a case study to demonstrate the approach. As a reference population, we genotyped 513 brown bears from Slovenia using 20 polymorphic microsatellite loci. We used this data set to calibrate and compare heterozygosity and allelic richness for 30 brown bear populations from 10 different studies across the global distribution of the species. The simplicity of the reference population approach makes it useful for other species, enabling comparisons of genetic diversity estimates between previously incompatible studies and improving our understanding of how genetic diversity is distributed throughout a species range.  相似文献   

16.
In a conservation and sustainable management perspective, we identify the ecological, climatic, and demographic factors responsible for the genetic diversity patterns of the European silver fir (Abies alba Mill.) at its southwestern range margin (Pyrenees Mountains, France, Europe). We sampled 45 populations throughout the French Pyrenees and eight neighboring reference populations in the Massif Central, Alps, and Corsica. We genotyped 1,620 individuals at three chloroplast and ten nuclear microsatellite loci. We analyzed within‐ and among‐population genetic diversity using phylogeographic reconstructions, tests of isolation‐by‐distance, Bayesian population structure inference, modeling of demographic scenarios, and regression analyses of genetic variables with current and past environmental variables. Genetic diversity decreased from east to west suggesting isolation‐by‐distance from the Alps to the Pyrenees and from the Eastern to the Western Pyrenees. We identified two Pyrenean lineages that diverged from a third Alpine–Corsica–Massif Central lineage 0.8 to 1.1 M years ago and subsequently formed a secondary contact zone in the Central Pyrenees. Population sizes underwent contrasted changes, with a contraction in the west and an expansion in the east. Glacial climate affected the genetic composition of the populations, with the western genetic cluster only observed in locations corresponding to the coldest past climate and highest elevations. The eastern cluster was observed over a larger range of temperatures and elevations. All demographic events shaping the current spatial structure of genetic diversity took place during the Mid‐Pleistocene Transition, long before the onset of the Holocene. The Western Pyrenees lineage may require additional conservation efforts, whereas the eastern lineage is well protected in in situ gene conservation units. Due to past climate oscillations and the likely emergence of independent refugia, east–west oriented mountain ranges may be important reservoir of genetic diversity in a context of past and ongoing climate change in Europe.  相似文献   

17.
In the Atacama Desert from northern Chile (19–24°S), Prosopis (Leguminosae) individuals are restricted to oases that are unevenly distributed and isolated from each other by large stretches of barren landscape constituting an interesting study model as the degree of connectivity between natural populations depends on their dispersal capacity and the barriers imposed by the landscape. Our goal was to assess the genetic diversity and the degree of differentiation among groups of Prosopis individuals of different species from Section Algarobia and putative hybrids (hereafter populations) co‐occurring in these isolated oases from the Atacama Desert and determine whether genetic patterns are associated with dispersal barriers. Thirteen populations were sampled from oases located on three hydrographic basins (Pampa del Tamarugal, Rio Loa, and Salar de Atacama; northern, central, and southern basins, respectively). Individuals genotyped by eight SSRs show high levels of genetic diversity (H O = 0.61, A r = 3.5) and low but significant genetic differentiation among populations (F ST = 0.128, F ST‐ENA = 0.129, D JOST = 0.238). The AMOVA indicates that most of the variation occurs within individuals (79%) and from the variance among individuals (21%); almost, the same variation can be found between basins and between populations within basins. Differentiation and structure results were not associated with the basins, retrieving up to four genetic clusters and certain admixture in the central populations. Pairwise differentiation comparisons among populations showed inconsistencies considering their distribution throughout the basins. Genetic and geographic distances were significantly correlated at global and within the basins considered (p < .02), but low correlation indices were obtained (r < .37). These results are discussed in relation to the fragmented landscape, considering both natural and non‐natural (humans) dispersal agents that may be moving Prosopis in the Atacama Desert.  相似文献   

18.
Pseudocercospora fijiensis is the etiological agent of black Sigatoka, which is currently considered as one of the most destructive banana diseases in all locations where it occurs. It is estimated that a large portion of the P. fijiensis genome consists of transposable elements, which allows researchers to use transposon-based molecular markers in the analysis of genetic variability in populations of this pathogen. In this context, the inter-retrotransposon-amplified polymorphism (IRAP) was used to study the genetic variability in P. fijiensis populations from different hosts and different geographical origins in Brazil. A total of 22 loci were amplified and 77.3 % showed a polymorphism. Cluster analysis revealed two major groups in Brazil. The observed genetic diversity (H E) was 0.22, and through molecular analysis of variance, it was determined that the greatest genetic variability occurs within populations. The discriminant analysis of principal components revealed no structuring related to the geographical origin of culture of the host. The IRAP-based marker system is a suitable tool for the study of genetic variability in P. fijiensis.  相似文献   

19.
Allopatric speciation often yields ecologically equivalent sister species, so that their secondary admixis enforces competition. The shores of Lake Tanganyika harbor about 120 distinct populations of the cichlid genus Tropheus, but only some are sympatric. When alone, Tropheus occupies a relatively broad depth zone, but in sympatry, fish segregate by depth. To assess the effects of competition, we studied the partial co-occurrence of Tropheus moorii ‘Kaiser'' and ‘Kirschfleck'' with Tropheus polli. A previous study demonstrated via standardized breeding experiments that some observed differences between Tropheus ‘Kaiser'' living alone and in sympatry with T. polli have a genetic basis despite large-scale phenotypic plasticity. Using geometric morphometrics and neutral genetic markers, we now investigated whether sympatric populations differ consistently in body shape from populations living alone and if the differences are adaptive. We found significant differences in mean shape between non-sympatric and sympatric populations, whereas all sympatric populations of both color morphs clustered together in shape space. Sympatric populations had a relatively smaller head, smaller eyes and a more anterior insertion of the pectoral fin than non-sympatric populations. Genetically, however, non-sympatric and sympatric ‘Kaiser'' populations clustered together to the exclusion of ‘Kirschfleck''. Genetic distances, but not morphological distances, were correlated with geographic distances. Within- and between-population covariance matrices for T. moorii populations deviated from proportionality. It is thus likely that natural selection acts on both phenotypic plasticity and heritable traits and that both factors contribute to the observed shape differences. The consistency of the pattern in five populations suggests ecological character displacement.  相似文献   

20.
Haruan (Channa striatus) is in great demand in the Malaysian domestic fish market. In the present study, mtDNA cyt b was used to investigate genetic variation of C. striatus among populations in Peninsular Malaysia. The overall population of C. striatus demonstrated a high level of haplotype diversity (h) and a low-to-moderate level of nucleotide diversity (π). Analysis of molecular variance (AMOVA) results showed a significantly different genetic differentiation among 6 populations (FST = 0.37566, P = 0.01). Gene flow (Nm) was high and ranged from 0.32469 to infinity (∞). No significant relationship between genetic distance and geographic distance was detected. A UPGMA tree based on the distance matrix of net interpopulation nucleotide divergence (dA) and haplotype network of mtDNA cyt b revealed that C. striatus is divided into 2 major clades. The neutrality and mismatch distribution tests for all populations suggested that C. striatus in the study areas had undergone population expansion. The estimated time of population expansion in the mtDNA cyt b of C. striatus populations occurred 0.72-6.19 million years ago. Genetic diversity of mtDNA cyt b and population structure among Haruan populations in Peninsular Malaysia will be useful in fisheries management for standardization for Good Agriculture Practices (GAP) in fish-farming technology, as well as providing the basis for Good Manufacturing Practices (GMP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号