首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatic endothelial lipase (HEL) activity is as high in the neonatal (1-day old) rat liver as in adults. Most of the HEL activity is located at the capillaries since 75% of the total activity is released by heparin or collagenase perfusion. The residual activity (non-releasable) is located in hepatocytes and not in hemopoietic cells, which are the major cell type in neonatal liver. Per mg of protein, the HEL activity is 50% higher in neonatal than in adult hepatocytes. We suggest that neonatal hepatocytes have an increased capacity to synthesize and secrete HEL activity, so maintaining a high activity in the whole organ. it might contribute to the hepatic uptake of cholesterol from circulating lipoproteins, in a period in which endogenous cholesterol synthesis is known to be inhibited in the liver.  相似文献   

2.
  • 1.1. Preheparin plasma from mice, but not rats or man, contains high levels of phospholipase A and lysophospholipase activities which are distinct from lecithin:cholesterol acyltransferase (LCAT).
  • 2.2. Neither the phospholipase A nor the lysophospholipase activities in preheparin plasma are inhibited by incubation in the presence of protamine sulphate or high salt concentrations.
  • 3.3. When mouse plasma is incubated in the presence of an antiserum specific for rat hepatic triacylglycerol lipase (HTGL), the phospholipase activities are abolished.
  • 4.4. These observations suggest that the phospholipase activities are attributable to the action of HTGL, which, in the mouse appears to be a freely circulating enzyme, whereas for other species this enzyme only appears in the blood following administration of heparin.
  相似文献   

3.
In this study, a correlation was sought between the circulating lipoprotein lipase activity and nutritional state in the rat. In fed rats, the plasma lipoprotein lipase activity was between 30 and 120 munits/ml, whereas after an overnight fast in restraining cages, the lipoprotein lipase plasma levels were between 280 and 500 munits/ml. The plasma lipoprotein lipase activity was inhibited by a specific high titre goat antiserum to rat lipoprotein lipase. No effect of fasting was seen on the plasma hepatic triacylglycerol lipase. 6 h after fasting, adipose tissue lipoprotein lipase decreased maximally, but plasma lipoprotein lipase was not changed and rose only after 16 h. Thus, it seems that most of the lipoprotein lipase activity in the fasting plasma was related to the 3-fold rise in lipoprotein lipase activity in the heart, which may represent total muscle lipoprotein lipase. The increase in heart lipoprotein lipase was due in part to an increase in the t1/2 of the enzyme from 1.2 to 2.9 h. To determine whether the high plasma levels in the fasting rats might result from impaired clearance of the enzyme by the liver, functional hepatectomy was carried out. 15 min after hepatectomy, plasma lipoprotein lipase rose up to 20-fold in fed and about 6-fold in fasting rats. Lipoprotein lipase activity extracted by the liver was calculated to be 30-60 munits/ml in the fed and 171-247 munits/ml plasma per min in fasting rats. An increase in lipoprotein lipase activity in extrahepatic tissues (heart, lung, kidney, diaphragm and adrenal) occurred 30 min after hepatectomy in fed rats. The increase in heart lipoprotein lipase was due to an increase in heparin-releasable fraction. Since no impairment of hepatic clearance of circulating plasma lipoprotein lipase was found, the high fasting plasma lipoprotein lipase activity may be related to an increase in enzyme synthesis, decreased enzyme turnover and an expansion of the functional pool in tissues such as the heart and probably muscle. The present findings indicate that measurement of endogenous plasma lipoprotein lipase can provide information with respect to the size of the functional pool under normal and pathological conditions.  相似文献   

4.
Paclitaxel is pharmaceutically formulated in a mixture of Cremophor EL and ethanol (1:1, v/v). The unbound fraction of the anticancer drug paclitaxel in plasma is dependent on both plasma protein binding and entrapment in Cremophor EL micelles. We have developed a simple and reproducible method for the quantification of the unbound paclitaxel fraction in human plasma. Human plasma was spiked with [3H]paclitaxel and [14C]glucose (unbound reference) and incubated at 37 degrees C for 30 min. Plasma ultrafiltrate was prepared by a micropartition system (MPS-1) and collected in a sample cup containing 100 microl of plasma to prevent the loss of paclitaxel due to adsorption. The radionuclides were separated after combustion of the biological samples using a sample oxidizer and the radioactivity was determined by liquid scintillation counting. The unbound fraction of paclitaxel was calculated by dividing the ratios of 3H and 14C in plasma ultrafiltrate and in plasma. The method was thoroughly validated using human plasma spiked with pharmacologically relevant concentrations of paclitaxel (10-1000 ng/ml) and Cremophor EL (0.25-2.0%). The method was precise, with a within-day precision ranging from 3.9 to 11.0% and a between-day precision ranging from 5.8 to 13.1%. In patient plasma with low serum albumin values containing 1% of Cremophor EL, the unbound fraction appeared to be significantly higher than that in plasma with normal albumin values. The determination of the unbound fraction of paclitaxel proved to be stable during a 10-week storage at -20 degrees C. Furthermore, the assay was applicable in patient samples. This assay can be used to determine the unbound fraction of paclitaxel in plasma. Moreover, its design should allow the determination of the unbound concentrations of other hydrophobic drugs.  相似文献   

5.
We previously identified that four of five putative N-linked glycosylation sites of human endothelial lipase (EL) are utilized and suggested that the substitution of asparagine-116 (Asn-116) with alanine (Ala) (N116A) increased the hydrolytic activity of EL. The current study demonstrates that mutagenesis of either Asn-116 to threonine (Thr) or Thr-118 to Ala also disrupted the glycosylation of EL and enhanced catalytic activity toward synthetic substrates by 3-fold versus wild-type EL. Furthermore, we assessed the hydrolysis of native lipoprotein lipids by EL-N116A. EL-N116A exhibited a 5-fold increase in LDL hydrolysis and a 1.8-fold increase in HDL2 hydrolysis. Consistent with these observations, adenovirus-mediated expression of EL-N116A in mice significantly reduced the levels of both LDL and HDL cholesterol beyond the reductions observed by the expression of wild-type EL alone. Finally, we introduced Asn-116 of EL into the analogous positions within LPL and HL, resulting in N-linked glycosylation at this site. Glycosylation at this site suppressed the LPL hydrolysis of synthetic substrates, LDL, HDL2, and HDL3 but had little effect on HL activity. These data suggest that N-linked glycosylation at Asn-116 reduces the ability of EL to hydrolyze lipids in LDL and HDL2.  相似文献   

6.
Characterization of the lipolytic activity of endothelial lipase   总被引:16,自引:0,他引:16  
Endothelial lipase (EL) is a new member of the triglyceride lipase gene family previously reported to have phospholipase activity. Using radiolabeled lipid substrates, we characterized the lipolytic activity of this enzyme in comparison to lipoprotein lipase (LPL) and hepatic lipase (HL) using conditioned medium from cells infected with recombinant adenoviruses encoding each of the enzymes. In the absence of serum, EL had clearly detectable triglyceride lipase activity. Both the triglyceride lipase and phospholipase activities of EL were inhibited in a dose-dependent fashion by the addition of serum. The ratio of triglyceride lipase to phospholipase activity of EL was 0.65, compared with ratios of 24.1 for HL and 139.9 for LPL, placing EL at the opposite end of the lipolytic spectrum from LPL. Neither lipase activity of EL was influenced by the addition of apolipoprotein C-II (apoC-II), indicating that EL, like HL, does not require apoC-II for activation. Like LPL but not HL, both lipase activities of EL were inhibited by 1 M NaCl. The relative ability of EL, versus HL and LPL, to hydrolyze lipids in isolated lipoprotein fractions was also examined using generation of FFAs as an end point. As expected, based on the relative triglyceride lipase activities of the three enzymes, the triglyceride-rich lipoproteins, chylomicrons, VLDL, and IDL, were efficiently hydrolyzed by LPL and HL. EL hydrolyzed HDL more efficiently than the other lipoprotein fractions, and LDL was a poor substrate for all of the enzymes.  相似文献   

7.
Staphylococcus hyicus lipase differs from other bacterial lipases in its high phospholipase A1 activity. Here, we present the crystal structure of the S. hyicus lipase at 2.86 A resolution. The lipase is in an open conformation, with the active site partly covered by a neighbouring molecule. Ser124, Asp314 and His355 form the catalytic triad. The substrate-binding cavity contains two large hydrophobic acyl chain-binding pockets and a shallow and more polar third pocket that is capable of binding either a (short) fatty acid or a phospholipid head-group. A model of a phospholipid bound in the active site shows that Lys295 is at hydrogen bonding distance from the substrate's phosphate group. Residues Ser356, Glu292 and Thr294 hold the lysine in position by hydrogen bonding and electrostatic interactions. These observations explain the biochemical data showing the importance of Lys295 and Ser356 for phospholipid binding and phospholipase A1 activity.  相似文献   

8.
High density lipoprotein cholesterol is thought to represent a preferred source of sterols secreted into bile following hepatic uptake by scavenger receptor class B type I (SR-BI). The present study aimed to determine the metabolic effects of an endothelial lipase (EL)–mediated stimulation of HDL cholesterol uptake on liver lipid metabolism and biliary cholesterol secretion in wild-type, SR-BI knockout, and SR-BI overexpressing mice. In each model, injection of an EL expressing adenovirus decreased plasma HDL cholesterol (P < 0.001) whereas hepatic cholesterol content increased (P < 0.05), translating into decreased expression of sterol-regulatory element binding protein 2 (SREBP2) and its target genes HMG-CoA reductase and LDL receptor (each P < 0.01). Biliary cholesterol secretion was dependent on hepatic SR-BI expression, being decreased in SR-BI knockouts (P < 0.001) and increased following hepatic SR-BI overexpression (P < 0.001). However, in each model, biliary secretion of cholesterol, bile acids, and phospholipids as well as fecal bile acid and neutral sterol content, remained unchanged in response to EL overexpression. Importantly, hepatic ABCG5/G8 expression did not correlate with biliary cholesterol secretion rates under these conditions. These results demonstrate that an acute decrease of plasma HDL cholesterol levels by overexpressing EL increases hepatic cholesterol content but leaves biliary sterol secretion unaltered. Instead, biliary cholesterol secretion rates are related to the hepatic expression level of SR-BI. These data stress the importance of SR-BI for biliary cholesterol secretion and might have relevance for concepts of reverse cholesterol transport.  相似文献   

9.
Endothelial lipase (EL) inhibitors have been shown to elevate HDL-C levels in pre-clinical murine models and have potential benefit in prevention and treatment of cardiovascular diseases. Modification of the 1-ethyl-3-hydroxy-1,5-dihydro-2H-pyrrol-2-one (DHP) lead, 1, led to the discovery of a series of potent tetrahydropyrimidinedione (THP) EL inhibitors. Synthesis and SAR studies including modification of the amide group, together with changes on the pyrimidinone core led to a series of arylcycloalkyl, indanyl, and tetralinyl substituted 5-amino or 5-hydroxypyrimidinedione-4-carboxamides. Several compounds were advanced to PK evaluation. Among them, compound 4a was one of the most potent with measurable ELHDL hSerum potency and compound 3g demonstrated the best overall pharmacokinetic parameters.  相似文献   

10.
Conditions for measurement of the lipolytic activities, lipoprotein lipase and hepatic triacylglycerol lipase in cynomolgus monkey postheparin plasma are described. The two activities are separable by heparin-Sepharose chromatography. Goat anti-human hepatic triacylglycerol lipase serum inhibits monkey hepatic triacylglycerol lipase activity and allows direct measurement of lipoprotein lipase in post-heparin plasma. While both human and homologous serum can be used as a source of activator apolipoprotein, homologous serum produces a much greater activation.  相似文献   

11.
12.
Extracellular lipase activity detected on tributyrin agar has been identified in a cosmid clone, JMP3084, constructed from the chromosome of Aeromonas hydrophila and vector pHC79. This lipase, named apl-1, also exhibits nonhemolytic phospholipase C activity on lecithin and p-nitrophenylphosphorylcholine. Subcloning of the cosmid JMP3084 with partial Sau3a1 digestion localized the lipase gene to a 3.4-kb DNA fragment. Southern blot analysis shows the gene apl-1 to exist in single copy on the A. hydrophila chromosome. Expression of apl-1 in the pT7 system identified a single protein of molecular weight 70 kDa. Nucleotide sequencing of apl-1 has identified an open reading frame of 2055 bases predicting a protein of 73 kDa. The presence of an amino terminal signal sequence of 18 amino acids accounts for this molecular weight disparity. Further analysis of the lipase amino acid sequence revealed the presence of a classical serine active lipase site (Gly-X-Ser-X-Gly) located between residues 561 and 570. The A. hydrophila chromosomal copy of apl-1 has been inactivated by use of the mutagenesis vector pJP5603, resulting in the complete removal of phospholipase C activity and lowered levels of lipase activity detected on tributyrin agar.  相似文献   

13.
14.
Summary Serum-free mouse embryo (SFME) cells are a cell line derived in medium in which serum is replaced with growth factors and other supplements. These cells display unusual properties: a) they do not lose proliferative potential or show gross chromosomal aberration upon extended culture, b) they depend on epidermal growth factor (EGF) for survival, and c) they are reversibly growth inhibited by plasma and serum. Transfection of SFME cells with oncogenes (ras, neu, SV40 T antigen) results in cells that grow in serum-supplemented medium and no longer require EGF for survival. The growth inhibitory activity of human plasma on SFME cells was investigated. The activity was present in delipidated plasma and was not dialyzable against 1M acetic acid. The activity precipitated in 33% methanol, bound to concanavalin A-agarose and was retarded by Sephadex G-50 in 200 mM acetic acid. A fifty- to one-hundred-fold purification was achieved, although most of the differential inhibition of untransformed vs. transformed cells was lost in the course of the purification.  相似文献   

15.
A membrane preparation from rat brain catalyzed the hydrolysis of [2-3H]glycerol-labeled lysophosphatidylinositol (lysoPI) to yield monoacylglycerol (MG) and inositolphosphates. This phospholipase C activity had an optimal pH of 8.2. The membrane preparation did not require the addition of Ca2+ for its maximum activity, but the activity was inhibited by addition of 0.1 mM EDTA to the assay mixture and was restored by simultaneous addition of 0.2 mM Ca2+. The activity was found to be localized in synaptic plasma membranes prepared by Ficoll and Percoll density gradients. The phospholipase C was highly specific for lysoPI; diacylglycerol formation from phosphatidylinositol, and MG formation from lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylserine were below 5% of that observed with lysoPI under the conditions used. We concluded that there is a pathway for phosphatidylinositol metabolism in brain synaptic membranes which is different from the well-characterized phosphoinositide-specific phospholipase C pathway.Abbreviations PI phosphatidylinositol - lysoPI lysophosphatidylinositol - lysoPI-PLC lysophosphoinositide-specific phospholipase C - PI-PLC phosphoinositide-specific phospholipase C - MG monoacylglycerol - PLC phospholipase C To whom to address reprint requests.  相似文献   

16.
Human endothelial lipase (EL), a member of the triglyceride lipase gene family, has five potential N-linked glycosylation sites, two of which are conserved in both lipoprotein lipase and hepatic lipase. Reduction in molecular mass of EL after treatment with glycosidases and after treatment of EL-expressing cells with the glycosylation inhibitor tunicamycin demonstrated that EL is a glycosylated protein. Each putative glycosylation site was examined by site-directed mutagenesis of the asparagine (Asn). Mutation of Asn-60 markedly reduced secretion and slightly increased specific activity. Mutation of Asn-116 did not influence secretion but increased specific activity. In both cases, this resulted from decreased apparent K(m) and increased apparent V(max). Mutation of Asn-373 did not influence secretion but significantly reduced specific activity, as a result of a decrease in apparent V(max). Mutation of Asn-471 resulted in no reduction in secretion or specific activity. Mutation of Asn-449 resulted in no change in secretion, activity, or molecular mass, indicating that the site is not utilized. The ability of mutants secreted at normal levels to mediate bridging between LDL and cell surfaces was examined. The Asn-373 mutant demonstrated a 3-fold decrease in bridging compared with wild-type EL, whereas Asn-116 and Asn-471 were similar to wild-type EL.  相似文献   

17.
Appraisal of hepatic lipase and lipoprotein lipase activities in mice   总被引:1,自引:0,他引:1  
A variety of methods are currently used to analyze HL and LPL activities in mice. In search of a simple methodology, we analyzed mouse preheparin and postheparin plasma LPL and HL activities using specific polyclonal antibodies raised in rabbit against rat HL (anti-HL) and in goat against rat LPL (anti-LPL). As an alternative, we analyzed HL activity in the presence of 1 M NaCl, a condition known to inhibit LPL activity in humans. The assays were validated using plasma samples from wild-type and HL-deficient C57BL/6 mice. We now show that the use of 1 M NaCl for the inhibition of plasma LPL activity in mice may generate incorrect measurements of both LPL and HL activities. Our data indicate that HL can be measured directly, without heparin injection, in preheparin plasma, because virtually all HL is present in an unbound form circulating in plasma. In contrast, measurable LPL activity is present only in postheparin plasma. Both HL and LPL can be measured using the same assay conditions (low salt and the presence of apolipoprotein C-II as an LPL activator). Total lipase activity in postheparin plasma minus preheparin HL activity reflects LPL activity. Specific antibodies are not required.  相似文献   

18.
The hydrolytic activity of a lipoprotein lipase from bovine milk against triacylglycerol and phosphatidylcholine of rat plasma very low density lipoprotein was determined and compared to that against phosphatidylcholine of high density lipoprotein. 85--90% of the triacylglycerol in very low density lipoprotein were hydrolyzed to fatty acids and 25--35% of the phosphatidylcholine to lysophosphatidylcholine. High density lipoprotein phosphatidylcholine was only minimally susceptible to the enzyme. Even with high amounts of enzyme and prolonged incubation periods, lysophosphatidylcholine generation did not exceed 2--4% of the original amounts of labeled phosphatidylcholine in the high density lipoprotein. We conclude that phospholipids in high density lipoprotein are not substrates for the phospholipase activity of this lipoprotein lipase. These observations suggest that factors other than the presence of apolipoprotein C-II and of glycerophosphatides are of importance for the activity of lipoprotein lipases.  相似文献   

19.
Endothelial lipase (EL) has been shown to be a critical determinant for high density lipoprotein cholesterol levels in vivo; therefore, assays that measure EL activity have become important for the discovery of small molecule inhibitors that specifically target EL. Here, we describe fluorescent Bodipy-labeled substrates that can be used in homogeneous, ultra-high-throughput kinetic assays that measure EL phospholipase or triglyceride lipase activities. Triton X-100 detergent micelles and synthetic HDL particles containing Bodipy-labeled phospholipid or Bodipy-labeled triglyceride substrates were shown to be catalytic substrates for EL, LPL, and HL. More importantly, only synthetic HDL particles containing Bodipy-labeled triglyceride were ideal substrates for EL, LPL, and HL in the presence of high concentrations of human or mouse serum. These data suggest that substrate presentation is a critical factor when determining EL activity in the presence of serum.  相似文献   

20.
Phospholipase A2 activity was measured in cerebral microvessels isolated from 5 to 6 month (young adult) and 21 to 24 month (aged adult) old mice. Radiolabeled 1-stearoyl-2-[1-14C]arachidonyl choline phosphoglyceride was used as the enzyme substrate, and enzyme activity determined at pH 8 and pH 9. Activity in older animals was significantly less than in younger animals at both pH's. With choline phosphoglyceride as a substrate, phospholipase A2 activity was predominantly Ca2+-dependent, although a small, but measurable Ca2+-independent component was present. Negligible production of diacylglycerol indicated little or no phospholipase C activity. These findings indicate that activity of a phospholipase A2, which utilizes choline phosphoglyceride as a substrate, is affected by the aging process. Moreover, a change in PLA2 activity would result in altered metabolism of specific phosphoglycerides and turnover of fatty acids at the sn-2 position in cerebral microvessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号