首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高等植物细胞含有复杂的内膜系统,通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控,如Coat、SM、Tether、SNARE和Rab蛋白等,其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白,分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE,两类SNARE结合形成SNARE复合体,促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

2.
细胞内的囊泡运输是生命活动中一个极其复杂的动态生物学过程,参与各种植物发育过程和对环境的响应,包括植物组织细胞特异性和防御响应。该文从蛋白质分选、分泌蛋白的合成和囊泡运输的特异性对植物囊泡运输与植物的先天性免疫的关系进行了详细阐述。  相似文献   

3.
Synapsins were the first presynaptic proteins identified and have served as the flagship of the presynaptic protein field. Here we review recent studies demonstrating that different members of the synapsin family play different roles at presynaptic terminals employing different types of synaptic vesicles. The structural underpinnings for these functions are just beginning to be understood and should provide a focus for future efforts.  相似文献   

4.
A group of plant AtSH3Ps (Arabidopsis thaliana SH3-containing proteins) involved in trafficking of clathrin-coated vesicles was identified from the GenBank database. These proteins contained predicted coiled-coil and Src homology 3 (SH3) domains that are similar to animal and yeast proteins involved in the formation, fission, and uncoating of clathrin-coated vesicles. Subcellular fractionation and immunolocalization studies confirmed the presence of AtSH3P1 in the endomembrane system. In particular, AtSH3P1 was localized on or adjacent to the plasma membrane and its associated vesicles, vesicles of the trans-Golgi network, and the partially coated reticulum. At all of these locations, AtSH3P1 colocalized with clathrin. Functionally, in vitro lipid binding assay demonstrated that AtSH3P1 bound to specific lipid groups known to accumulate at invaginated coated pits or coated vesicles. In addition, immunohistochemical studies and actin binding assays indicated that AtSH3P1 also may regulate vesicle trafficking along the actin cytoskeleton. Yeast complementation studies suggested that AtSH3Ps have similar functions to the yeast Rvs167p protein involved in endocytosis and actin arrangement. A novel interaction between AtSH3P1 and an auxilin-like protein was identified by yeast two-hybrid screening, immunolocalization, and an in vitro binding assay. The interaction was mediated through the SH3 domain of AtSH3P1 and a proline-rich domain of auxilin. The auxilin-like protein stimulated the uncoating of clathrin-coated vesicles by Hsc70, a reaction that appeared to be inhibited in the presence of AtSH3P1. Hence, AtSH3P1 may perform regulatory and/or scaffolding roles during the transition of fission and the uncoating of clathrin-coated vesicles.  相似文献   

5.
The sculpting of membranes into dynamic, curved shapes is central to intracellular cargo trafficking. Though the generation of membrane curvature during trafficking necessarily involves both lipids and membrane-associated proteins, current mechanistic views focus primarily on the formation of rigid cages and curved scaffolds by protein assemblies. Here we report on a different mechanism for the control of membrane deformation, unrelated to the imposition of predefined curvature, involving modulation of membrane material properties: Sar1, a GTPase that regulates vesicle trafficking from the endoplasmic reticulum, lowers the rigidity of the lipid bilayer membrane to which it binds. In vitro assays in which optically trapped microspheres create controlled membrane deformations revealed a monotonic decline in bending modulus as a function of Sar1 concentration, down to nearly zero rigidity, indicating a dramatic lowering of the energetic cost of curvature generation. This is the first demonstration that a vesicle trafficking protein lowers the rigidity of its target membrane, leading to a new conceptual framework for vesicle biogenesis.  相似文献   

6.
In a screen designed to identify genes expressed preferentially in retina, we identified a cDNA encoding the human ortholog of rat STXBP1 (n-Sec1, Munc-18-1, rbSec1), a protein implicated in vesicle trafficking and neurotransmitter release. This protein also has similarity toDrosophilaRop (64% aa identity) andCaenorhabditis elegansUNC-18 (58% aa identity). The major human cDNA encodes a protein of 594 amino acids which has 100% amino acid identity with its rat and murine counterparts. Additionally, there is an alternative splice form in humans, arising from the inclusion of an additional exon, which encodes a protein of 603 amino acids and is also 100% identical to the corresponding rat isoform. We found expression of the shorter cDNA in all tissues and cell lines we examined with highest levels in retina and cerebellum. By RT-PCR analysis, we found expression of the longer cDNA in neural tissues only. We mapped the structural gene to 9q34.1, a region without obvious candidate phenotypes. However, due to its evolutionary conservation and abundant expression in retina and brain, STXBP1 should be considered a candidate gene for retinal and/or neural disorders mapping to 9q34.1.  相似文献   

7.
8.
9.
10.
An acute brain injury is commonly characterized by an extended cellular damage. The post-injury process of scar formation is largely determined by responses of various local glial cells and blood-derived immune cells. The role of astrocytes and microglia have been frequently reviewed in the traumatic sequelae. Here, we summarize the diverse contributions of oligodendrocytes (OLs) and their precursor cells (OPCs) in acute injuries. OLs at the lesion site are highly sensitive to a damaging insult, provoked by Ca2+ overload after hyperexcitation originating from increased levels of transmitters. At the lesion site, differentiating OPCs can replace injured oligodendrocytes to guarantee proper myelination that is instrumental for healthy brain function. In contrast to finally differentiated and non-dividing OLs, OPCs are the most proliferative cells of the brain and their proliferation rate even increases after injury. There exist even evidence that OPCs might also generate some type of astrocyte beside OLs. Thereby, OPCs can contribute to the generation and maintenance of the glial scar. In the future, detailed knowledge of the molecular cues that help to prevent injury-evoked glial cell death and that control differentiation and myelination of the oligodendroglial lineage will be pivotal in developing novel therapeutic approaches.  相似文献   

11.
The trans-Golgi network (TGN) plays a pivotal role in directing proteins in the secretory pathway to the appropriate cellular destination. VAMP4, a recently discovered member of the vesicle-associated membrane protein (VAMP) family of trafficking proteins, has been suggested to play a role in mediating TGN trafficking. To better understand the function of VAMP4, we examined its precise subcellular distribution. Indirect immunofluorescence and electron microscopy revealed that the majority of VAMP4 localized to tubular and vesicular membranes of the TGN, which were in part coated with clathrin. In these compartments, VAMP4 was found to colocalize with the putative TGN-trafficking protein syntaxin 6. Additional labeling was also present on clathrin-coated and noncoated vesicles, on endosomes and the medial and trans side of the Golgi complex, as well as on immature secretory granules in PC12 cells. Immunoprecipitation of VAMP4 from rat brain detergent extracts revealed that VAMP4 exists in a complex containing syntaxin 6. Converging lines of evidence implicate a role for VAMP4 in TGN-to-endosome transport.  相似文献   

12.
13.
14.
Monoclonal antibodies were generated by immunizing mice with chick brain synaptic membranes and screening for immunoprecipitation of solubilized conotoxin GVIA receptors (N-type calcium channels). Antibodies against two synaptic proteins (p35--syntaxin 1 and p58--synaptotagmin) were produced and used to purify and characterize a ternary complex containing N-type channels associated with these two proteins. These results provided the first evidence for a specific interaction between presynaptic calcium channels and SNARE proteins involved in synaptic vesicle docking and calcium-dependent exocytosis. Immunoprecipitation experiments supported the conclusion that syntaxin 1/SNAP-25/VAMP/synaptotagmin I or II complexes associate with N-type, P/Q-type, but not L-type calcium channels from rat brain nerve terminals. Immunofluorescent confocal microscopy at the frog neuromuscular junction was consistent with the co-localization of syntaxin 1, SNAP-25, and calcium channels, all of which are predominantly expressed at active zones of the presynaptic plasma membrane facing post-synaptic folds rich in acetylcholine receptors. The interaction of proteins implicated in calcium-dependent exocytosis with presynaptic calcium channels may locate the sensor(s) that trigger vesicle fusion within a microdomain of calcium entry.  相似文献   

15.
Synaptic mitochondria are thought to be critical in supporting neuronal energy requirements at the synapse, and bioenergetic failure at the synapse may impair neural transmission and contribute to neurodegeneration. However, little is known about the energy requirements of synaptic vesicle release or whether these energy requirements go unmet in disease, primarily due to a lack of appropriate tools and sensitive assays. To determine the dependence of synaptic vesicle cycling on mitochondrially derived ATP levels, we developed two complementary assays sensitive to mitochondrially derived ATP in individual, living hippocampal boutons. The first is a functional assay for mitochondrially derived ATP that uses the extent of synaptic vesicle cycling as a surrogate for ATP level. The second uses ATP FRET sensors to directly measure ATP at the synapse. Using these assays, we show that endocytosis has high ATP requirements and that vesicle reacidification and exocytosis require comparatively little energy. We then show that to meet these energy needs, mitochondrially derived ATP is rapidly dispersed in axons, thereby maintaining near normal levels of ATP even in boutons lacking mitochondria. As a result, the capacity for synaptic vesicle cycling is similar in boutons without mitochondria as in those with mitochondria. Finally, we show that loss of a key respiratory subunit implicated in Leigh disease markedly decreases mitochondrially derived ATP levels in axons, thus inhibiting synaptic vesicle cycling. This proves that mitochondria-based energy failure can occur and be detected in individual neurons that have a genetic mitochondrial defect.  相似文献   

16.
Abstract. Pelizaeus-Merzbacher disease (PMD) is a dysmyelinating disease resulting from mutations, deletions, or duplications of the proteolipid protein (PLP) gene. Distinguishing features of PMD include pleiotropy and a range of disease severities among patients. Previously, we demonstrated that, when expressed in transfected fibroblasts, many naturally occurring mutant PLP alleles encode proteins that accumulate in the endoplasmic reticulum and are not transported to the cell surface. In the present communication, we show that oligodendrocytes in an animal model of PMD, the msd mouse, accumulate Plp gene products in the perinuclear region and are unable to transport them to the cell surface. Another important aspect of disease in msd mice is oligodendrocyte cell death, which is increased by two- to threefold. We demonstrate in msd mice that this death occurs by apoptosis and show that at the time oligodendrocytes die, they have differentiated, extended processes that frequently contact axons and are expressing myelin structural proteins. Finally, we define a hypothesis that accounts for pathogenesis in most PMD patients and animal models of this disease and, moreover, can be used to develop potential therapeutic strategies for ameliorating the disease phenotype.  相似文献   

17.
In this overview current insights in the regulation of presynaptic transmitter release, mainly acquired in studies using isolated CNS nerve terminals are highlighted. The following aspects are described. (i) The usefulness of pinched-off nerve terminals, so-called synaptosomes, for biochemical and ultrastructural studies of presynaptic stimulus-secretion coupling. (ii) The regulation of neurotransmitter release by multiple Ca2+ channels, with special emphasis on the specificity of different classes of these channels with respect to the release of distinct types of neurotransmitters, that are often co-localized, such as amino acids and neuropeptides. (iii) Possible molecular mechanisms involved in targeting synaptic vesicle (SV) traffic toward the active zone. (iv) The role of presynaptic receptors in regulating transmitter release, with special emphasis on different glutamate subtype receptors. Isolated nerve terminals are of great value as model system in order to obtain a better understanding of the regulation of the release of distinct classes of neurotransmitters in tiny CNS nerve endings.  相似文献   

18.
19.
During development, the secreted molecule Sonic Hedgehog (Shh) is required for lineage specification and proliferation of oligodendrocyte progenitors (OLPs), which are the glia cells responsible for the myelination of axons in the central nervous system (CNS). Shh signaling has been implicated in controlling both the generation of oligodendrocytes (OLGs) during embryonic development and their production in adulthood. Although, some evidence points to a role of Shh signaling in OLG development, its involvement in OLG differentiation remains to be fully determined. The objective of this study was to assess whether Shh signaling is involved in OLG differentiation after neural stem cell commitment to the OLG lineage. To address these questions, we manipulated Shh signaling using cyclopamine, a potent inhibitor of Shh signaling activator Smoothened (Smo), alone or combined with the agonist SAG in OLG primary cultures and assessed expression of myelin-specific markers. We found that inactivation of Shh signaling caused a dose-dependent decrease in myelin basic protein (MBP) and myelin associated glycoprotein (MAG) in differentiating OLGs. Co-treatment of the cells with SAG reversed the inhibitory effect of cyclopamine on both myelin-specific protein levels and morphological changes associated with it. Further experiments are required to elucidate the molecular mechanism by which Shh signaling regulates OLG differentiation.  相似文献   

20.
朊病毒病,即传染性海绵状脑病(transmissible spongiform encephalopathies,TSEs),是一类致死性的神经退行性疾病,存在散发性、感染性和遗传性3种形式。在朊病毒病的病理过程中,细胞正常朊蛋白PrPc(cellular PrP)转化为异常构象的PrP^Sc(scrapie PrP)是至关重要的,但是朊病毒的增殖如何导致神经元凋亡仍不清楚。PrPc的胞内运输在朊病毒病中发挥重要作用,朊病毒感染后PrP^C转化为PrP^Sc,及遗传性朊病毒病中PrP突变可能影响PrP的生物合成、亚细胞定位及转运过程,通过干扰PrP^C的正常功能或产生毒性中间体而导致神经系统病变。现对近年来关于PrP胞内运输在朊病毒病中的作用进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号