首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Escape from X inactivation results in expression of genes embedded within inactive chromatin, suggesting the existence of boundary elements between domains. We report that the 5' end of Jarid1c, a mouse escape gene adjacent to an inactivated gene, binds CTCF, displays high levels of histone H3 acetylation, and functions as a CTCF-dependent chromatin insulator. CpG island methylation at Jarid1c was very low during development and virtually absent at the CTCF sites, signifying that CTCF may influence DNA methylation and chromatin modifications. CTCF binding sites were also present at the 5' end of two other escape genes, mouse Eif2s3x and human EIF2S3, each adjacent to an inactivated gene, but not at genes embedded within large escape domains. Thus, CTCF was specifically bound to transition regions, suggesting a role in maintaining both X inactivation and escape domains. Furthermore, the evolution of X chromosome domains appears to be associated with repositioning of chromatin boundary elements.  相似文献   

3.
4.
Ma MK  Heath C  Hair A  West AG 《PLoS genetics》2011,7(7):e1002175
Genomic maps of chromatin modifications have provided evidence for the partitioning of genomes into domains of distinct chromatin states, which assist coordinated gene regulation. The maintenance of chromatin domain integrity can require the setting of boundaries. The HS4 insulator element marks the 3' boundary of a heterochromatin region located upstream of the chicken β-globin gene cluster. Here we show that HS4 recruits the E3 ligase RNF20/BRE1A to mediate H2B mono-ubiquitination (H2Bub1) at this insulator. Knockdown experiments show that RNF20 is required for H2Bub1 and processive H3K4 methylation. Depletion of RNF20 results in a collapse of the active histone modification signature at the HS4 chromatin boundary, where H2Bub1, H3K4 methylation, and hyperacetylation of H3, H4, and H2A.Z are rapidly lost. A remarkably similar set of events occurs at the HSA/HSB regulatory elements of the FOLR1 gene, which mark the 5' boundary of the same heterochromatin region. We find that persistent H2Bub1 at the HSA/HSB and HS4 elements is required for chromatin boundary integrity. The loss of boundary function leads to the sequential spreading of H3K9me2, H3K9me3, and H4K20me3 over the entire 50 kb FOLR1 and β-globin region and silencing of FOLR1 expression. These findings show that the HSA/HSB and HS4 boundary elements direct a cascade of active histone modifications that defend the FOLR1 and β-globin gene loci from the pervasive encroachment of an adjacent heterochromatin domain. We propose that many gene loci employ H2Bub1-dependent boundaries to prevent heterochromatin spreading.  相似文献   

5.
6.
7.
Chromatin structure is believed to exert a strong effect on replication origin function. We have studied the replication of the chicken beta-globin locus, whose chromatin structure has been extensively characterized. This locus is delimited by hypersensitive sites (HSs) that mark the position of insulator elements. A stretch of condensed chromatin and another HS separate the beta-globin domain from an adjacent folate receptor (FR) gene. We demonstrate here that in erythroid cells that express the FR but not the globin genes, replication initiates at four sites within the beta-globin domain, one at the 5' HS4 insulator and the other three near the rho- and beta(A)-globin genes. Three origins consist of G+C-rich sequences enriched in CpG dinucleotides. The fourth origin is A+T rich. Together with previous work, these data reveal that the insulator origin has unmethylated CpGs, hyperacetylated histones H3 and H4, and lysine 4-methylated histone H3. In contrast, opposite modifications are observed at the other G+C-rich origins. We also show that the whole region, including the stretch of condensed chromatin, replicates early in S phase in these cells. Therefore, different early-firing origins within the same locus may have opposite patterns of epigenetic modifications. The role of insulator elements in DNA replication is discussed.  相似文献   

8.
9.
10.

Background

The H19/Igf2 imprinting control region (ICR) functions as an insulator exclusively in the unmethylated maternal allele, where enhancer-blocking by CTCF protein prevents the interaction between the Igf2 promoter and the distant enhancers. DNA methylation inhibits CTCF binding in the paternal ICR allele. Two copies of the chicken β-globin insulator (ChβGI)2 are capable of substituting for the enhancer blocking function of the ICR. Insulation, however, now also occurs upon paternal inheritance, because unlike the H19 ICR, the (ChβGI)2 does not become methylated in fetal male germ cells. The (ChβGI)2 is a composite insulator, exhibiting enhancer blocking by CTCF and chromatin barrier functions by USF1 and VEZF1. We asked the question whether these barrier proteins protected the (ChβGI)2 sequences from methylation in the male germ line.

Methodology/Principal Findings

We genetically dissected the ChβGI in the mouse by deleting the binding sites USF1 and VEZF1. The methylation of the mutant versus normal (ChβGI)2 significantly increased from 11% to 32% in perinatal male germ cells, suggesting that the barrier proteins did have a role in protecting the (ChβGI)2 from methylation in the male germ line. Contrary to the H19 ICR, however, the mutant (mChβGI)2 lacked the potential to attain full de novo methylation in the germ line and to maintain methylation in the paternal allele in the soma, where it consequently functioned as a biallelic insulator. Unexpectedly, a stricter enhancer blocking was achieved by CTCF alone than by a combination of the CTCF, USF1 and VEZF1 sites, illustrated by undetectable Igf2 expression upon paternal transmission.

Conclusions/Significance

In this in vivo model, hypomethylation at the ICR position together with fetal growth retardation mimicked the human Silver-Russell syndrome. Importantly, late fetal/perinatal death occurred arguing that strict biallelic insulation at the H19/Igf2 ICR position is not tolerated in development.  相似文献   

11.
12.
13.
14.
15.
16.
17.
During differentiation and development cells undergo dramatic morphological and functional changes without any change in the DNA sequence. The underlying changes of gene expression patterns are established and maintained by epigenetic processes. Early mechanistic insights came from the observation that gene activity and repression states correlate with the DNA methylation level of their promoter region. DNA methylation is a postreplicative modification that occurs exclusively at the C5 position of cytosine residues (5mC) and predominantly in the context of CpG dinucleotides in vertebrate cells. Here, three major DNA methyltransferases (Dnmt1, 3a, and 3b) establish specific DNA methylation patterns during differentiation and maintain them over many cell division cycles. CpG methylation is recognized by at least three protein families that in turn recruit histone modifying and chromatin remodeling enzymes and thus translate DNA methylation into repressive chromatin structures. By now a multitude of histone modifications have been linked in various ways with DNA methylation. We will discuss some of the basic connections and the emerging complexity of these regulatory networks. J. Cell. Biochem. 108: 43–51, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Aberrant epigenetic silencing of tumor suppressor genes is a common feature observed during the transformation process of many cancers, including those of hematologic origin. Histone modifications, including acetylation, phosphorylation, and methylation, collaborate with DNA CpG island methylation to regulate gene expression. The dynamic process of histone methylation is the latest of these epigenetic modifications to be described, and the identification and characterization of LSD1 as a demethylase of lysine 4 of histone H3 (H3K4) has confirmed that both the enzyme and the modified histone play important roles as regulators of gene expression. LSD1 activity contributes to the suppression of gene expression by demethylating promoter-region mono- and dimethyl-H3K4 histone marks that are associated with active gene expression. As most post-translational modifications are reversible, the enzymes involved in the modification of histones have become targets for chemotherapeutic intervention. In this study, we examined the effects of the polyamine analogue LSD1 inhibitor 2d (1,15-bis{N 5-[3,3-(diphenyl)propyl]-N 1-biguanido}-4,12-diazapentadecane) in human acute myeloid leukemia (AML) cell lines. In each line studied, 2d evoked cytotoxicity and inhibited LSD1 activity, as evidenced by increases in the global levels of mono- and di-methylated H3K4 proteins. Global increases in other chromatin modifications were also observed following exposure to 2d, suggesting a broad response to this compound with respect to chromatin regulation. On a gene-specific level, treatment with 2d resulted in the re-expression of e-cadherin, a tumor suppressor gene frequently silenced by epigenetic modification in AML. Quantitative chromatin immunoprecipitation analysis of the e-cadherin promoter further confirmed that this re-expression was concurrent with changes in both active and repressive histone marks that were consistent with LSD1 inhibition. As hematologic malignancies have demonstrated promising clinical responses to agents targeting epigenetic silencing, this polyamine analogue LSD1 inhibitor presents an exciting new avenue for the development of novel therapeutic agents for the treatment of AML.  相似文献   

19.
With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available.In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (β-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells.Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.  相似文献   

20.
The chicken beta-globin 5'HS4 insulator element acts as a barrier to the encroachment of chromosomal silencing. Endogenous 5'HS4 sequences are highly enriched with histone acetylation and H3K4 methylation regardless of neighboring gene expression. We report here that 5'HS4 elements recruit these histone modifications when protecting a reporter transgene from chromosomal silencing. Deletion studies identified a single protein binding site within 5'HS4, footprint IV, that is necessary for the recruitment of histone modifications and for barrier activity. We have determined that USF proteins bind to footprint IV. USF1 is present in complexes with histone modifying enzymes in cell extracts, and these enzymes specifically interact with the endogenous 5'HS4 element. Knockdown of USF1 expression leads to a loss of histone modification recruitment and subsequent encroachment of H3K9 methylation. We propose that barrier activity requires the constitutive recruitment of H3K4 methylation and histone acetylation at multiple residues to counteract the propagation of condensed chromatin structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号