首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用神经元急性分离和膜片箝技术以及细胞贴附式方式记录通道活动 ,探讨DHP类Ca2 通道激动剂BayK8644及拮抗剂nifedipine对下丘脑神经元L 型Ca2 通道的影响。结果显示 ,在BayK8644作用下 ,通道开放形式发生变化 ,明显可见多级开放 ;通道平均开放时间、平均开放概率显著增加 ,但单通道电导无明显变化。nifedipine的作用与BayK8644相反。结果提示 ,BayK8644对下丘脑神经元L 型Ca2 通道有明显激动作用 ,nifedip ine有显著抑制作用  相似文献   

2.
Fu QJ  Zou F 《生理学报》2001,53(5):339-343
采用神经元急性分离和膜片箍技术以及细胞贴附式方式记录通道活动,探讨DHP类Ca^2 通道激动剂Bay K8644及拮抗剂nifedipine对下丘脑神经元L-型Ca^2 通道的影响,结果显示,在Bay K8644作用下,通道开放形式发生变化,明显可见多级开放;通道平均开放时间,平均开放概况显著增加,但单通道电导无明显变化。nifedipine的作用与Bay K8644相反。结果提示,Bay K8644对下丘脑神经元L-型Ca^2 通道有明显激动作用 nifedipine有显著抑制作用。  相似文献   

3.
The effects of the Ca2+ agonist Bay K 8644 on outward potassium currents have been studied in single ventricular cells of chick embryo and aortic single cells of rabbit using the whole-cell patch clamp technique. Bay K 8644 was found to increase 1K in both heart and aortic single cells. This effect of Bay K 8644 on both muscle was reversed by Mn2+ and blocked by 20 mM TEA. The Bay K 8644 potassium I/V curve of single heart cell had a N shape, which is Ca2+ dependent. These data strongly suggest that Bay K 8644 increases a gK(Ca) in both aortic and heart muscle.  相似文献   

4.
Dihydropyridine Modulation of the Chromaffin Cell Secretory Response   总被引:3,自引:1,他引:2  
Prolonged perfusion of cat adrenal glands with Krebs-bicarbonate solutions containing nicotine, muscarine, or excess K rapidly increased the rate of catecholamine output proportional to the concentrations of secretagogue used. The secretory responses to nicotine or high K reached a peak and declined to almost basal rates of secretion after about 10 min of stimulation. The dihydropyridine Ca channel agonist Bay K 8644 potentiated markedly the secretory responses to 1 microM nicotine and to 17.7 mM K but not to higher concentrations of these secretagogues. The muscarinic response did not decrease with time and was modestly potentiated by Bay K 8644. Similar curves were obtained with 17.7 mM K plus Bay K 8644 and with 59 mM K alone. CGP28392, another agonist, was about 10 times less potent than Bay K 8644 in potentiating the secretory responses to 17.7 mM K. Bay K 8644 also potentiated the release of [3H]noradrenaline evoked by stimulation of cultured bovine adrenal chromaffin cells with 17.7 mM K or 2 microM nicotine but not with higher concentrations of K or nicotine. Dihydropyridine Ca channel antagonists reversed the effects of Bay K 8644 with the following order of potency: niludipine greater than nifedipine = nimodipine greater than nitrendipine. The secretory rates from intact chromaffin cells treated with the Ca ionophores X537A or A23187, or those evoked by Ca-EGTA buffers from digitonin-permeabilized cells, were not affected by Bay K 8644. These results are compatible with the following conclusions: Bay K 8644 selectively potentiates catecholamine secretory responses mediated through the activation of voltage-sensitive Ca channels; during nicotine or high-K stimulation, Ca gains access to the cell interior through a common permeability pathway, the Ca channel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The properties of Ca2+ channels in strips and single muscle cells of longitudinal muscle of estrogen-dominated rat myometrium were studied under the effects of elevation of K+ concentration, the partial channel agonist Bay K 8644, and nitrendipine. In isolated strips in 0.5 mM Ca2+, Bay K 8644 (pD2 = 7.8-8.0) lowered the threshold for and enhanced the contractions in response to an elevation of K+ concentration, including the maximum response to K+ elevation alone. Bay K 8644 alone in concentrations up through 10(-6) M did not initiate contractions in 0.5 mM Ca2+ solutions. At higher concentrations (10(-5) M), Bay K 8644 behaved as an antagonist to contractions induced by elevation of K+. In isolated cells 10(-7) M Bay K 8644 enhanced the shortenings to elevated K+ and lowered the threshold K+ concentration required. Also no significant contraction occurred with 10(-7) M Bay K 8644 at normal K+ concentration. In contrast with its effect in isolated strips, no significant increase in maximum shortening (to 60 mM K+) was observed, possibly because cells without a mechanical load were maximally shortened by K+ alone. From these studies, we conclude that Ca2+ channels of isolated strips and cells of rat myometrium behave similarly and have similar properties to those of other smooth muscles in their interactions with elevation of K+, nitrendipine, and Bay K 8644.  相似文献   

6.
Urocortin (UCN) II, a newly isolated corticotropinreleasing- factor (CRF) related peptide, has been found to have potent cardiovascular protective effects. To investigate the mechanisms of its vascular protective effects, we exposed mesenteric arterial smooth muscle cells (MASMC) from spontaneously hypertensive rats (SHR) to UCN II to observe the change in cell apoptosis using TUNEL assay and measured intracellular calcium concentration ([Ca2+]i) using confocal laser scanning microscope. In addition, effects of UCN II on L-type calcium currents (ICa,L) were also measured using whole-cell patch clamp. Our results showed that UCN II concentration-dependently, but time-independently inhibited cell apoptosis. Astressin 2B, a special CRF 2 receptor antagonist, had no influence on this inhibition. Hypoxia or Bay K8644, the L-type calcium channel activator, induced the apoptosis of MASMC from SHR. Pretreatment of the cells with UCN II diminished the effects of hypoxia or Bay K8644. UCN II was also observed to reduce [Ca2+]i increase induced by KCl or Bay K8644. UCN II concentration-dependently inhibited ICa,L, which was not affected by astressin 2B. It did not affect the activation of ICa,L, but markedly shifted the inactivation curve to the left. In conclusion, UCN II inhibits the apoptosis of MASMC from SHR via inhibiting L-type calcium channels.  相似文献   

7.
We have studied the interaction between dihydropyridine (DHP) Ca2+ modulators and the phorbol ester phorbol 12-myristate 13-acetate (PMA) on whole cell Ca2+ currents, 45Ca2+ uptake, immediate early gene (IEG) expression, and proliferation in the rat pituitary GH4C1 cell line. When short (3- to 5-msec) depolarizing voltage clamp steps were used to activate L-type Ca2+ channels, the DHP Ca2+ agonist (-)Bay K 8644 markedly enhanced Ca2+ entry by slowing channel closing upon repolarization. In contrast, the Ca2+ agonist induced only small and inconsistent increases in c-fos mRNA and did not measurably increase NGFI-A. Ca2+ channel activation by depolarization with 50 mM KCl in the presence of (-)Bay K 8644 induced large increases in 45Ca2+ uptake, but failed to markedly induce either of the IEGs. The phorbol ester PMA did not alter T- or L-type Ca2+ current or 45Ca2+ uptake by GH4C1 cells, but triggered large increases in both c-fos and NGFI-A mRNA. In combination, PMA and (-)Bay K 8644 acted synergistically to increase mRNAs for both IEGs. The effect of the DHPs was stereospecific; (+)Bay K 8644, a Ca2+ antagonist, inhibited PMA-induced increases in c-fos and NGFI-A mRNAs. Both PMA and (-)Bay K 8644 inhibited the proliferation of GH4C1 cells, measured by cell count or [3H]thymidine incorporation. The inhibition by the Ca2+ agonist was stereoselective and approximately additive to that of PMA. These results indicate that the expression of c-fos IEG and that of NGFI-A IEG are differentially regulated by separate second messenger pathways in GH4C1 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Planar lipid bilayer recordings were used to study Ca channels from bovine cardiac sarcolemmal membranes. Ca channel activity was recorded in the absence of nucleotides or soluble enzymes, over a range of membrane potentials and ionic conditions that cannot be achieved in intact cells. The dihydropyridine-sensitive L-type Ca channel, studied in the presence of Bay K 8644, was identified by a detailed comparison of its properties in artificial membranes and in intact cells. L-type Ca channels in bilayers showed voltage dependence of channel activation and inactivation, open and closed times, and single-channel conductances in Ba2+ and Ca2+ very similar to those found in cell-attached patch recordings. Open channels were blocked by micromolar concentrations of external Cd2+. In this cell-free system, channel activity tended to decrease during the course of an experiment, reminiscent of Ca2+ channel "rundown" in whole-cell and excised-patch recordings. A purely voltage-dependent component of inactivation was observed in the absence of Ca2+ stores or changes in intracellular Ca2+. Millimolar internal Ca2+ reduced unitary Ba2+ influx but did not greatly increase the rate or extent of inactivation or the rate of channel rundown. In symmetrical Ba2+ solutions, unitary conductance saturated as the Ba2+ concentration was increased up to 500 mM. The bilayer recordings also revealed activity of a novel Ca2+-permeable channel, termed "B-type" because it may contribute a steady background current at negative membrane potentials, which is distinct from L-type or T-type Ca channels previously reported. Unlike L-type channels, B-type channels have a small unitary Ba2+ conductance (7 pS), but do not discriminate between Ba2+ and Ca2+, show no obvious sensitivity to Bay K 8644, and do not run down. Unlike either L- or T-type channels, B-type channels did not require a depolarization for activation and displayed mean open times of greater than 100 ms.  相似文献   

9.
(-)Bay K 8644 produced a concentration-dependent contraction of porcine coronary artery rings with the maximal contraction at 10(-6) M. Pretreatment of the rings with 10(-6) M nitrendipine inhibited (-)Bay K 8644-induced contraction, while pretreatment with 10(-8) M nitrendipine potentiated the contraction elicited by (-)Bay K 8644. (-)Bay K 8644 (10(-6) M) significantly stimulated Ca2+ influx. Although 10(-8) M nitrendipine never stimulated Ca2+ influx, Ca2+ influx induced by (-)Bay K 8644 was significantly potentiated by pretreatment with 10(-8) M nitrendipine. Pretreatment with 10(-6) M nitrendipine significantly decreased Ca2+ influx in tissues treated with (-)Bay K 8644. Our results suggest that the increased Ca2+ influx might be involved in the mechanisms by which (-)Bay K 8644-induced contraction was potentiated by pretreatment with nitrendipine.  相似文献   

10.
p-Methoxycinnamic acid (p-MCA) is a cinnamic acid derivative that shows various pharmacologic actions such as hepatoprotective and antihyperglycemic activities. The present study was to elucidate the mechanisms by which p-MCA increases [Ca2?]i and insulin secretion in INS-1 cells. p-MCA (100 μM) increased [Ca2?]i in INS-1 cells. The p-MCA-induced insulin secretion and rise in [Ca2?]i were markedly inhibited in the absence of extracellular Ca2? or in the presence of an L-type Ca2? channel blocker nimodipine. These results suggested that p-MCA increased Ca2? influx via the L-type Ca2? channels. Diazoxide, an ATP-sensitive K? channel opener, did not alter p-MCA-induced insulin secretion, nor [Ca2?]i response. In addition, p-MCA enhanced glucose-, glibenclamide-induced insulin secretion whereas it also potentiated the increase in insulin secretion induced by arginine, and Bay K 8644, an L-type Ca2? channel agonist. Taken together, our results suggest that p-MCA stimulated insulin secretion from pancreatic β-cells by increasing Ca2? influx via the L-type Ca2? channels, but not through the closure of ATP-sensitive K? channels.  相似文献   

11.
Dihydropyridine (DHP) Ca2+ channel modulators were used to explore the relationship between voltage-gated Ca2+ channels and PRL secretion, synthesis, and mRNA in PRL-secreting pituitary cells. Optical isomers of the Ca2+ channel agonist Bay K 8644 produced stereospecific and opposing effects on L-type Ca2+ current, PRL release, and synthesis in GH3 and GH4C1 cells. (-)-Bay K 8644 (R5417) behaved as a pure agonist, enhancing Ca2+ current several-fold while shifting the current-voltage curve 10-15 mV in the hyperpolarizing direction. The agonist effect was independent of holding potential, but decreased during prolonged Ba2+ or Ca2+ entry. R5417 produced a concentration-dependent increase in acute PRL release and enhanced PRL production by GH cells several-fold during a 72-h period. (+)-Bay K 8644 (R4407) behaved as a weak Ca2+ channel antagonist, inhibiting L-type Ca2+ current, KCl-stimulated PRL secretion, and PRL production at concentrations of 0.5-5 microM. These two isomers produced similar effects on PRL production by normal rat pituitary cells in dispersed culture. R5417 (500 nM) increased PRL produced in 72 h to 233 +/- 8% of the control value. R4407 reduced this quantity by 36 +/- 9%. The effects of the DHPs on PRL mRNA levels were consistent with the effects observed for acute secretion and hormone production. The agonist R5417 increased PRL mRNA 147 +/- 5% over a 30-h period, and the potent DHP Ca2+ channel blocker nimodipine inhibited PRL mRNA production 2-fold. These results demonstrate that racemic Bay K 8644 interacts with L-type Ca2+ channels in normal and transformed pituitary cells as a mixed agonist-antagonist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In rat tail artery (RTA), spinal cord injury (SCI) increases nerve-evoked contractions and the contribution of L-type Ca2+ channels to these responses. In RTAs from unoperated rats, these channels play a minor role in contractions and Bay K8644 (L-type channel agonist) mimics the effects of SCI. Here we investigated the mechanisms underlying the facilitatory actions of SCI and Bay K8644 on nerve-evoked contractions of RTAs and the hypothesis that Ca2+ entering via L-type Ca2+ channels is rapidly sequestered by the sarcoplasmic reticulum (SR) limiting its role in contraction. In situ electrochemical detection of noradrenaline was used to assess if Bay K8644 increased noradrenaline release. Perforated patch recordings were used to assess if SCI changed the Ca2+ current recorded in RTA myocytes. Wire myography was used to assess if SCI modified the effects of Bay K8644 and of interrupting SR Ca2+ uptake on nerve-evoked contractions. Bay K8644 did not change noradrenaline-induced oxidation currents. Neither the size nor gating of Ca2+ currents differed between myocytes from sham-operated (control) and SCI rats. Bay K8644 increased nerve-evoked contractions in RTAs from both control and SCI rats, but the magnitude of this effect was reduced by SCI. By contrast, depleting SR Ca2+ stores with ryanodine or cyclopiazonic acid selectively increased nerve-evoked contractions in control RTAs. Cyclopiazonic acid also selectively increased the blockade of these responses by nifedipine (L-type channel blocker) in control RTAs, whereas ryanodine increased the blockade produced by nifedipine in both groups of RTAs. These findings suggest that Ca2+ entering via L-type channels is normally rapidly sequestered limiting its access to the contractile mechanism. Furthermore, the findings suggest SCI reduces the role of this mechanism.  相似文献   

13.
Endothelin and Ca++ agonist Bay K 8644: different vasoconstrictive properties   总被引:12,自引:0,他引:12  
The mechanism of vasoconstriction induced by endothelin was investigated in rat isolated aorta in comparison with the Ca++ agonist, Bay K 8644. Endothelin (EC50 = 4 nM) induced a slow and sustained contraction in control medium whereas the one elicited by Bay K 8644 (EC50 = 14 nM) necessitating a partly K+ depolarized medium was fast with superimposed rhythmic contraction. By opposition with Bay K 8644, endothelin contraction was not inhibited by the calcium antagonists (1 microM), nifedipine, diltiazem and D 600, and substantially persisted in Ca++ free medium or after depletion of intracellular Ca++ by phenylephrine (1 microM). These data show that endothelin does not act as an activator of potential dependent Ca++ channels but probably through specific receptor(s) as suggested by its mode of vasoconstriction.  相似文献   

14.
The interaction of large depolarization and dihydropyridine Ca2+ agonists, both of which are known to enhance L-type Ca2+ channel current, was examined using a conventional whole-cell clamp technique. In guinea pig detrusor cells, only L-type Ca2+ channels occur. A second open state (long open state: O2) of the Ca2+ channels develops during large depolarization (at +80 mV, without Ca2+ agonists). This was judged from lack of inactivation of the Ca2+ channel current during the large depolarizing steps (5 s) and slowly deactivating inward tail currents (= 10-15 ms) upon repolarization of the cell membrane to the holding potential (-60 mV). Application of Bay K 8644 (in 2.4 mM Ca(2+)- containing solutions) increased the amplitude of the Ca2+ currents evoked by simple depolarizations, and made it possible to observe inward tail currents (= 2.5-5 ms at -60 mV). The open state induced by large depolarization (O2*) in the Bay K 8644 also seemed hardly to inactivate. After preconditioning with large depolarizing steps, the decay time course of the inward tail currents upon repolarization to the holding potential (-60 mV) was significantly slowed, and could be fitted reasonably with two exponentials. The fast and slow time constants were 10 and 45 ms, respectively, after 2 s preconditioning depolarizations. Qualitatively the same results were obtained using Ba2+ as a charge carrier. Although the amplitudes of the inward currents observed in the test step and the subsequent repolarization to the holding potential were decreased in the same manner by additional application of nifedipine (in the presence of Bay K 8644), the very slow deactivation time course of the tail current was little changed. The additive enhancement by large depolarization and Ca2+ agonists of the inward tail current implies that two mechanisms separately induce long opening of the Ca2+ channels: i.e., that there are four open states.  相似文献   

15.
Lack of evidence for voltage dependent calcium channels on platelets   总被引:8,自引:0,他引:8  
Intracellular calcium was measured in human platelets using the fluorescent calcium indicator Quin 2. A concentration dependent increase was observed with thrombin. Depolarisation induced by high KCl concentrations did not alter [Ca++]i. The calcium agonist Bay K 8644 did not affect resting levels or thrombin stimulated elevation of intracellular calcium. The calcium antagonists diltiazem, verapamil and PN 200-110 did not inhibit the thrombin stimulated elevation in [Ca++]i. Pretreatment of platelets with adenylate cyclase stimulants reduced the rate and magnitude of the maximal [Ca++]i elevation due to thrombin. In addition, thrombin stimulation of 45Ca++ influx was insensitive to Bay K 8644, verapamil, diltiazem and Pn 200-110. We conclude that functional voltage sensitive calcium channels are not present on human platelets.  相似文献   

16.
To determine whether hormone synthesis by the GH4C1 pituitary cell line could be regulated by specifically modulating the movement of Ca2+ through voltage-sensitive channels, we have compared the effects of the dihydropyridine Ca2+ channel agonist BAY K8644 and the antagonist nimodipine on hormone production and Ca2+ current in these cells. BAY K8644 elicited, after a 10-15-h lag, a dose-dependent increase in prolactin (PRL) production as determined by measurements of total intracellular and secreted hormone. Over a 72-h period, GH4C1 cells incubated with 300 nM BAY K8644 produced 2-3 times as much total PRL as control cells. The effect on PRL was specific, since BAY K8644 did not increase growth hormone production, cell growth rate, or total cell protein. Exposing GH4C1 cells to BAY K8644 for short periods, up to 90 min, did not induce the delayed increase in PRL production observed with longer incubations. The effects of nimodipine were opposite to those of the Ca2+ channel agonist. PRL production was reduced 85% during 48-h treatment with 200 nM nimodipine, whereas growth hormone production was decreased less than 15%, and cell growth and total protein were unaffected. The actions of these two drugs on PRL production were well correlated with their effects on GH4C1 Ca2+ currents as measured by whole-cell patch-clamp recordings. BAY K8644 enhanced the magnitude of the peak Ca2+ current and shifted the current-voltage relationship such that Ca2+ channels were activated at less depolarized potentials. Nimodipine potently inhibited Ca2+ movement through the non-inactivating channel, while it antagonized the increases elicited by BAY K8644. These results indicate that PRL synthesis by GH4C1 cells can be specifically regulated by agents that enhance or block the movement of Ca2+ through voltage-sensitive channels. They also suggest that hormone synthesis by a secretory cell may be coupled to electrical activity by the opening of Ca2+ channels.  相似文献   

17.
We tested the hypothesis that somatostatin (SRIF) inhibits insulin secretion from an SV40 transformed hamster beta cell line (HIT cells) by an effect on the voltage-dependent Ca2+ channels and examined whether G-proteins were involved in the process. Ca2+ currents were recorded by the whole cell patch-clamp method, the free cytosolic calcium, [Ca2+]i, was monitored in HIT cells by fura-2, and cAMP and insulin secretion were measured by radioimmunoassay. SRIF decreased Ca2+ currents, [Ca2+]i, and basal insulin secretion in a dose-dependent manner over the range of 10(-12)-10(-7)M. The increase in [Ca2+]i and insulin secretion induced by either depolarization with K+ (15 mM) or by the Ca2+ channel agonist, Bay K 8644 (1 microM) was attenuated by SRIF in a dose-dependent manner over the same range of 10(-12)-10(-7) M. the half-maximal inhibitory concentrations (IC50) for SRIF inhibition of insulin secretion were 8.6 X 10(-12) M and 8.3 X 10(-11) M for K+ and Bay K 8644-stimulated secretion and 1 X 10(-10) M and 2.9 X 10(-10) M for the SRIF inhibition of the K+ and Bay K 8644-induced rise in [Ca2+]i, respectively. SRIF also attenuated the rise in [Ca2+]i induced by the cAMP-elevating agent, isobutylmethylxanthine (1 mM) in the presence of glucose. Bay K 8644, K+ and SRIF had no significant effects on cAMP levels and SRIF had no effects on adenylyl cyclase activity at concentrations lower than 1 microM. SRIF (100 nM) did not change K+ efflux (measured by 86Rb+) through ATP-sensitive K+ channels in HIT cells. SRIF (up to 1 microM) had no significant effect on membrane potential measured by bisoxonol fluorescence. Pretreatment of the HIT cells with pertussis toxin (0.1 microgram/ml) overnight abolished the effects of SRIF on Ca2+ currents, [Ca2+]i and insulin secretion implying a G-protein dependence in SRIF's actions. Thus, one mechanism by which SRIF decreases insulin secretion is by inhibiting Ca2+ influx through voltage-dependent Ca2+ channels, an action mediated through a pertussis toxin-sensitive G-protein.  相似文献   

18.
Summary The effects of the Ca2+ agonist Bay K 8644 on outward potassium currents have been studied in single ventricular cells of chick embryo and aortic single cells of rabbit using the whole-cell patch clamp technique. Bay K 8644 was found to increase lK in both heart and aortic single cells. This effect of Bay K 8644 on both muscle was reversed by Mn2+ and blocked by 20 mM TEA. The Bay K 8644 potassium I/V curve of single heart cell had a N shape, which is Ca2+ dependent. These data strongly suggest that Bay K 8644 increases a gK(ca) in both aortic and heart muscle.  相似文献   

19.
The effect of dihydropyridine agonists and antagonists on neuronal voltage sensitive calcium channels was investigated. The resting intracellular calcium concentration of synaptosomes prepared from whole brain was 110 +/- 9 nM, as assayed by the indicator quin 2. Depolarisation of the synaptosomes with K+ produced an immediate increase in [Ca2+]i. The calcium agonist Bay K 8644 and antagonist nifedipine did not affect [Ca2+]i under resting or depolarising conditions. In addition, K+ stimulated 45Ca2+ uptake into synaptosomes prepared from the hippocampus was insensitive to Bay K 8644 and PY 108-068 in normal or Na+ free conditions. In neuronally derived NG108-15 cells the enantiomers of the dihydropyridine derivative 202-791 showed opposite effects in modulating K+ stimulated 45Ca2+ uptake. (-)-R-202-791 inhibited K+ induced 45Ca2+ uptake with an IC50 of 100 nM and (+)-S-202-791 enhanced K+ stimulated uptake with an EC50 of 80 nM. These results suggest that synaptosomal voltage sensitive calcium channels either are of a different type to those found in peripheral tissues and cells of neural origin or that expression of functional effects of dihydropyridines requires different experimental conditions to those used here.  相似文献   

20.
We demonstrated recently that purified preparations of Gs, the stimulatory G protein of adenylyl cyclase, can stabilize Ca2+ channels in inside-out cardiac ventricle membrane patches stimulated prior to excision by the beta-adrenergic agonist isoprenaline or by the dihydropyridine agonist Bay K 8644 and that such preparations of Gs can restore activity to spontaneously inactivated cardiac Ca2+ channels incorporated into planar lipid bilayers (Yatani, A., Codina, J., Reeves, J.P., Birnbaumer, L., and Brown, A.M. (1987) Science 238, 1288-1292). To test whether these effects represented true stimulation and to further identify the G protein responsible, we incorporated skeletal muscle T-tubule membranes into lipid bilayers and studied the response of their Ca2+ channels to G proteins, specifically Gs, and manipulations known to be specific for Gs. In contrast to cardiac channels, incorporated T-tubule Ca2+ channels exhibit stable average activities over prolonged periods of time (up to 20 min at room temperature), allowing assessment of possible effects of G proteins under steady-state assay conditions. We report that exogenously added human erythrocyte GTP gamma S (guanosine 5'-O-(3-thiotriphosphate]-activated Gs (Gs) or its resolved GTP gamma S-activated alpha subunit (alpha s) stimulate T-tubule Ca2+ channels by factors of 2-3 in the presence of Bay K 8644, and of 10-20 in the absence of Bay K 8644 and that they do so in a manner that is independent of concurrent or previous phosphorylation by cAMP-dependent protein kinase. Activation of purified Gs by cholera toxin increases both its adenylyl cyclase stimulatory and its Ca2+ channel stimulatory effects. Ca2+ channels previously stimulated by the combined actions of Bay K 8644 and cAMP-dependent protein kinase still respond to Gs. We conclude that the responses seen are due to Gs rather than a contaminant, that the effect on Ca2+ channel activity is that of a true stimulation, akin to that on adenylyl cyclase, and show that a given G protein may regulate more than one effector system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号