首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants offer excellent models to investigate how gene flow shapes the organization of genetic diversity. Their three genomes can have different modes of transmission and will hence experience varying levels of gene flow. We have compiled studies of genetic structure based on chloroplast DNA (cpDNA), mitochondrial DNA (mtDNA) and nuclear markers in seed plants. Based on a data set of 183 species belonging to 103 genera and 52 families, we show that the precision of estimates of genetic differentiation (G(ST)) used to infer gene flow is mostly constrained by the sampling of populations. Mode of inheritance appears to have a major effect on G(ST). Maternally inherited genomes experience considerably more subdivision (median value of 0.67) than paternally or biparentally inherited genomes (approximately 0.10). G(ST) at cpDNA and mtDNA markers covary narrowly when both genomes are maternally inherited, whereas G(ST) at paternally and biparentally inherited markers also covary positively but more loosely and G(ST) at maternally inherited markers are largely independent of values based on nuclear markers. A model-based gross estimate suggests that, at the rangewide scale, historical levels of pollen flow are generally at least an order of magnitude larger than levels of seed flow (median of the pollen-to-seed migration ratio: 17) and that pollen and seed gene flow vary independently across species. Finally, we show that measures of subdivision that take into account the degree of similarity between haplotypes (N(ST) or R(ST)) make better use of the information inherent in haplotype data than standard measures based on allele frequencies only.  相似文献   

2.
Patterns of chloroplast DNA (cpDNA) variation were studied in eight white oak species by sampling 345 populations throughout Europe. The detection of polymorphisms by restriction analysis of PCR-amplified cpDNA fragments allowed the identification of 23 haplotypes that were phylogenetically ordered. A systematic hybridization and introgression between the eight species studied is evident. The levels of subdivision for unordered (G(ST)) and ordered (N(ST)) alleles are very high and close (0.83 and 0.85). A new statistical approach to the quantitative study of phylogeography is presented, which relies on the coefficients of differentiation G(ST) and N(ST) and the Mantel's test. Based on pairwise comparisons between populations, the significance of the difference between both coefficients is evaluated at a global and a local scale. The mapped distribution of the haplotypes indicates the probable routes of postglacial recolonization followed by oak populations that had persisted in southern refugia, especially in the Iberian peninsula, Italy and the Balkans. Most cpDNA polymorphisms appear to be anterior to the beginning of the last recolonization. A subset of the preexisting haplotypes have merely expanded north, while others were left behind in the south.  相似文献   

3.
Semerikova SA  Semerikov VL 《Genetika》2007,43(12):1637-1646
The genetic variability in 29 populations of Abies sibirica, three of A. nephrolepis, and seven of A. sachalinensis was studied using SSR markers of chloroplast DNA. Stable amplification and polymorphic products were obtained using primer pairs Pt71936 and Pt30204 (with nine and forteen alleles, respectively) of 10 pairs. Totally, 70 haplotypes were found, 43 in A. sibirica, 49 in A. sachalinensis, and 31 in A. nephrolepis. The highest values of genetic diversity parameters were observed in A. sachalinensis, and the lowest in A. nephrolepis. The Siberian fir differs from Far East species by the uneven multimodal frequency distributions of allele length in both cpSSR loci, which is explained by the presence of few separated from each other dominating haplotypes. This fact indicates that A. sibirica and the Far East species have different demographic histories. In A. sibirica, the proportion of diversity between populations in the total genetic diversity, calculated taking into account the differences between haplotypes (R(ST)) was 8.34% and 4.42% without accounting for haplotypes differences (R(ST) > G(ST), P= 0.01). The pairwise G(ST) correlate significantly with geographic distances between the populations A. sibirica and with genetic distances D calculated from allozyme data. No such correlations were found with the R(ST) parameter. The results of cpSSR variability analysis strongly support the conclusions inferred from allozyme data: several geographic groups of comparatively genetically close populations are identified, which may be explained by the invasion of colonization of the present-day Siberian fir range.  相似文献   

4.
Genetic diversities of the nuclear and mitochondrial genomes in Pinus parviflora were studied in 16 populations, which were distributed across most of the species' range in Japan. Six mitochondrial DNA haplotypes were identified among the 16 populations. The intrapopulation diversity of allozymes was similar to that of other endemic woody species (H(S)=0.259). Although P. parviflora is distributed in discrete populations, differentiation between these was very low (G(ST)=0.044). In addition, the extent of genetic differentiation between two varieties (var. pentaphylla and var. parviflora) was extremely low (G(VT)=0.001). Intrapopulation diversity of mitochondrial DNA was also very low (H(S)=0.098), but population differentiation was high (G(ST)=0.863). Moreover, the distribution of haplotypes reflected the taxonomic differences between P. parviflora var. pentaphylla and var. parviflora. The populations of var. pentaphylla and var. parviflora contained different haplotypes. Differing modes of inheritance may account for the differences in nuclear and mitochondrial genetic diversity.  相似文献   

5.
Meng L  Yang R  Abbott RJ  Miehe G  Hu T  Liu J 《Molecular ecology》2007,16(19):4128-4137
The disjunct distribution of forests in the Qinghai-Tibetan Plateau (QTP) and adjacent Helan Shan and Daqing Shan highlands provides an excellent model to examine vegetation shifts, glacial refugia and gene flow of key species in this complex landscape region in response to past climatic oscillations and human disturbance. In this study, we examined maternally inherited mitochondrial DNA (nad1 intron b/c and nad5 intron 1) and paternally inherited chloroplast DNA (trnC-trnD) sequence variation within a dominant forest species, Picea crassifolia Kom. We recovered nine mitotypes and two chlorotypes in a survey of 442 individuals from 32 populations sampled throughout the species' range. Significant mitochondrial DNA population subdivision was detected (G(ST) = 0.512; N(ST) = 0.679), suggesting low levels of recurrent gene flow through seeds among populations and significant phylogeographical structure (N(ST) > GST, P < 0.05). Plateau haplotypes differed in sequence from those in the adjacent highlands, suggesting a long period of allopatric fragmentation between the species in the two regions and the presence of independent refugia in each region during Quaternary glaciations. On the QTP platform, all but one of the disjunct populations surveyed were fixed for the same mitotype, while most populations at the plateau edge contained more than one haplotype with the mitotype that was fixed in plateau platform populations always present at high frequency. This distribution pattern suggests that present-day disjunct populations on the QTP platform experienced a common recolonization history. The same phylogeographical pattern, however, was not detected for paternally inherited chloroplast DNA haplotypes. Two chlorotypes were distributed throughout the range of the species with little geographical population differentiation (G(ST) = N(ST) = 0.093). This provides evidence for highly efficient pollen-mediated gene flow among isolated forest patches, both within and between the QTP and adjacent highland populations. A lack of isolation to pollen-mediated gene flow between forests on the QTP and adjacent highlands is surprising given that the Tengger Desert has been a geographical barrier between these two regions for approximately the last 1.8 million years.  相似文献   

6.
Leng L  Zhang DE 《Molecular ecology》2011,20(12):2494-2509
The genetic differentiation of populations is a key parameter in population genetic investigations. Wright's F(ST) (and its relatives such as G(ST) ) has been a standard measure of differentiation. However, the deficiencies of these indexes have been increasingly realized in recent years, leading to some new measures being proposed, such as Jost's D (Molecular Ecology, 2008; 17, 4015). The existence of these new metrics has stimulated considerable debate and induced some confusion on which statistics should be used for estimating population differentiation. Here, we report a simulation study with neutral microsatellite DNA loci under a finite island model to compare the performance of G(ST) and D, particularly under nonequilibrium conditions. Our results suggest that there exist fundamental differences between the two statistics, and neither G(ST) nor D operates satisfactorily in all situations for quantifying differentiation. D is very sensitive to mutation models but G(ST) noticeably less so, which limits D's utility in population parameter estimation and comparisons across genetic markers. Also, the initial heterozygosity of the starting populations has some important effects on both the individual behaviours of G(ST) and D and their relative behaviours in early differentiation, and this effect is much greater for D than G(ST) . In the early stages of differentiation, when initial heterozygosity is relatively low (<0.5, if the number of subpopulations is large), G(ST) increases faster than D; the opposite is true when initial heterozygosity is high. Therefore, the state of the ancestral population appears to have some lasting impacts on population differentiation. In general, G(ST) can measure differentiation fairly well when heterozygosity is low whatever the causes; however, when heterozygosity is high (e.g. as a result of either high mutation rate or high initial heterozygosity) and gene flow is moderate to strong, G(ST) fails to measure differentiation. Interestingly, when population size is not very small (e.g. N ≥ 1000), G(ST) measures differentiation quite linearly with time over a long duration when gene flow is absent or very weak even if mutation rate is not low (e.g. μ = 0.001). In contrast, D, as a differentiation measure, performs rather robustly in all these situations. In practice, both indexes should be calculated and the relative levels of heterozygosities (especially H(S) ) and gene flow taken into account. We suggest that a comparison of the two indexes can generate useful insights into the evolutionary processes that influence population differentiation.  相似文献   

7.
Comparison of the level of differentiation at neutral molecular markers (estimated as F(ST) or G(ST)) with the level of differentiation at quantitative traits (estimated as Q(ST)) has become a standard tool for inferring that there is differential selection between populations. We estimated Q(ST) of timing of bud set from a latitudinal cline of Pinus sylvestris with a Bayesian hierarchical variance component method utilizing the information on the pre-estimated population structure from neutral molecular markers. Unfortunately, the between-family variances differed substantially between populations that resulted in a bimodal posterior of Q(ST) that could not be compared in any sensible way with the unimodal posterior of the microsatellite F(ST). In order to avoid publishing studies with flawed Q(ST) estimates, we recommend that future studies should present heritability estimates for each trait and population. Moreover, to detect variance heterogeneity in frequentist methods (ANOVA and REML), it is of essential importance to check also that the residuals are normally distributed and do not follow any systematically deviating trends.  相似文献   

8.
Analysis of DNA Diversity by Spatial Autocorrelation   总被引:11,自引:1,他引:10  
G. Bertorelle  G. Barbujani 《Genetics》1995,140(2):811-819
Two statistics are proposed for summarizing spatial patterns of DNA diversity. These autocorrelation indices for DNA analysis, or AIDAs, can be applied to RFLP and sequence data; the resulting set of autocorrelation coefficients, or correlogram, measures whether, and to what extent, individual DNA sequences or haplotypes resemble the haplotypes sampled at arbitrarily chosen spatial distances. Analyses of computer-generated sets of data, and of RFLP data from two natural populations, show that AIDAs allow one to objectively and simply identify basic patterns in the spatial distribution of haplotypes. These statistics, therefore, seem to be a useful tool both to explore the genetic structure of a population and to suggest hypotheses on the evolutionary processes that shaped the observed patterns.  相似文献   

9.
横断山区作为青藏高原东南部主要的一个冰期避难所,第四纪冰期气候的变化对该地区的植物地理分布和居群遗传结构都产生了重要的影响。为了揭示该地区物种分布的分子系统地理学结构,选取在该地区广泛分布的一种高山灌木-高山绣线菊的叶绿体trnL-trnF序列进行研究。采集了15个居群182个个体进行测序,共发现7个单倍型。总的遗传多样性较高(HT=0.809),但居群内遗传多样性较低(HS=0.236)。分子变异分析(AMOVA)结果表明分布区内高山绣线菊的遗传变异主要存在于居群间(84.48%),且居群间的遗传分化很高(GST=0.708,FST=0.84476,NST=0.863),有着显著的谱系地理学结构(NST>GST,P<0.01)和较低的居群间平均基因流(Nm=0.09)。单倍型的系统进化树和进化分支网络分析得到了相似的拓扑结构,7种单倍型都按照地理分布聚为三支:横断山区西部、横断山区东部以及两者的交接地带。本研究推测该物种在横断山区存在多个冰期避难所,而没有表现出大规模的种群集体扩张和迁移的现象。青藏高原隆升、第四纪气候的反复波动以及横断山区特殊的地理环境使得原来连续的居群片段化,并发生范围扩张,从而塑造了高山绣线菊的现代生物地理分布格局。  相似文献   

10.
Quercus rubra is one of the most important timber and ornamental tree species from eastern North America. It is a widespread species growing under variable ecological conditions. Chloroplast DNA variation was studied by PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) in 290 individuals from 66 populations sampled throughout the natural range. A total of 12 haplotypes were detected, with one found in 75% of the trees. Population differentiation is relatively low (G(ST) = 0.46), even when similarities between haplotypes are taken into account (N(ST) = 0.50), pointing to a weak phylogeographical structure. Furthermore, no spatial structure of genetic diversity could be detected. The genetic differentiation increased northwards, reflecting the postglacial history of Q. rubra. The unusual aspect of this study was the low level of chloroplast DNA genetic differentiation in Q. rubra compared to that typically observed in other oak species. Palynological evidence indicates that during the last glacial maximum, Q. rubra had one major distribution range with populations located relatively far to the north, resulting in only modest movement northwards when climate improved, whereas European white oaks were largely restricted to the southern European peninsulas and experienced extensive movements during the postglacial period. The contrasted geographical features and levels of tree species richness of both continents might further explain why congeneric species sharing similar life history traits have genetic structures that are so different.  相似文献   

11.
The genetic structure of the Asian tri-spine horseshoe crab, Tachypleus tridentatus, was investigated in three populations of Taiwan Strait using mitochondrial (mt) AT-rich region DNA sequences. We examined 23 individuals from Kinmen, an island located on the western side of Taiwan Strait, and 12 each from Tiexianwei and Dongwei near Magong Island in the Penghu Archipelago, in the middle of Taiwan Strait. DNA sequence analysis of 369 base pairs (bp) of the mt AT-rich region revealed 10 haplotypes among the 47 individuals, with a mean haplotypic diversity (h) of 0.626+/-0.075 and nucleotide diversity (pi) of 0.0039+/-0.00055. Pairwise F-statistics (F(ST)) revealed significantly high gene flow between Kinmen and Dongwei (F(ST)=-0.0351, p>0.05, N(e)m=infinity), but marked population subdivision and restricted gene flow between Kinmen and Tiexianwei (F(ST)=0.1382, p<0.05, N(e)m=3.1176). Between populations at Magong Island, gene flow was moderate (F(ST)=0.0634, p>0.05, N(e)m=7.3913). Mismatch distribution analysis indicated that the relatively low haplotype and nucleotide diversity observed in the Tiexianwei T. tridentatus population can be attributed to a recent bottleneck, probably due to isolation of Tiexianwei in semi-closed Magong Bay that prevents gene flow from neighboring populations.  相似文献   

12.
The additive genetic variance-covariance matrix (G) is a concept central to discussions about evolutionary change over time in a suite of traits. However, at the moment we do not know how fast G itself changes as a consequence of selection or how sensitive it is to environmental influences. We investigated possible evolutionary divergence and environmental influences on G using data from a factorial common-garden experiment where common frog (Rana temporaria) tadpoles from two divergent populations were exposed to three different environmental treatments. G-matrices were estimated using an animal model approach applied to data from a NCII breeding design. Matrix comparisons using both Flury and multivariate analysis of variance methods revealed significant differences in G matrices both between populations and between treatments within populations, the former being generally larger than the latter. Comparison of levels of population differentiation in trait means using Q(ST) indices with that observed in microsatellite markers (F(ST)) revealed that the former values generally exceeded the neutral expectation set by F(ST). Hence, the results suggest that intraspecific divergence in G matrix structure has occurred mainly due to natural selection.  相似文献   

13.
Ten population samples from different geographic origins were tested serologically for the AG polymorphism of human beta-lipoproteins. Their haplotype frequencies were used with previously published data to perform a wide analysis of AG genetic differentiations throughout the world. Coancestry coefficients were computed from weighted F(ST)s among populations by using a matrix of molecular distances among AG haplotypes, which is here determined on the basis of DNA studies. Coancestry coefficients derived from unweighted F(ST)s and more classical Prevosti distances were computed on the same data and used for a comparison. In all cases a highly significant correlation was found between genetics and geography on a worldwide scale, while the significance of the correlation with linguistics differed. A test of significance of the pairwise F(ST)s among populations also gave different results depending on whether the molecular distance matrix among AG haplotypes was included. Globally, this study shows that in spite of being highly significantly correlated to each other, different genetic distance measures can lead to different interpretations of the same data set. Moreover, the elucidation of the molecular models related to the presently known serological polymorphisms may represent an additional tool for analyzing such polymorphisms in human population genetics studies.  相似文献   

14.
Several phylogeographic studies in northern Mesoamerica have examined the influence of Pleistocene glaciations on the genetic structure of temperate tree species with their southern limit by the contact zone between species otherwise characteristic of North or South America, but few have featured plant species that presumably colonized northern Mesoamerica from South America. A phylogeographical study of Palicourea padifolia, a fleshy-fruited, bird dispersed distylous shrub, was conducted to investigate genetic variation at two chloroplast regions (trnS-trnG and rpl32-trnL) across cloud forest areas to determine if such patterns are consistent with the presence of Pleistocene refugia and/or with the historical fragmentation of the Mexican cloud forests. We conducted population and spatial genetic analyses as well as phylogenetic and isolation with migration analyses on 122 individuals from 22 populations comprising the distribution of P. padifolia in Mexico to gain insight of the evolutionary history of these populations. Twenty-six haplotypes were identified after sequencing 1389 bp of chloroplast DNA. These haplotypes showed phylogeographic structure (N(ST) = 0.508, G(ST) = 0.337, N(ST) > G(ST), P < 0.05), including a phylogeographic break at the Isthmus of Tehuantepec, with private haplotypes at either side of the isthmus, and a divergence time of the split in the absence of gene flow dating back c. 309,000-103,000 years ago. The patterns of geographic structure found in this study are consistent with past fragmentation and demographic range expansion, supporting the role of the Isthmus of Tehuantepec as a biogeographical barrier in the dispersal of P. padifolia. Our data suggest that P. padifolia populations were isolated throughout glacial cycles by the Isthmus of Tehuantepec, accumulating genetic differences due to the lack of migration across the isthmus in either direction, but the results of our study are not consistent with the existence of the previously proposed Pleistocene refugia for rain forest plant species in the region.  相似文献   

15.
Chloroplast DNA diversity in Prunus spinosa, a common shrub of European deciduous forests, was assessed using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) technique. Thirty-two haplotypes were detected in 25 populations spread across the European continent. Ten haplotypes were shared by two or more populations, and 22 were private. The major proportion of the total cpDNA diversity (H(T) = 0.73) was located within the populations (H(S) = 0.49), and differentiation between populations was low (G(ST) = 0.33) compared with other forest species. Haplotype diversity was higher in southern Europe than in northern Europe, indicating probable localization of glacial refugia in southern Europe. The minimum-length spanning tree of haplotypes showed incongruency between the phylogeny of haplotypes and their geographic locations. This might be the result of intensive seed movements following recolonization, which thereby erased the phylogeographic structure in P. spinosa.  相似文献   

16.
Scattered populations of the same tree species in montane forests through Africa have led to speculations on the origins of distributions. Here, we inferred the colonization history of the Afromontane tree Prunus africana using seven chloroplast DNA loci to study 582 individuals from 32 populations sampled in a range-wide survey from across Africa, revealing 22 haplotypes. The predominant haplotype, HT1a, occurred in 13 populations of eastern and southern Africa, while a second common haplotype, HT1m, occurred in populations of western Uganda and western Africa. The high differentiation observed between populations in East Africa was unexpected, with stands in western Uganda belonging with the western African lineage. High genetic differentiation among populations revealed using ordered alleles (N(ST) = 0.840) compared with unordered alleles (G(ST) = 0.735), indicated a clear phylogeographic pattern. Bayesian coalescence modelling suggested that 'east' and 'west' African types likely split early during southward migration of the species, while further more recent splitting events occurred among populations in the East of the continent. The high genetic similarity found between western Uganda and west African populations indicates that a former Afromontane migration corridor may have existed through Equatorial Africa.  相似文献   

17.
Amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers were used to provide estimates of the comparative genetic variation within and among populations of various Guizotia taxa with the goal of conserving and utilizing their genetic diversity. The percentage of polymorphic loci (P(S)) ranged from 28.5%-90% (AFLP) and 85.6%-99.6% (RAPD). The overall gene diversity estimate () has shown slight variation among taxa ranging from 0.32-0.37 (AFLP) and from 0.22 to 0.28 (RAPD). The within population diversity of "Chelelu" and "Ketcha" was found to be unexpectedly high. Both parameters used to estimate population differentiation (G(ST) and F(ST)) revealed the highest population differentiation G. zavattarii in followed by G. arborescens. Genetic variation among populations within a taxon was highly significant for all the five taxa as revealed by AMOVA (P<0.0001). The need for immediate conservation activities for G. arborescens and G. zavattarii, and factors that contribute to the existing genetic variability and population genetic structures are discussed.  相似文献   

18.
Whitlock MC 《Molecular ecology》2011,20(6):1083-1091
The genetic differentiation among populations is affected by mutation as well as by migration, drift and selection. For loci with high mutation rates, such as microsatellites, the amount of mutation can influence the values of indices of differentiation such as G(ST) and F(ST). For many purposes, this effect is undesirable, and as a result, new indices such as G'(ST) and D have been proposed to measure population differentiation. This paper shows that these new indices are not effective measures of the causes or consequences of population structure. Both G'(ST) and D depend heavily on mutation rate, but both are insensitive to any population genetic process when the mutation rate is high relative to the migration rate. Furthermore, D is specific to the locus being measured, and so little can be inferred about the population demography from D. However, at equilibrium, D may provide an index of whether a particular marker is more strongly affected by mutation than by migration. I argue that F(ST) is a more important summary of the effects of population structure than D and that R(ST) or other measures that explicitly account for the mutation process are much better than G(ST), G'(ST), or D for highly mutable markers. Markers with lower mutation rates will often be easier to interpret.  相似文献   

19.
Hardy OJ  Charbonnel N  Fréville H  Heuertz M 《Genetics》2003,163(4):1467-1482
The mutation process at microsatellite loci typically occurs at high rates and with stepwise changes in allele sizes, features that may introduce bias when using classical measures of population differentiation based on allele identity (e.g., F(ST), Nei's Ds genetic distance). Allele size-based measures of differentiation, assuming a stepwise mutation process [e.g., Slatkin's R(ST), Goldstein et al.'s (deltamu)(2)], may better reflect differentiation at microsatellite loci, but they suffer high sampling variance. The relative efficiency of allele size- vs. allele identity-based statistics depends on the relative contributions of mutations vs. drift to population differentiation. We present a simple test based on a randomization procedure of allele sizes to determine whether stepwise-like mutations contributed to genetic differentiation. This test can be applied to any microsatellite data set designed to assess population differentiation and can be interpreted as testing whether F(ST) = R(ST). Computer simulations show that the test efficiently identifies which of F(ST) or R(ST) estimates has the lowest mean square error. A significant test, implying that R(ST) performs better than F(ST), is obtained when the mutation rate, mu, for a stepwise mutation process is (a) >/= m in an island model (m being the migration rate among populations) or (b) >/= 1/t in the case of isolated populations (t being the number of generations since population divergence). The test also informs on the efficiency of other statistics used in phylogenetical reconstruction [e.g., Ds and (deltamu)(2)], a nonsignificant test meaning that allele identity-based statistics perform better than allele size-based ones. This test can also provide insights into the evolutionary history of populations, revealing, for example, phylogeographic patterns, as illustrated by applying it on three published data sets.  相似文献   

20.
Interspecific differentiation values (G(ST)) between two closely related oak species (Quercus petraea and Q. robur) were compiled across different studies with the aim to explore the distribution of differentiation at the genome level. The study was based on a total set of 389 markers (isozymes, AFLPs, SCARs, microsatellites, and SNPs) for which allelic frequencies were estimated in pairs of populations sampled throughout the sympatric distribution of the two species. The overall distribution of G(ST) values followed an L-shaped curve with most markers exhibiting low species differentiation (G(ST) < 0.01) and only a few loci reaching >10% levels. Twelve percent of the loci exhibited significant G(ST) deviations to neutral expectations, suggesting that selection contributed to species divergence. Coding regions expressed higher differentiation than noncoding regions. Among the 389 markers, 158 could be mapped on the 12 linkage groups of the existing Q. robur genetic map. Outlier loci with large G(ST) values were distributed over 9 linkage groups. One cluster of three outlier loci was found within 0.51 cM; but significant autocorrelation of G(ST) was observed at distances <2 cM. The size and distribution of genomic regions involved in species divergence are discussed in reference to hitchhiking effects and disruptive selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号