首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatocyte-like cells have been observed in the pancreas of the rat. We examined the bile acid biosynthetic function of these cells to determine whether they were real hepatocytes. This study investigated the existence of two liver-specific enzymes involved in bile acid biosynthesis (cholesterol 7alpha-hydroxylase and delta(4)-3-ketosteroid 5beta-reductase) in the hepatocyte-like cells. We could demonstrate cholesterol 7alpha-hydroxylase activity and its circadian rhythm in the hepatocyte-like cells. Northern blot analysis demonstrated the expression of messenger RNA for the 7alpha-hydroxylase and delta(4)-3-ketosteroid 5beta-reductase in the pancreatic hepatocyte-like cells. To measure the amount of the messenger RNA, we used the competitive polymerase chain reaction method for the 7alpha-hydroxylase. This quantitation revealed the existence of a circadian rhythm of cholesterol 7alpha-hydroxylase messenger RNA in the hepatocyte-like cells. These results indicated that bile acid biosynthesis was performed in the pancreatic hepatocyte-like cells as noted as in the liver parenchymal cells.  相似文献   

2.
Pancreatic hepatocytes are induced in rats maintained on copper-deficient diet containing 0.6% D-penicillamine for 8-10 weeks, followed by copper repletion. These induced hepatocytes are morphologically and functionally very similar to parenchymal cells of the liver. Immunofluorescence stains demonstrated the presence of albumin and catalase in these cells. Stains for pancreatic enzymes and hormones were negative. As expected, the hypolipidemic compound, ciprofibrate, induced peroxisome proliferation in these cells. These results indicate that a simple depletion and repletion of copper can trigger transdifferentiation in the pancreas of adult rats.  相似文献   

3.
DNA synthesis of adult rat parenchymal hepatocytes alone in primary culture can be stimulated only by the addition of humoral growth factors to the culture medium. However, when parenchymal hepatocytes were cocultured with nonparenchymal liver cells from adult rats, their DNA synthesis was markedly stimulated in the absence of added growth factors or calf serum. DNA synthesis of parenchymal hepatocytes was not stimulated by conditioned medium from nonparenchymal liver cells and was greatest when the parenchymal cells were plated on 24-h cultures of nonparenchymal liver cells. A dead feeder layer of nonparenchymal cells was almost as effective as a feeder layer of viable nonparenchymal cells. These results suggest that the stimulation of DNA synthesis in parenchymal hepatocytes was not due to some soluble factors secreted by nonparenchymal liver cells but to an insoluble material(s) produced by the nonparenchymal liver cells. This insoluble material(s) was collagenase- and acid-sensitive, suggesting that it was a protein containing collagen. The effect of nonparenchymal liver cells was specific: coculture with hepatoma cells, liver epithelial cells, or Swiss 3T3 cells did not stimulate DNA synthesis in parenchymal hepatocytes. Added insulin and epidermal growth factor showed additive effects with nonparenchymal cells in the cocultures. These results suggest that DNA synthesis in parenchymal hepatocytes is stimulated not only by various humoral growth factors but also by cell-cell interaction between parenchymal and nonparenchymal hepatocytes, possibly endothelial cells. This cell-cell interaction may be important in repair of liver damage and liver regeneration.  相似文献   

4.
5.
Although hepatocyte transplantation and bioartificial liver support system provide new promising opportunities for those patients waiting for liver transplantation, hepatocytes are easily losing liver-specific functions by using the common in vitro cultured methods. The co-culture strategies with mimicking the in vivo microenvironment would facilitate the maintenance of liver-specific functions of hepatocytes. Considering that hepatocytes and endothelial cells (ECs) account for 80–90% of total cell populations in the liver, hepatocytes and ECs were directly co-cultured with hepatic stellate cells (HSCs) or adipose tissue-derived stem cells (ADSCs) at a ratio of 700:150:3 or 14:3:3 in the present study, and the liver-specific functions were carefully analyzed. Our results showed that the two co-culture systems presented the enhanced liver-specific functions through promoting secretion of urea and ALB and increasing the expressions of ALB, CYP3A4 and HNF4α, and the vessel-like structure in the co-culture system consisted of hepatocytes, ECs and ADSCs. Hence, our results suggested that the directly co-culture of hepatocytes and ECs with HSCs or ADSCs could significantly improve liver-specific functions of hepatocytes, and the co-culture system could further promote angiogenesis of ECs at a later stage. Therefore, this study provides potential interesting in vitro strategies for enhancing liver-specific functions of hepatocytes.  相似文献   

6.
7.
8.
Adult rat hepatocytes were maintained in culture for at least 1 month without losing the expression of their differentiated functions; they were cultured on lethally treated 3T3 fibroblasts inoculated at 35,000 cells/cm2 with medium containing 10-25 micrograms/ml hydrocortisone. Hepatocytes showed their typical morphology; they formed bile canaliculi, microvilli, and intercellular junctions with desmosomes and nexus; some formed structures that may resemble the perisinusoidal space of Disse. In addition, they showed DNA synthesis and expressed some liver-specific functions. They synthesized albumin and other proteins, which were exported to the culture medium. Like parenchymal liver cells in vivo, de novo fatty acid synthesis and esterification took place, and more than 80% of the lipids synthesized by the hepatocytes were secreted into the medium as triglycerides; they also showed cytochrome-P450 activity that was inducible with phenobarbital, suggesting that the hepatocytes have the capacity to metabolize drugs. These culture conditions allow the study of various hepatocyte differentiated functions, and they may provide the means to analyze the effect on liver of hormones, viruses and hepatotoxic chemicals and drugs; they may also indicate conditions adequate for serial growth of hepatocytes.  相似文献   

9.
Yu  Jinfeng  Dong  Jiale  Chen  Kangdi  Ding  Yaping  Yang  Zhicheng  Lan  Tian 《Transgenic research》2020,29(4):419-428

SphK1 gene has different roles in various types of cells in liver diseases, but most studies are based on global knockout mice, which hampers the study on the cellular and molecular mechanisms of SphK1. In order to further study the role of SphK1 in liver, SphK1 conditional knockout mice were constructed. A liver-specific SphK1 gene knockout mouse model was constructed by the Cre/Loxp recombinant enzyme system. PCR technologies and western blotting were used to identified the elimination of SphK1 gene in hepatocytes. SphK1flox/flox mice were used as a control group to verify the effectiveness of SphK1 liver-specific knockout mice from the profile, pathology, and serology of mice. The ablation of SphK1 in hepatic parenchymal cells was demonstrated by fluorescent in situ hybridization and the contents of S1P and Sph were measured by ELISA kit. The genotypes of liver in SphK1 conditional knockout mice were different from that of other organs. The mRNA and protein levels of SphK1 in liver tissue of SphK1 conditional knockout mice were almost depleted by compared with SphK1flox/flox mice. Physiology and pathology showed no significant difference between SphK1 liver conditional knockout mice and SphK1flox/flox mice. Additionally, SphK1 was eliminated in hepatocytes, leading to the reduce of S1P content in hepatocytes and liver tissues and the increase of Sph content in hepatocytes. The model of SphK1 gene liver conditional knockout mice was successfully constructed, providing a tool for the study of the roles of SphK1 in hepatocyte and liver diseases.

  相似文献   

10.
11.
Thyroxine has been shown to accelerate the synthesis of carbamyl phosphate synthetase in the liver of Rana catesbeiana. Stimulation of carbamyl phosphate synthetase synthesis by thyroxine appears to be relatively specific because of the following observations: (1) succinoxidase activity decreased during the time that carbamyl phosphate synthetase increased; (2) liver catalase responded more slowly than carbamyl phosphate synthetase to thyroxine; (3) the ratio of biochemical changes/morphological changes was greatly altered during thyroxine-induced metamorphosis. The relationships between the concentration of thyroxine and (1) temperature; (2) duration of exposure of the tadpole to thyroxine; and (3) the activity of carbamyl phosphate synthetase during the induced synthesis of carbamyl phosphate synthetase by thyroxine are discussed. Chloramphenicol and thiouracil partly counteracted the effect of thyroxine on the synthesis of carbamyl phosphate synthetase.  相似文献   

12.
Adult rat liver contains a minor population of hepatocytes called small hepatocytes (SHs) that are smaller in size and show a higher replicative potential than conventional parenchymal hepatocytes (PHs). However, SHs have been hitherto characterized using a "SH-fraction" that was contaminated with PHs. In the present study, we isolated a PH-free SH-fraction from the adult rat liver using fluorescence-activated cell sorter combined with centrifugal elutriation and characterized the hepatocytes in the fraction. These hepatocytes were designated R3Hs in this study. R3Hs were mononuclear and of lower ploidy. They expressed at high levels genes of Cdc2, connexin 26, hydroxysteroid sulfotransferase, pancreatic secretory trypsin inhibitor, and prostaglandin E2 receptor EP3 subtype. We conclude that SHs dominate the periportal zone in the adult liver, because mRNA or proteins of these genes were exclusively expressed by periportal hepatocytes.  相似文献   

13.
Tissues of the adult organism maintain the homeostasis and respond to injury by means of progenitor/stem cell compartments capable to give rise to appropriate progeny. In organs composed by histotypes of different embryological origins (e.g. the liver), the tissue turnover may in theory involve different stem/precursor cells able to respond coordinately to physiological or pathological stimuli. In the liver, a progenitor cell compartment, giving rise to hepatocytes and cholangiocytes, can be activated by chronic injury inhibiting hepatocyte proliferation. The precursor compartment guaranteeing turnover of hepatic stellate cells (HSCs) (perisinusoidal cells implicated with the origin of the liver fibrosis) in adult organ is yet unveiled. We show here that epithelial and mesenchymal liver cells (hepatocytes and HSCs) may arise from a common progenitor. Sca+ murine progenitor cells were found to coexpress markers of epithelial and mesenchymal lineages and to give rise, within few generations, to cells that segregate the lineage-specific markers into two distinct subpopulations. Notably, these progenitor cells, clonally derived, when transplanted in healthy livers, were found to generate epithelial and mesenchymal liver-specific derivatives (i.e. hepatocytes and HSCs) properly integrated in the liver architecture. These evidences suggest the existence of a ‘bona fide'' organ-specific meso-endodermal precursor cell, thus profoundly modifying current models of adult progenitor commitment believed, so far, to be lineage-restricted. Heterotopic transplantations, which confirm the dual differentiation potentiality of those cells, indicates as tissue local cues are necessary to drive a full hepatic differentiation. These data provide first evidences for an adult stem/precursor cell capable to differentiate in both parenchymal and non-parenchymal organ-specific components and candidate the liver as the instructive site for the reservoir compartment of HSC precursors as yet non-localized in the adult.  相似文献   

14.
Parenchymal and non-parenchymal cells were isolated from adult rat liver that had been fully regenerated after a 70% partial hepatectomy. The characteristics of the parenchymal cell preparations from regenerated rat liver indicated that they were a homogeneous population and comparable with parenchymal cells isolated from intact liver. The parenchymal cells from regenerated adult rat liver contain glucokinase, hexokinase, pyruvate kinase type I and aldolase B. The non-parenchymal cells contain hexokinase, pyruvate kinase type III and aldolase B. When cells were isolated at different times of the day from rats on controlled feeding schedules, variation of tyrosine aminotransferase activity and liver glycogen content were observed in the parenchymal cells in keeping with the reported diurnal oscillations found in whole liver extracts. When parenchymal cells were isolated from rats 48 and 72h after partial hepatectomy, different isoenzyme patterns were observed. These cells appeared to synthesize pyruvate kinase type III, a function that was assigned previously to non-parenchymal cells or to foetal rat liver hepatocytes.  相似文献   

15.
Engelbreth-Holm-Swarm (EHS) gel has been reported to maintain the mature hepatocyte phenotypes in primary cultured hepatocytes. We investigated the effect of EHS gel on the differentiation of fetal liver cells, which contain stem/progenitor cells. The isolated fetal liver cells cultured on EHS gel formed a spherical shape and increased liver-specific gene expressions compared with cells cultured on collagen. The hepatic progenitor cells that were transplanted subcutaneously to BALB/c nude mice could survive and express hepatocyte marker alpha-fetoprotein when the cells were suspended with EHS gel. These findings demonstrate that EHS gel supports cytodifferentiation from immature progenitor cells to hepatocytes and maintain its differentiated phenotypes in vitro and in vivo.  相似文献   

16.
Development of a bioartificial liver employing xenogeneic hepatocytes   总被引:4,自引:0,他引:4  
Liver failure is a major cause of mortality. A bioartificial liver (BAL) employing isolated hepatocytes can potentially provide temporary support for liver failure patients. We have developed a bioartificial liver by entrapping hepatocytes in collagen loaded in the luminal side of a hollow fiber bioreactor. In the first phase of development, liver-specific metabolic activities of biosynthesis, biotransformation and conjugation were demonstrated. Subsequently anhepatic rabbits were used to show that rat hepatocytes continued to function after the BAL was linked to the test animal. For scale-up studies, a canine liver failure model was developed using D-galactosamine overdose. In order to secure a sufficient number of hepatocytes for large animal treatment, a collagenase perfusion protocol was established for harvesting porcine hepatocytes at high yield and viability. An instrumented bioreactor system, which included dissolved oxygen measurement, pH control, flow rate control, an oxygenator and two hollow fiber bioreactors in series, was used for these studies. An improved survival of dogs treated with the BAL was shown over the controls. In anticipated clinical applications, it is desirable to have the liver-specific activities in the BAL as high as possible. To that end, the possibility of employing hepatocyte spheroids was explored. These self-assembled spheroids formed from monolayer culture exhibited higher liver-specific functions and remained viable longer than hepatocytes in a monolayer. To ease the surface requirement for large-scale preparation of hepatocyte spheroids, we succeeded in inducing spheroid formation in stirred tank bioreactors for both rat and porcine hepatocytes. These spheroids formed in stirred tanks were shown to be morphologically and functionally indistinguishable from those formed from a monolayer. Collagen entrapment of these spheroids resulted in sustaining their liver-specific functions at higher levels even longer than those of spheroids maintained in suspension. For use in the BAL, a mixture of spheroids and dispersed hepatocytes was used to ensure a proper degree of collagen gel contraction. This mixture of spheroids and dispersed cells entrapped in the BAL was shown to sustain the high level of liver-specific functions. The possibility of employing such a BAL for improved clinical performance warrants further investigations.  相似文献   

17.
18.
A cDNA clone complementary to mRNA encoding the precursor (Mr = 165,000) to the rat liver mitochondrial matrix enzyme carbamyl phosphate synthetase I (Mr = 160,000) was employed to compare relative amounts of the messenger in adult and fetal liver and in Morris hepatoma 5123D and 3924A cells. Northern blot analysis gave a size estimate for the messenger of 6,500-6,700 nucleotides. Carbamyl phosphate synthetase mRNA levels in 15-day-old fetal liver were less than 10% of adult levels; 5123D cells expressed the messenger at levels about 2-fold higher than normal adult liver, but the messenger was undetectable in 3924A cells. Albumin mRNA was also expressed in the former but not in the latter. Maintaining rats for 5 days on a diet containing 60% casein augmented the relative amount of carbamyl phosphate synthetase mRNA by about 2-fold, while a protein-free diet resulted in reduced levels of the mRNA (about 50% compared to animals on a normal diet). Finally, the pattern of hybridization of carbamyl phosphate synthetase cDNA to HindIII-digested genomic DNA showed no differences between normal liver and its corresponding hepatoma; however, a HindIII site polymorphism was observed between Buffalo and ACI rats.  相似文献   

19.
1. The Km for ammonia of carbamyl phosphate synthetase was determined by preincubating isolated liver cells for 30 min in the absence of ammonia and bicarbonate and in the presence of ornithine, chloroquine, which blocks lysosomal proteolysis, and aminoxy acetic acid, which inhibits transaminases. 2. The reaction was started with the addition of varying concentrations of ammonia and 10 mM bicarbonate. 3. The rate of citrulline formation was measured as related to ammonia concentration. 4. The pre-incubation with ornithine permits an accumulation of intracellular and mitochondrial ornithine concentrations which in turn allow rapid citrulline formation in the carbamyl phosphate form. 5. This prevents any feedback inhibition on a carbamyl phosphate synthetase or decreases in activity due to accumulation of carbamyl phosphate and/or absence of ornithine. 6. Using these methods in combination with [14C]bicarbonate permitted an estimation of exogenous ammonia for carbamyl phosphate synthesis. 7. The Km for ammonia was 1.5 mM, using a pK of 8.88 the Km for free NH3 was 48 microM.  相似文献   

20.
Freshly isolated adult rat hepatocytes, when cultured on type I collagen (commercially available as Vitrogen), assume a polygonal shape, form a stable monolayer within 24 hours, but lose the capacity to express some liver-specific functions over time in culture. We incubated hepatocytes in a serum-free medium on a reconstituted basement membrane gel, "matrigel" (prepared from an extract of extracellular matrix of the murine Engelbreth-Holm-Swarm sarcoma), and observed that the cells adhered firmly, remained rounded as single cells or clusters, and maintained liver-specific gene expression for more than 1 week in vitro. Hepatocytes on matrigel secreted substantially higher amounts of albumin, transferrin, haptoglobin, and hemopexin, Northern blot analyses of extracted cellular RNA, expressed increased amounts of mRNA for the liver-specific protein albumin (as compared with cells on vitrogen). In cultures treated with phenobarbital, cytochrome P-450b, and cytochrome P-450e, mRNAs and proteins were barely detectable in cells on Vitrogen but were induced to levels similar to those in the liver in vivo in matrigel cultures. Likewise, the use of matrigel greatly enhanced the induction of mRNA and protein for P-450c by 3-methylcholanthrene and for P-450p by steroidal and nonsteroidal inducers. However, neither substratum permitted induction of P-450d by 3-methylcholanthrene, suggesting that the effects of matrigel are selective even for expression in liver of members of the superfamily of cytochrome P-450 genes. Within 5 days in cultures on Vitrogen, hepatocytes expressed detectable amounts of fetal liver aldolase activity and also mRNA for vimentin and type I collagen, each considered a phenotypic change reflecting hepatocyte "dedifferentiation." None of these was present in cells on matrigel. Responsiveness to mitogenic stimuli, as judged by incorporation of 3H-thymidine into DNA, was also decreased in hepatocytes cultured on matrigel. Finally, there was a remarkable increase in the levels of both matrices during the first 2 days in culture. However, the continuously cytoskeleton mRNA over time in culture than did the rounded cells on matrigel. We conclude that hepatocytes cultured on matrigel, as opposed to the standard collagen, exhibit remarkably enhanced expression of many liver-specific functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号