首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Immunocytochemical localization of renin in juxtaglomerular cells   总被引:3,自引:0,他引:3  
The involvement of various organelles in the synthesis, transport, and packaging of renin in the juxtaglomerular cells of newborn mice has been investigated by immunocytochemistry with the protein A-gold technique. Highly specific rabbit antibodies against mouse submandibular renin were used. Mild fixation and embedding in glycol methacrylate allowed enough sensitivity to identify a steep gradient of labeling from rough endoplasmic reticulum to Golgi complex to secretory granules. Routine fixation and embedding in Epon produced labeling differentials that allowed delineation of hitherto ill-defined types of secretory granules and vacuoles. The classical pattern of synthesis, transport, and packaging of secretory proteins involves the rough endoplasmic reticulum and Golgi complex and seems to apply to renin secretion. Immunoreactive renin is packaged as rhomboid crystals at the trans face of the Golgi complex. The limiting membrane of these rhomboids fuses to form coalescing protogranules where the crystals eventually yield their individuality maturing into secretory granules. Vacuoles containing a flocculent material, with or without a dense core, show significant immunocytochemical labeling. These vacuoles are not associated with the Golgi complex but occupy cytoplasmic areas well endowed with rough endoplasmic reticulum. As judged from their morphological features and their immunoreactivity, the vacuoles do not seem to follow the sequence of events typical of protogranules and coalescing protogranules. They possibly represent a parallel pathway of renin synthesis and transport, involving the nuclear envelope and bypassing the Golgi complex.  相似文献   

2.
Summary Cathepsins B, H, and L are representative cysteine proteinases in lysosomes of a large variety of cells. Previous immunochemical studies indicated the presence of these enzymes also in the gastrointestinal wall. Using specific antisera, the cellular and subcellular distribution of cathepsins B, H, and L in rat gastric (oxyntic and pyloric part) and duodenal mucosa was investigated by light and electron microscopical immunocytochemistry. The subtypes of cathepsins were distributed differently in the cellular constituents of the epithelia: Cathepsin B was localized to lysosomes of all cells except goblet cells. Cathepsin H was found predominantly in gastric parietal cells (lysosomes) and in secretion granules of pyloric gastrin and duodenal cholecystokinin cells. Cathepsin L immunoreactivities were weak and restricted to a minority of cells (gastric mucous cells, enterocytes). Interstitial cells of the lamina propria immunoreactive for cathepsins H and L were identified as macrophages. The present findings suggest a dual function of cathepsins in the gastro-duodenal mucosa. They (1) cleave enzymatically proteins and peptides ingested in lysosomes, and (2) they may be involved in the processing of biologically active peptides (enteric hormones) from their precursor proteins.  相似文献   

3.
Cathepsins B, H, and L are representative cysteine proteinases in lysosomes of a large variety of cells. Previous immunochemical studies indicated the presence of these enzymes also in the gastrointestinal wall. Using specific antisera, the cellular and subcellular distribution of cathepsins B, H, and L in rat gastric (oxyntic and pyloric part) and duodenal mucosa was investigated by light and electron microscopical immunocytochemistry. The subtypes of cathepsins were distributed differently in the cellular constituents of the epithelia: Cathepsin B was localized to lysosomes of all cells except goblet cells. Cathepsin H was found predominantly in gastric parietal cells (lysosomes) and in secretion granules of pyloric gastrin and duodenal cholecystokinin cells. Cathepsin L immunoreactivities were weak and restricted to a minority of cells (gastric mucous cells, enterocytes). Interstitial cells of the lamina propria immunoreactive for cathepsins H and L were identified as macrophages. The present findings suggest a dual function of cathepsins in the gastro-duodenal mucosa. They (1) cleave enzymatically proteins and peptides ingested in lysosomes, and (2) they may be involved in the processing of biologically active peptides (enteric hormones) from their precursor proteins.  相似文献   

4.
Immunocytochemical localization of cathepsins B and H in rat liver   总被引:1,自引:0,他引:1  
Summary Light and electron microscopic localization of cathepsins B and H in rat liver was investigated by immunoenzyme and protein A-gold techniques. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultrathin sections of the Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsins B and H were present in the cytoplasmic granules of parenchymal cells and endothelial cells, and Kupffer cells. The sinus-lining cells and the parenchymal cells showed the similar staining intensity. By EM, gold particles were present exclusively in lysosomes of all the cell types cited above. The same results were obtained from quantitative analysis. In addition, Golgi complexes themselves were mostly negative but some small vesicles on the trans side of them were labeled for these proteinases. The results indicate that cathepsins B and H are present in the lysosomes of rat liver and that these enzymes seem to be transported by small vesicles from endoplasmic reticulum to lysosomes via tubuloreticular network of the trans Golgi region.  相似文献   

5.
S Yokota  K Kato 《Histochemistry》1987,88(1):97-103
Light and electron microscopic localization of cathepsins B and H in rat liver was investigated by immunoenzyme and protein A-gold techniques. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultra-thin sections of the Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsins B and H were present in the cytoplasmic granules of parenchymal cells and endothelial cells, and Kupffer cells. The sinus-lining cells and the parenchymal cells showed the similar staining intensity. By EM, gold particles were present exclusively in lysosomes of all the cell types cited above. The same results were obtained from quantitative analysis. In addition, Golgi complexes themselves were mostly negative but some small vesicles on the trans side of them were labeled for these proteinases. The results indicate that cathepsins B and H are present in the lysosomes of rat liver and that these enzymes seem to be transported by small vesicles from endoplasmic reticulum to lysosomes via tubuloreticular network of the trans Golgi region.  相似文献   

6.
To localize cathepsins B, H, and L in follicular cells of rat thyroid gland, we applied immunocytochemistry to the thyroid tissue using their respective monospecific antibodies. On serial semi-thin sections, cathepsins B, H, and L were localized in granules of various sizes located throughout the cytoplasm, whereas T4 was detected in larger granules located in the apical and supranuclear regions. By electron microscopy, cathepsins B, H, and L were localized in large less-dense granules (so-called colloid droplets) and in dense bodies of various sizes, whereas T4 was localized more intensely in large less-dense granules than in smaller dense bodies. By double immunostaining using an immunogold method, cathepsins H and B or L were co-localized in the same cytoplasmic granules. Moreover, immunoblotting demonstrated that proteins similar to cathepsins B, H, and L in the liver are present in the thyroid gland. These results suggest that cathepsins B, H, and L participate not only in degradation of thyroglobulin but in maturation of thyroid hormones, although it remains unknown whether all of them participate in the maturation process.  相似文献   

7.
Summary Cathepsins B and H are representative cysteine proteinases localized to lysosomes of a variety of mammalian cells. Previous studies indicated the presence of these enzymes also in secretory granules of endocrine cells. Therefore, the human endocrine pancreas and human insulinomas were investigated by light microscopical immunohistochemistry on serial semithin plastic sections immunostained sequentially for cathepsins B or H and pancreatic hormones. Out of the four established endocrine cell types, insulin (B-) and glucagon (A-) cells showed immunoreactivities for these cathepsins. Cathepsin B immunoreactivities showed a dot-like appearance in A- and B-cells and in insulinoma cells. Immunoreactivities for cathepsin H additionally were found in cell parts containing secretory granules of B-cells and insulinoma cells. By single and double immunoelectron microscopy the dot-like immunoreactivities for cathepsin B were identified as immunoreactive lysosomes of A- and B-cells and insulinoma cells. In addition, some of the secretory granules of A- and B-cells showed cathepsin B immunoreactivities. Cathepsin H immunoreactivities showed an other pattern: they were found regularly in the secretory granules of A- and B-cells and insulinoma cells, and in lysosomes of A-cells. These findings suggest that cathepsins B and H in lysosomes of A- and/or B-cells are involved in the degradation of lysosomal constituents. In secretory granules of these cells, these cystine proteinases may participate in the processing of the corresponding hormones from their precursor proteins.  相似文献   

8.
Cathepsins B and H are representative cysteine proteinases localized to lysosomes of a variety of mammalian cells. Previous studies indicated the presence of these enzymes also in secretory granules of endocrine cells. Therefore, the human endocrine pancreas and human insulinomas were investigated by light microscopical immunohistochemistry on serial semithin plastic sections immunostained sequentially for cathepsins B or H and pancreatic hormones. Out of the four established endocrine cell types, insulin (B-) and glucagon (A-) cells showed immunoreactivities for these cathepsins. Cathepsin B immunoreactivities showed a dot-like appearance in A- and B-cells and in insulinoma cells. Immunoreactivities for cathepsin H additionally were found in cell parts containing secretory granules of B-cells and insulinoma cells. By single and double immunoelectron microscopy the dot-like immunoreactivities for cathepsin B were identified as immunoreactive lysosomes of A- and B-cells and insulinoma cells. In addition, some of the secretory granules of A- and B-cells showed cathepsin B immunoreactivities. Cathepsin H immunoreactivities showed an other pattern: they were found regularly in the secretory granules of A- and B-cells and insulinoma cells, and in lysosomes of A-cells. These findings suggest that cathepsins B and H in lysosomes of A- and/or B-cells are involved in the degradation of lysosomal constituents. In secretory granules of these cells, these cysteine proteinases may participate in the processing of the corresponding hormones from their precursor proteins.  相似文献   

9.
We examined by immunocytochemistry the localization of cathepsin B in endocrine cells of rat anterior pituitary lobe, using a monospecific antibody to cathepsin B. By light microscopy, granular immunodeposits for cathepsin B were detected in most endocrine cells of anterior pituitary lobe. Cells immunoreactive for luteinizing hormone (LH) were diffusely immunostained by anti-cathepsin B. By electron microscopy, immunogold particles for cathepsin B were localized in lysosomes of thyrotrophs, somatotrophs, and mammotrophs. In mammotrophs, immunogold particles for cathepsin B were also detected in crinophagic bodies. Double immunostaining co-localized immunogold particles for LH and cathepsin B in secretory granules of gonadotrophs. Immunocytochemistry was also applied to demonstrate localization of renin and prorenin in LH-producing gonadotrophs; immunogold particles for renin were co-localized with those for LH, cathepsin B, or prorenin in their secretory granules. Immunogold particles for prorenin were also co-localized with those for LH or cathepsin B in secretory granules, but prorenin-positive granules appeared less frequently than renin-positive granules. These results suggest that cathepsin B not only plays a role in the protein degradation in lysosomes of anterior pituitary endocrine cells but also participates in the activation of renin in gonadotrophs, as has been demonstrated in secretory granules of juxtaglomerular cells.  相似文献   

10.
To determine the characteristics of lysosomes in rat islet endocrine cells, we examined the precise localization of cathepsins B, H, and L and their specific inhibitors, cystatins alpha and beta, using immunocytochemical techniques. By use of serial semi-thin sections, we detected immunoreactivity for cathepsin B in insulin-, glucagon-, somatostatin-, and pancreatic polypeptide-positive (PP) cells. Strong immunoreactivity for cathepsin H was seen in A-cells and weak immunoreactivity in PP cells, but none in others. Immunodeposits for cystatin beta were demonstrated in B-cells. Brief dipping of thin sections in 1% sodium methoxide before the following immunocytochemical reaction enhanced specific deposits of immunogold particles on the target organelles. Use of a double-immunostaining technique showed co-localization of insulin with cystatin beta in many secretory granules. This suggests that cystatin beta may regulate converting enzymes participating in the maturation process of insulin. By use of an immunogold technique, heterogeneous localization of cathepsins B and H in lysosomes was also found among islet cells at the light microscopic level. This may be due to the difference in peptides degraded in lysosomes among the cells.  相似文献   

11.
Immunocytochemical localization of cathepsin H in rat kidney   总被引:1,自引:1,他引:0  
Summary Light and electron microscopic localization of cathepsin H in rat kidney was studied using post-embedding immunocytochemical techniques. For ligh microscopy, Epon sections of the kidney were stained by immunoenzyme method after removal of Epon and for electron microscopy, ultrathin sections of the Lowicryl K4M-embedded material were labeled by protein A-gold (pAg) technique. By light microscopy, fine granular staining was found in throughout the nephron, but the staining intensity considerably varied. The strongest staining was noted in the S1 segment of the proximal tubules followed by the S2 and S3 segments and the medullary collecting tubules. The glomeruli, the distal tubules, and the cortical collecting tubules were weakly stained. By electron microscopy, a gold label was found exclusively in lysosomes, which showed various sizes and labeling intensity. The results were quite consistent with the light microscopic results. The labeling intensity tended to increase as the matrix of lysosomes was condensed. Quantitative analysis of the labeling density of lysosomes demonstrated that the highest labeling density is found in the S1 segment of the proximal tubules and the labeling density of other renal segments is significantly low levels. The results indicate that a main site for cathepsin H in rat kidney is the S1 segment of the proximal tubules.  相似文献   

12.
Immunocytochemical localization of renin in mouse kidney   总被引:1,自引:0,他引:1  
Summary The distribution of renin in mouse kidney was examined in immunohistochemical studies by using an antiserum against pure mouse submaxillary renin and the peroxidase-antiperoxidase (PAP) technique. At antibody dilutions from 1:104 to 1:106, renin was found in high concentrations in the epitheloid cells of the vasa afferentia and, in lower concentrations, in the wall of some of the vasa efferentia. Renin was also detected in most of the interlobular arteries. Mesangial cells and Goormaghtigh cells were always free of specific staining. At high antiserum concentrations (i.e., dilutions from 1:102 to 1:104) specific reaction product was also observed in the apical part of proximal tubule cells. This staining may represent filtered and pinocytozed renin.  相似文献   

13.
The distribution of renin in mouse kidney was examined in immunohistochemical studies by using an antiserum against pure mouse submaxillary renin and the peroxidase-antiperoxidase (PAP) technique. At antibody dilutions from 1:10(4) to 1:10(6), renin was found in high concentrations in the epitheloid cells of the vasa afferentia and, in lower concentrations, in the wall of some of the vasa efferentia. Renin was also detected in most of the interlobular arteries. Mesangial cells and Goormaghtigh cells were always free of specific staining. At high antiserum concentrations (i.e., dilutions from 1:10(2) to 1:10(4)) specific reaction product was also observed in the apical part of proximal tubule cells. This staining may represent filtered and pinocytozed renin.  相似文献   

14.
肾素(原)受体在大鼠肾小球系膜细胞和肾脏的表达   总被引:1,自引:0,他引:1  
He M  Huang YL  Zhang L  Yao T  Lu LM 《生理学报》2007,59(6):796-804
近年发现的肾素(原)受体(renin/prorenin receptor,RnR)已被证明具有生物学功能,在心、肾及多种细胞表达。本文旨在观察RnR在体外培养的大鼠肾小球系膜细胞(mesangial cells,MCs)和肾脏中是否表达,及其表达的细胞部位,并用RnR的多肽阻断剂肾素原“柄区肽”(handle region peptide,HRP)与RnR结合后观察受体复合物进入细胞的过程与定位。结果显示,RnR主要存在于大鼠肾脏皮质肾小球系膜区和体外培养的MCs的细胞核周围胞浆和细胞膜。将FITC标记的HRP(FITC-HRP)加入细胞培养液后30S到30min期间,可观察到FITC-HRP由培养液转移到胞浆内并进入细胞核。用免疫荧光和激光共聚焦技术观察到,HRP与RnR的共定位主要位于细胞膜和细胞核周围胞浆;在30min时,一部分HRP已进入细胞核,而RnR没有进入细胞核内,仍主要位于细胞核周围胞浆。上述结果提示,RnR与其配基结合后进入细胞内并发挥生物学效应。  相似文献   

15.
Summary Immunogold techniques were used to investigate renin processing within granular juxtaglomerular cells following short-term (6 h and 1 day) and long-term (4 weeks) enalapril treatment in female BALB/c mice. In control animals, renin protein labelling was localized to all types of granules (proto-, polymorphous, intermediate and mature) and to transport vesicles, whilst prorenin labelling was found in all these sites except mature granules, confirming that active renin is localized to mature granules only. Following short-term enalapril treatment, the exocytosis of renin protein from mature granules was increased. Long-term enalapril treatment resulted in increased numbers of transport vesicles and all types of granules, consistent with increased synthesis and storage of renin. More large intermediate granules contained discrete regions labelled for prorenin. Renin protein was exocytosed from individual and multiple granules, whilst prorenin was exocytosed from protoand intermediate granules. It is concluded that under normal conditions prorenin is secreted constitutively by bulk flow from transport vesicles. On the other hand, active renin is secreted regulatively from mature granules. In conditions of intense stimulation (angiotensin-converting enzyme inhibition treatment), increased synthesis of prorenin leads to enhanced secretion of prorenin by both constitutive and regulative pathways. Under these conditions, the conversion of prorenin to active renin is increased, with increased secretion of active renin occurring in a regulative manner. Furthermore, the localization of prorenin to one discrete region of large intermediate granules leads us to conclude, that cleavage of the prosegment of renin occurs with the transition of intermediate to mature granules.  相似文献   

16.
We examined the effects of bilateral nephrectomy and colchicine treatment on localization and content of angiotensinogen and cathepsins B, H, and L in rat liver using immunohistochemistry, radioimmunoassay, and enzyme assay. Angiotensinogen content increased in the liver of colchicine-treated rats, whereas a clear-cut increase was not detected in the liver of nephrectomized rats. This tendency was consistent with the immunocytochemical results; only perivenous hepatocytes in control and nephrectomized rats were diffusely immunostained by anti-angiotensinogen, whereas perivenous and periportal hepatocytes of colchicine-treated rats were strongly immunostained. Enzyme assay revealed no significant change in activities of cathepsins B, H, and L in liver extracts under these experimental conditions. Immunocytochemical localization of these cysteine proteinases in hepatocytes after colchicine treatment was more widespread in the cytoplasm than that in the control hepatocytes. By electron microscopy, angiotensinogen was localized in smaller vesicles and some larger vesicles (lysosomes) of hepatocytes after colchicine treatment. Double immunostaining demonstrated co-localization of cathepsins B, H, and L with angiotensinogen in lysosomes. These results suggest that cathepsins B, H, and L play a role in the degradation of excess angiotensinogen in hepatocytes of rats after colchicine treatment.  相似文献   

17.
Immunohistochemical localization of cathepsins B, D and L in the osteoclasts of rat alveolar and femoral bones was investigated by using the avidin-biotin-peroxidase complex method for semithin, 1-m-thick cryosections. Extracellular immunoreactivity for cathepsins B and L was clearly demonstrated along the bone resorption lacunae; the intensity of the extracellular immunoreactivity of cathepsin L was stronger than that of cathepsin B. However, the intracellular immunoreactivity of both cathepsins was weak compared with that of cathepsin D. The intracellular immunoreactivity of cathespin D in the osteoclasts was clearly observed in the granules and/or vacuoles, but extracellular cathepsin D immunoreactivity was either negligible or not detected along the resorption lacunae. In the adjacent sections stained with anti-cathepsin L or D, extensive extracellular deposition of cathepsin L was found along the bone resorption lacunae, with or without osteoclasts, although the intracellular reactivity of cathepsin L was weak. This is the first morphological study in which cathepsins B and L have been demonstrated to be produced in the osteoclasts and extensively secreted into resorption lacunae, and in which cathepsin D was found to be present in the cells but scantily secreted into the lacunae. These findings suggest that cathepsins B and L directly and effectively participate in the degradation of the bone matrix.  相似文献   

18.
Cultured juxtaglomerular cells: production and localization of renin   总被引:1,自引:0,他引:1  
Trypsin- or collagenase-dispersed renal cortical cells from newborn mice were filtered and cultured. The cultures comprised 25% juxtaglomerular cells as identified by immunocytochemistry. Renin was measured by radioimmunoassay in the culture medium and in the cells at various time intervals. This in vitro system was responsive to isoproterenol, which stimulated renin release in a dose-dependent manner.  相似文献   

19.
The correlation between juxtaglomerular index, kidney renin content, and plasma renin concentration has been investigated in rats. The results indicate that renin exists in two forms. When determining the renin content of the kidney, the renin actually present in the modified smooth muscle cells of the juxtaglomerular apparatus is measured; this is called bound renin. The amount of bound renin is derived from the total of granular and subgranular renin in the modified smooth muscle cells. Since JGI and KRCont show a significant positive correlation in untreated adult rats, it is assumed that in such animals the ratio of granular and subgranular renin is constant. Since no correlation could be demonstrated between kidney renin content and PRC in untreated adult rats, and JGI and KRCont did not change parallel with the increase of PRC in numerous experimental conditions, it is assumed that part of the renin synthetized in the JG cells is secreted directly, without passing the process of condensation into membrane bound granules. This mobile renin does not significantly affect the renin content and the JGI of the kidney. Under physiological circumstances, most of the produced renin seems to mature to granules in the modified smooth muscle cells before being secreted. When renin production and release increased, maturation to granules may be inhibited, a significant part of the produced renin released by direct secretion, and the subgranular, immature renin may also be secreted.  相似文献   

20.
Lysosomal cysteine proteinases (cathepsins) are considered to play a role in bone degradation mediated by metastatic breast cancers. To evaluate which cathepsin contributes to the osteolysis, we quantitatively determined the expression levels of four cathepsins in two breast cancer cell lines, MCF-7 and MDA-MB-231, by competitive RT-PCR. Cathepsin K, which is the most abundant cathepsin in osteoclasts, was not detected in either cell lines. We also failed to detect cathepsin H mRNA. By contrast, we found significant expression of cathepsins B and L in both cell lines. By Northern blot analysis cathepsin B mRNA was detected in a single form in these cells, whereas osteoclasts contained multiple forms of the mRNA. Cathepsin B protein was also detected by Western blotting as a single immunoreactive band corresponding to its mature enzyme. These findings suggest that osteolysis associated with metastatic breast cancers takes place in a different way from osteoclast-mediated bone resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号