首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Lukas J 《EMBO reports》2010,11(12):907-909
The crucial role of ubiquitin signalling in genome-integrity maintenance was first recognized in 1987 by Stefan Jentsch and Alex Varshavsky, who showed that Rad6-the repair protein involved in DNA damage tolerance-is a ubiquitin-conjugating enzyme. Although this discovery inspired extensive research and led to the discovery of genome surveillance pathways that are fuelled by proteolytic and regulatory ubiquitylation and SUMOylation, it took more than two decades for these fields to meet at a dedicated interdisciplinary conference. This was rectified at an EMBO workshop held between 1 and 5 September on Red Island, Rovinj, Croatia.  相似文献   

2.
Post-translational modifications are well-known modulators of DNA damage signaling and epigenetic gene expression. Protein arginine methylation is a covalent modification that results in the addition of methyl groups to the nitrogen atoms of the arginine side chains and is catalyzed by a family of protein arginine methyltransferases (PRMTs). In the past, arginine methylation was mainly observed on abundant proteins such as RNA-binding proteins and histones, but recent advances have revealed a plethora of arginine methylated proteins implicated in a variety of cellular processes including RNA metabolism, epigenetic regulation and DNA repair pathways. Herein, we discuss these recent advances, focusing on the role of PRMTs in DNA damage signaling and its importance for maintaining genomic stability.  相似文献   

3.
Eukaryotic cells repair ultraviolet light (UV)- and chemical carcinogen-induced DNA strand-distorting damage through the nucleotide excision repair (NER) pathway. Concurrent activation of the DNA damage checkpoints is also required to arrest the cell cycle and allow time for NER action. Recent studies uncovered critical roles for ubiquitin-mediated post-translational modifications in controlling both NER and checkpoint functions. In this review, we will discuss recent progress in delineating the roles of cullin-RING E3 ubiquitin ligases in orchestrating the cellular DNA damage response through ubiquitination of NER factors, histones, and checkpoint effectors.  相似文献   

4.
5.
6.
7.
8.
Bid plays a role in the DNA damage response   总被引:2,自引:0,他引:2  
Zinkel SS  Hurov KE  Gross A 《Cell》2007,130(1):9-10; author reply 10-1
  相似文献   

9.
Kay Hofmann 《DNA Repair》2009,8(4):544-556
The modification of eukaryotic proteins by covalent attachment of ubiquitin is a versatile signaling event with a wide range of possible consequences. Canonical poly-ubiquitination by Lys-48 linked chains usually destines a protein for degradation by the proteasome. By contrast, attachment of a single ubiquitin or ubiquitin chains linked through Lys-63 or Lys-6 serves a non-proteolytic role. Over the last years, evidence has accumulated that several nuclear proteins become ubiquitinated in response to DNA damage. Typically, these proteins carry mono-ubiquitin or non-classical ubiquitin chains and are localized close to the site of DNA damage. Of particular interest are PCNA and the variant histone H2AX, two key proteins whose ubiquitination serves to recruit factors needed by the cell to cope with the damage. A prerequisite for docking effector proteins to the site of the lesion is the detection of a specific ubiquitin modification, a process that can be mediated by a range of dedicated ubiquitin-binding domains (UBDs). As the same types of ubiquitin modification are involved in entirely different processes, the recognition of the ubiquitin mark has to go along with the recognition of the modified protein. Thus, ubiquitin-binding domains gain their specificity through combination with other recognition domains and motifs. This review discusses ubiquitin-binding domains relevant to the DNA damage response, including their binding mode, their specificity, and their interdependence with other factors. For several repair pathways, current knowledge of the events downstream of the ubiquitin mark is sketchy. A closer look at orphan UBD proteins might lead to the identification of missing pieces in the DNA response puzzle.  相似文献   

10.
Comment on: Alvarez-Fernández M, et al. EMBO Rep 2010; 11:452-8.  相似文献   

11.
12.
Ubiquitin ligases define the substrate specificity of protein ubiquitination and subsequent proteosomal degradation. The catalytic sequence was first characterized in the C terminus of E6-associated protein (E6AP) and referred to as the HECT (homologous to E6AP C terminus) domain. The human homologue of the regulator of cell proliferation hyperplastic discs in Drosophila, designated hHYD, is a HECT-domain ubiquitin ligase. Here we show that hHYD provides a ubiquitin system for a cellular response to DNA damage. A yeast two-hybrid screen showed that DNA topoisomerase IIbeta-binding protein 1 (TopBP1) interacted with hHYD. Endogenous hHYD bound the BRCA1 C-terminus domains of TopBP1 that are highlighted in DNA damage checkpoint proteins and cell cycle regulators. Using an in vitro reconstitution, specific E2 (ubiquitin-conjugating) enzymes (human UbcH4, UbcH5B, and UbcH5C) transferred ubiquitin molecules to hHYD, leading to the ubiquitination of TopBP1. TopBP1 was usually ubiquitinated and degraded by the proteosome, whereas X-irradiation diminished the ubiquitination of TopBP1 probably via the phosphorylation, resulting in the stable colocalization of up-regulated TopBP1 with gamma-H2AX nuclear foci in DNA breaks. These results demonstrated that hHYD coordinated TopBP1 in the DNA damage response.  相似文献   

13.
Nijmegen breakage syndrome is a recessive genetic disorder, characterized by elevated sensitivity to ionizing radiation, chromosome instability and high frequency of malignancies. Since cellular features partly overlap with those of ataxia-telangiectasia (A-T), NBS was long considered an A-T clinical variant. NBS1, the product of the gene underlying the disease, contains three functional regions: the forkhead-associated (FHA) domain and BRCA1 C-terminus (BRCT) domain at the N-terminus, several SQ motifs (consensus phosphorylation sites by ATM and ATR kinases) at a central region and MRE11-binding region at the C-terminus. NBS1 forms a multimeric complex with hMRE11/hRAD50 nuclease at the C-terminus and recruits or retains them at the vicinity of sites of DNA damage by direct binding to histone H2AX, which is phosphorylated by ATM in response to DNA damage. The combination of the FHA/BRCT domains has a crucial role for the binding of NBS1 to H2AX. Thereafter, the NBS1 complex proceeds to rejoin double-strand breaks predominantly by homologous recombination repair in vertebrates, while it also might be involved in suppression of inter-chromosomal recombination even for V(D)J recombination. These processes collaborate with cell cycle checkpoints to facilitate DNA repair, while defects of these checkpoints in NBS cells are partial in nature. A possible explanation for these moderate defects are the redundancy of multiple checkpoint regulations in vertebrates, or the modulator role of NBS1, in which NBS1 amplifies ATM activation by accumulation of the MRN complex at damaged sites. This molecular link of NBS1 to ATM may explain the phenotypic similarity of NBS to A-T.  相似文献   

14.
Once it was believed that Cdk2 was the master regulator of S phase entry. Gene knockout mouse studies of cell cycle regulators revealed that Cdk2 is dispensable for S phase initiation and progression whereby Cdk1 can compensate for the loss of Cdk2. Nevertheless, recent evidence indicates that Cdk2 is involved in cell cycle independent functions such as DNA damage repair. Whether these properties are unique to Cdk2 or also being compensated by other Cdks in the absence of Cdk2 is under extensive investigation. Here we review the emerging new role of Cdk2 in DNA damage repair and also discuss how the loss of Cdk2 impacts the G1/S phase DNA damage checkpoint.  相似文献   

15.
16.
Peng Y  Tu B  Zhu WG 《生理科学进展》2011,42(1):59-62
Tip60(Tat-interactive protein)是进化上极为保守的乙酰转移酶,它在细胞周期阻滞、凋亡、DNA损伤修复等众多生理学过程中都发挥着重要的作用.作为许多转录因子的共调节因子,Tip60既可以激活也可以抑制特定基因的转录.当发生DNA损伤时,它被招募到损伤位点,参与DNA损伤应答的感受、信号转导和修复过程中.除此之外,Tip60还与许多病理过程有关,尤其是在肿瘤发生中起着关键作用.  相似文献   

17.
18.
In recent years there has been intense investigation and rapid progress in our understanding of the cellular responses to various types of endogenous and exogenous DNA damage that ensure genetic stability. These studies have identified numerous roles for ubiquitylation, the post-translational modification of proteins with single ubiquitin or poly-ubiquitin chains. Initially discovered for its role in targeting proteins for degradation in the proteasome, ubiquitylation functions in a variety of regulatory roles to co-ordinate the recruitment and activity of a large number of protein complexes required for recovery from DNA damage. This includes the identification of essential DNA damage response genes that encode proteins directly involved in the ubiquitylation process itself, proteins that are targets for ubiquitylation, proteins that contain ubiquitin binding domains, as well as proteins involved in the de-ubiquitylation process. This review will focus on the regulatory functions of ubiquitylation in three distinct DNA damage responses that involve ubiquitin modification of proliferating cell nuclear antigen (PCNA) in DNA damage tolerance, the core histone H2A and its variant H2AX in double strand break repair (DSBR) and the Fanconi anaemia (FA) proteins FANCD2 and FANCI in cross link repair.  相似文献   

19.
Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (SIMs), promoting their K48-linked ubiquitylation and degradation. Only a single mammalian STUbL, RNF4, has been identified. We show that human RNF111/Arkadia is a new STUbL, which used three adjacent SIMs for specific recognition of poly-SUMO2/3 chains, and used Ubc13–Mms2 as a cognate E2 enzyme to promote nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV)-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response.  相似文献   

20.
FRAXA is one of a number of fragile sites in human chromosomes that are induced by agents like fluorodeoxyuridine (FdU) that affect intracellular thymidylate levels. FRAXA coincides with a >200 CGG•CCG repeat tract in the 5′ UTR of the FMR1 gene, and alleles prone to fragility are associated with Fragile X (FX) syndrome, one of the leading genetic causes of intellectual disability. Using siRNA depletion, we show that ATR is involved in protecting the genome against FdU-induced chromosome fragility. We also show that FdU increases the number of γ-H2AX foci seen in both normal and patient cells and increases the frequency with which the FMR1 gene colocalizes with these foci in patient cells. In the presence of FdU and KU55933, an ATM inhibitor, the incidence of chromosome fragility is reduced, suggesting that ATM contributes to FdU-induced chromosome fragility. Since both ATR and ATM are involved in preventing aphidicolin-sensitive fragile sites, our data suggest that the lesions responsible for aphidicolin-induced and FdU-induced fragile sites differ. FRAXA also displays a second form of chromosome fragility in absence of FdU, which our data suggest is normally prevented by an ATM-dependent process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号