首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Although high density lipoprotein (HDL) improves the functions of endothelial progenitor cells (EPCs), the effect of HDL ApoAI mimetic peptide reverse-D-4F (Rev-D4F) on EPC mobilization and repair of EPC dysfunctions remains to be studied. In this study, we investigated the effects of Rev-D4F on peripheral blood cell subpopulations in C57 mice treated with a high fat diet and the mechanism of Rev-D4F in improving the function of EPCs impaired by tumor necrosis factor-α (TNF-α). The high fat diet significantly decreased the number of EPCs, EPC migratory functions, and the percentage of lymphocytes in the white blood cells. However, it significantly increased the number of white blood cells, the percentage of monocytes in the white blood cells, and the level of vascular endothelial growth factor (VEGF) and TNF-α in the plasma. Rev-D4F clearly inhibited the effect of the high fat diet on the quantification of peripheral blood cell subpopulations and cytokine levels, and increased stromal cell derived factor 1α (SDF-1α) in the plasma. We provided in vitro evidence that TNF-α impaired EPC proliferation, migration, and tube formation through inactive AKT and eNOS, which was restored by Rev-D4F treatment. In contrast, both the PI3-kinase (PI3K) inhibitor (LY294002) and AKT inhibitor (perifosine) obviously inhibited the restoration of Rev-4F on EPCs impaired by TNF-α. Our results suggested that Rev-D4F increases the quantity of endothelial progenitor cells through increasing the SDF-1α levels and decreasing the TNF-α level of peripheral blood in high fat diet-induced C57BL/6J mice, and restores TNF-α induced dysfunctions of EPCs partly through stimulating the PI3K/AKT signal pathway.  相似文献   

2.
There is currently great excitement and expectation in the stem cell community following the discovery that multipotent stem cells can be cultured from human fetal tissue and retain their ability to give rise to a variety of differentiated cell types found in all three embryonic germ layers. Although the earliest sites of hematopoietic cell and endothelial cell differentiation in the yolk sac blood islands were identified about 100 years ago, cells with hemangioblast properties have not yet been identified in vivo. Endothelial cells differentiate from angioblasts in the embryo and from endothelial progenitor cells, mesoangioblasts and multipotent adult progenitor cells in the adult bone marrow. Circulating endothelial progenitor cells (EPC) have been detected in the circulation after vascular injury and during tumor growth. The molecular and cellular mechanisms underlying EPC recruitment and differentiation are not yet understood, and remain as one of the central issues in stem cell biology. For many years, the prevailing dogma stated that the vessels in the embryo develop from endothelial progenitors, whereas sprouting of vessels in the adult results only from division of differentiated endothelial cells. Recent evidence, however, indicates that EPC contribute to vessel growth in the embryo and in ischemic, malignant or inflammed tissues in the adult, and can even be therapeutically used to stimulate vessel growth in ischemic tissues.  相似文献   

3.
Hepatic stellate cells (HSC) play an important role in the development of liver fibrosis. Here, we report that HSC express the stem/progenitor cell marker CD133 and exhibit properties of progenitor cells. CD133+ HSC of rats were selected by specific antibodies and magnetic cell sorting. Selected cells displayed typical markers of HSC, endothelial progenitor cells (EPC), and monocytes. In cell culture, CD133+ HSC transformed into alpha-smooth muscle actin positive myofibroblast-like cells, whereas application of cytokines known to facilitate EPC differentiation into endothelial cells led to the formation of branched tube-like structures and induced expression of the endothelial cell markers endothelial nitric oxide synthase and vascular-endothelial cadherin. Moreover, cytokines that guide stem cells to develop hepatocytes led to the appearance of rotund cells and expression of the hepatocyte markers alpha-fetoprotein and albumin. It is concluded that CD133+ HSC are a not yet recognized progenitor cell compartment with characteristics of early EPC. Their potential to differentiate into endothelial or hepatocyte lineages suggests important functions of CD133+ HSC during liver regeneration.  相似文献   

4.
Two hypotheses explain the role of adult progenitor cells in myocardial regeneration. Stem cell plasticity which involves mobilization of stem cells from the bone marrow and other niches, homing to the area of tissue injury and transdifferentiation into functional cardiomyocytes. Alternative hypothesis is based on the observations that bone marrow harbors a heterogenous population of cells positive for CXCR4 - receptor for chemokine SDF-1. This population of non-hematopoietic cells expresses genes specific for early muscle, myocardial and endothelial progenitor cells (EPC). These tissue-committed stem cells circulate in the peripheral blood at low numbers and can be mobilized by hematopoietic cytokines in the setting of myocardial ischemia. Endothelial precursors capable of transforming into mature, functional endothelial cells are present in the pool of peripheral mononuclear cells in circulation. Their number significantly increases in acute myocardial infarction (AMI) with subsequent decrease after 1 month, as well as in patients with unstable angina in comparison to stable coronary heart disease (CHD). There are numerous physiological and pathological stimuli which influence the number of circulating EPC such as regular physical activity, medications (statins, PPAR-gamma agonists, estrogens), as well as numerous inflammatory and hematopoietic cytokines. Mobilization of stem cells in AMI involves not only the endothelial progenitors but also hematopoietic, non-hematopoietic stem cells and most probably the mesenchymal cells. In healthy subjects and patients with stable CHD, small number of circulating CD34+, CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cells can be detected. In patients with AMI, a significant increase in CD34+/CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cell number the in peripheral blood was demonstrated with parallel increase in mRNA expression for early cardiac, muscle and endothelial markers in peripheral blood mononuclear cells. The maximum number of stem cells was found early in ST-segment elevation myocardial infarction (<12 hours) with subsequent decrease through the 7-day follow-up and with concomitant changes in the levels of cytokines involved in the inflammatory response and stem cell recruitment. Moreover, peak expression of cardiac muscle and endothelial markers occurred at the same time as the most significant increase in CD34/CXCR4+ stem cell number. The SDF-1/CXCR-4 axis seems particularly important in stem/muscle progenitor cell homing, chemotaxis, engraftment and retention in ischaemic myocardium. The significance of autologous stem cells mobilization in terms of cardiac salvage and regeneration needs to be proved in humans but it seems to be a reparative mechanism triggered early in the course of acute coronary syndromes.  相似文献   

5.
Background aimsMobilization of stem cells and progenitor cells from the bone marrow (BM) into the peripheral blood (PB) by granulocyte–colony-stimulating factor (G-CSF) is being investigated for cardiac regeneration in ischemic heart disease. However, hematopoietic (HPC), mesenchymal (MPC) and endothelial (EPC) progenitor mobilization have not been optimized and the effect of G-CSF on myocardial perfusion and cardiac function in a normal heart has never been studied.MethodsNormal mice were injected daily for 1–10 days with subcutaneous recombinant human G-CSF. PB and BM were evaluated for HPC and EPC by flow cytometry and HPC and MPC by hematopoietic (CFU-GM) and mesenchymal (CFU-F) colony assays. Echocardiography, microSPECT imaging, cardiac catheterization and immunohistochemistry were performed in mice treated for 10 days.ResultsHPC and CFU-GM in PB peaked after 2 days, CFU-F after 4 days and EPC after 3 days. Thereafter, while HPC temporally decreased before showing a second peak, EPC remained detectable only at low levels. In BM, hematopoietic stem cells (HSC) and CFU-GM did not increase much overall but peaked twice on days 2 and 7. EPC (peak on day 7) production increased in the BM, but CFU-F formation declined considerably after day 2. G-CSF enhanced myocardial perfusion and vascularization but impaired hemodynamic performance of the heart through apparently increased ventricular wall rigidity.ConclusionsG-CSF induces the mobilization of HPC, EPC and CFU-F progenitors in PB according to very different patterns, and has a significant impact on perfusion and function of the normal heart.  相似文献   

6.
7.
The bone marrow-derived stem/progenitor cells were demonstrated to play an important role in a regeneration of damaged tissue. Based on these observations we asked whether the stroke-related stress triggers mobilization of stem/progenitor cells from the bone marrow into the peripheral blood, which subsequently could contribute to regeneration of damaged organs. To address this issue, the peripheral blood samples were harvested from patients with ischemic stroke during the first 24 hrs as well as after the 48 (2nd day) and 144 hrs (6th day) since the manifestation of symptoms. In these patients we evaluated the percentage of hematopoietic stem/progenitor-enriched CD34+ cells by employing flow cytometry and the number of hematopoietic progenitor cells for the granulocyto-monocytic (CFU-GM) and erythroid (BFU-E)-lineages circulating in peripheral blood. We concluded that stress related to ischemic stroke triggers the mobilization of hematopoietic stem/progenitor cells from the bone marrow into peripheral blood. These circulating stem/progenitor cells may play an important role in the process of regeneration of the ischemic tissue.  相似文献   

8.
Ex vivo expansion of residual autologous hematopoietic stem and progenitor cells collected from victims soon after accidental irradiation (autologous cell therapy) may represent an additional or alternative approach to cytokine therapy or allogeneic transplantation. Peripheral blood CD34+ cells could be a useful source of cells for this process provided that collection and ex vivo expansion of hematopoietic stem and progenitor cells could be optimized. Here we investigated whether mesenchymal stem cells could sustain culture of irradiated peripheral blood CD34+ cells. In vitro irradiated (4 Gy 60Co gamma rays) or nonirradiated mobilized peripheral blood CD34+ cells from baboons were cultured for 7 days in a serum-free medium supplemented with stem cell factor+thrombopoietin+interleukin 3+FLT3 ligand (50 ng/ml each) in the presence or absence of mesenchymal stem cells. In contrast to cultures without mesenchymal stem cells, irradiated CD34+ cells cultured with mesenchymal stem cells displayed cell amplification, i.e. CD34+ (4.9-fold), CD34++ (3.8-fold), CD34++/Thy-1+ (8.1-fold), CD41+ (12.4-fold) and MPO+ (50.6-fold), although at lower levels than in nonirradiated CD34+ cells. Fourteen times more clonogenic cells, especially BFU-E, were preserved when irradiated cells were cultured on mesenchymal stem cells. Moreover, we showed that the effect of mesenchymal stem cells is related mainly to the reduction of apoptosis and involves cell-cell contact rather than production of soluble factor(s). This experimental model suggests that mesenchymal stem cells could provide a crucial tool for autologous cell therapy applied to accidentally irradiated victims.  相似文献   

9.
10.
Yue R  Li H  Liu H  Li Y  Wei B  Gao G  Jin Y  Liu T  Wei L  Du J  Pei G 《Developmental cell》2012,22(5):1092-1100
Hematopoietic development and vascular development are closely related physiological processes during vertebrate embryogenesis. Recently, endothelial-to-hematopoietic transition (EHT) was demonstrated to be critical for hematopoietic stem and progenitor cell induction, but its underlying regulatory mechanisms remain poorly understood. Here we show that thrombin receptor (F2r), a protease-activated G protein-coupled receptor required for vascular development, functions as a negative regulator during hematopoietic development. F2r is significantly upregulated during hematopoietic differentiation of mouse embryonic stem cells (mESCs) and zebrafish hematopoietic development. Pharmacological or genetic inhibition of F2r promotes hematopoietic differentiation, whereas F2r overexpression shows opposite effects. Further mechanistic studies reveal that F2r-RhoA/ROCK pathway inhibits EHT in vitro and negatively regulates zebrafish EHT and hematopoietic stem cell induction in vivo. Taken together, this study demonstrates a fundamental role of F2r-RhoA/ROCK pathway in vertebrate hematopoiesis and EHT, as well as an important molecular mechanism coordinating hematopoietic and vascular development.  相似文献   

11.
Endothelial progenitor cells for postnatal vasculogenesis   总被引:26,自引:0,他引:26  
In the past decade, researchers have defined committed stem or progenitor cells from various tissues, including bone marrow, peripheral blood, brain, liver, and reproductive organs, in both adult animals and humans. Whereas most cells in adult organs are composed of differentiated cells, which express a variety of specific phenotypic genes adapted to each organ's environment, quiescent stem or progenitor cells are maintained locally or in the systemic circulation and are activated by environmental stimuli for physiological and pathological tissue regeneration. Recently, endothelial progenitor cells (EPCs) were isolated from peripheral blood CD34, Flk-1, or AC133 antigen-positive cells, which are considered to include a hematopoietic stem cell population, and were shown to be incorporated into foci of neovascularization. This finding, that circulating EPCs may home to sites of neovascularization and differentiate into endothelial cells in situ, is consistent with "vasculogenesis," a critical paradigm for embryonic neovascularization, and suggests that vasculogenesis and angiogenesis may constitute complementary mechanisms for postnatal neovascularization. Previous reports demonstrating therapeutic potential of EPC transplantation in animal models of hindlimb and myocardial ischemia opened the way to the clinical application of cell therapy: the replacement of diseased or degenerating cell populations, tissues, and organs. In this review, we summarize biological features of EPCs and speculate on the utility of EPCs for vascular and general medicine. cell transplantation; ischemia; neovascularization; stem cell  相似文献   

12.
Radiation-induced (RI) tissue injuries can be caused by radiation therapy, nuclear accidents or radiological terrorism. Notwithstanding the complexity of RI pathophysiology, there are some effective approaches to treatment of both acute and chronic radiation damages. Cytokine therapy is the main strategy capable of preventing or reducing the acute radiation syndrome (ARS), and hematopoietic growth factors (GF) are particularly effective in mitigating bone marrow (BM) aplasia and stimulating hematopoietic recovery. However, first, as a consequence of RI stem and progenitor cell death, use of cytokines should be restricted to a range of intermediate radiation doses (3 to 7 Gy total body irradiation). Second, ARS is a global illness that requires treatment of damages to other tissues (epithelial, endothelial, glial, etc.), which could be achieved using pleiotropic or tissue-specific cytokines. Stem cell therapy (SCT) is a promising approach developed in the laboratory that could expand the ability to treat severe radiation injuries. Allogeneic hematopoietic stem cell transplantation (BM, mobilized peripheral blood and cord blood) transplantation has been used in radiation casualties with variable success due to limiting toxicity related to the degree of graft histocompatibility and combined injuries. Ex vivo expansion should be used to augment cord blood graft size and/or promote very immature stem cells. Autologous SCT might also be applied to radiation casualties from residual hematopoietic stem and progenitor cells (HSPC). Stem cell plasticity of different tissues such as liver or skeletal muscle, may also be used as a source of hematopoietic stem cells. Finally, other types of stem cells such as mesenchymal, endothelial stem cells or other tissue committed stem cells (TCSC), could be used for treating damages to nonhematopoietic organs.  相似文献   

13.
Endothelial progenitor cells (EPC) derived from the circulation may be used to enhance neovascularization. Since the combination of granulocyte colony-stimulating factor (GCSF) and CXCR4 antagonist AMD3100 efficiently mobilizes hematopoietic stem cells into peripheral circulation, it may increase the pool of endogenously circulating EPC. We tested this hypothesis by administering GCSF and AMD3100 to adult rabbits and rats, isolating mononuclear cells from peripheral blood by Ficoll density gradient centrifugation, and characterizing the blood-derived EPC based on morphology, immunophenotyping, gene expression and other functional analyses. These EPC showed clonal growth similar to that of human umbilical vein endothelial cells when cultured in complete EGM-2 medium on collagen I-precoated culture plates. The EPC exhibited a typical cobblestone-like morphology and were relatively homogeneous by the third passage. The cells expressed the typical endothelial marker CD31 based on flow cytometry and fluorescence microscopy, formed capillary-like structures when cultured in Matrigel, internalized DiI-acetylated low-density lipoprotein, bound Ulex europaeus agglutinin-1, and expressed CD31 and several other endothelial markers (VEGFR2, VE-cadherin, Tie-2, eNOS, vWF) at significantly higher levels than bone marrow-derived mesenchymal stem cells. These results suggest that the combination of GCSF and AMD3100 can efficiently release stem cells into peripheral circulation and generate EPC that show the desired morphological, immunophenotypic and functional characteristics. This minimally invasive approach may be useful for autologous cell transplantation for postnatal neovasculogenesis and tissue repair.  相似文献   

14.
Reendothelialization involves endothelial progenitor cell (EPC) homing, proliferation, and differentiation, which may be influenced by fluid shear stress and local flow pattern. This study aims to elucidate the role of laminar flow on embryonic stem (ES) cell differentiation and the underlying mechanism. We demonstrated that laminar flow enhanced ES cell-derived progenitor cell proliferation and differentiation into endothelial cells (ECs). Laminar flow stabilized and activated histone deacetylase 3 (HDAC3) through the Flk-1-PI3K-Akt pathway, which in turn deacetylated p53, leading to p21 activation. A similar signal pathway was detected in vascular endothelial growth factor-induced EC differentiation. HDAC3 and p21 were detected in blood vessels during embryogenesis. Local transfer of ES cell-derived EPC incorporated into injured femoral artery and reduced neointima formation in a mouse model. These data suggest that shear stress is a key regulator for stem cell differentiation into EC, especially in EPC differentiation, which can be used for vascular repair, and that the Flk-1-PI3K-Akt-HDAC3-p53-p21 pathway is crucial in such a process.  相似文献   

15.
AimsThe potential of human mesenchymal stem cell-like stroma prepared from placental/umbilical cord blood for hematopoietic regeneration by X-irradiated hematopoietic stem cells is herein assessed.Main methodsPlacental/umbilical cord blood-derived mesenchymal stem cell-like stromal cells were applied to a regenerative ex vivo expansion of X-irradiated human CD34+ cells in a serum-free liquid culture supplemented with a combination of interleukine-3 plus stem cell factor plus thrombopoietin.Key findingsThe total number of cells and of lineage-committed myeloid hematopoietic progenitor cells generated in the co-culture of both non-irradiated and X-irradiated cells with stromal cells was significantly higher than those in the stroma-free culture. In addition, the number of CD34+ cells and CD34+/CD38? cells, immature hematopoietic stem/progenitor cells also increased more than the stroma-free culture. The stromal cells produced various types of cytokines, although there was little difference between the co-cultures of non-irradiated and X-irradiated cells with stromal cells. Furthermore, when X-irradiated cells came in contact with stromal cells for 16 h before cytokine stimulation, a similar degree of hematopoiesis was observed, thus suggesting the critical role of cell-to-cell interaction.SignificanceThe present results showed the potential efficacy of human mesenchymal stem cell-like stroma for hematopoietic regeneration from irradiated hematopoietic stem/progenitor cells.  相似文献   

16.
The sparing of viable hematopoietic stem and progenitor cells located in underexposed bone marrow territories associated with the relative radioresistance of certain stem cell populations is the rationale for autologous cell therapy consisting of ex vivo expansion of residual cells after collection postirradiation. The feasibility of this treatment mainly depends on time constraints and hematopoietic cell threshold. We showed in this study that in the absence of early-acting mobilizing agent administration, subliminar amounts of CD34+ cells can be collected (1 x 10(6) CD34+ cells/100 mL bone marrow or for 1 L apheresis) from 6-Gy gamma globally irradiated baboons. Residual CD34+ cells were successfully expanded in serum-free medium in the presence of antiapoptotic cytokine combination (stem cell factor + FLT-3 ligand + thrombopoietin + interleukin 3, 50 ng/mL each, i.e., 4F): KCD34+ = x2.8 and x13.7 (n = 2). Moreover, we demonstrated the short-term neutrophil engraftment potential of a low-size mixed expanded graft (1.5 x 106 final CD34+cells/kg) issued from the coculture of unirradiated (20%) and 2.5-Gy in vitro irradiated (80%) CD34+ cells on an allogeneic stromal cell layer in the presence of 4F. Further preclinical research needs to be performed to clearly establish this therapeutic approach that could be optimized by the early administration of antiapoptotic cytokines.  相似文献   

17.
This study aimed to investigate the significance of cytokine expression in supernatant from hematopoietic stem/progenitor cells (HSCs/HPCs) co-cultured with mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs). Mononuclear cells (MNCs) were isolated from normal human umbilical cord blood and then cultured solely or co-cultured with MSCs or EPCs. Changes in the number of MNCs and HSCs/HPCs were observed, and MNC proliferation was tested by carboxyfluorescein diacetate succinimidyl ester. The cultured supernatants of the treated MSCs and EPCs were collected at 24 h after co-culture and used to determine the concentrations of IL-3, IL-6, stem cell factor (SCF), TPO, Flt3l, and VEGF. The total number and proliferation of MNCs increased significantly when co-cultured with MSCs or EPCs than when cultured alone, particularly when MNCs were co-cultured with EPCs. The differences in IL-3 and Flt3l concentrations between groups were not significant. However, IL-6 in the MSC group was significantly higher than that in the two other groups. The SCF and TPO concentrations were highly expressed in the EPC group. The VEGF concentrations in the MSC group and the EPC group were higher than those in the control group. These results indicated that MSCs and EPCs possibly favor the proliferation of MNCs and HSCs/HPCs. IL-6 and VEGF may be related to hematopoietic reconstitution and homing ability of HSCs/HPCs. TPO may have a specific relationship with the promotion of HSCs/HPCs differentiation.  相似文献   

18.
Background aims. Acute cardiac injury results in the activation and recruitment of resident and non-cardiac stem cells. In this study we sought to define the pattern of peripheral stem cells and resident cardiac stem cell (CSC) activation induced acutely by cardiac pressure overload (PO). Methods. PO was induced in mice by transaortic constriction (TAC). CSC, endothelial progenitor cells (EPC), hematopoietic stem cells (HSC) and stage-specific embryonic antigen (SSEA)-1(+) cells were profiled in the heart, spleen and bone marrow after TAC by flow cytometry. Results. The combination of a systemic and local stem cell response resulted in increases in SSEA-1 (+) cells and EPC in the heart 7 and 14 days post-TAC, respectively. Locally, modest SSEA-1(+) proliferation at 4 days preceded the elevated myocardial stem cell number. We observed no significant proliferation of EPC and CSC in the heart. The systemic stem cell response was characterized by a biphasic loss of splenic SSEA-1(+) cells at 2 and 7 days post-TAC and loss of bone marrow and spleen EPC at 4 and 7 days, respectively. Spleen size changed dynamically after TAC. A negligible response of HSC to TAC was observed. Significant EPC and SSEA-1(+) proliferation in the bone marrow and spleen occurred only after their local levels were decreased. Conclusions. Our results demonstrate that an orchestrated systemic stem cell response (EPC and SSEA-1 (+) ) takes place in response to TAC. The increase of SSEA-1(+) cells and EPC in the heart in response to pressure is likely to be because of a combination of local proliferation and stem cell recruitment.  相似文献   

19.
Background aimsDelivery of bone marrow–derived stem and progenitor cells to the site of injury is an effective strategy to enhance bone healing. An alternate approach is to mobilize endogenous, heterogeneous stem cells that will home to the site of injury. AMD3100 is an antagonist of the chemokine receptor 4 (CXCR4) that rapidly mobilizes stem cell populations into peripheral blood. Our hypothesis was that increasing circulating numbers of stem and progenitor cells using AMD3100 will improve bone fracture healing.MethodsA transverse femoral fracture was induced in C57BL/6 mice, after which they were subcutaneously injected for 3 d with AMD3100 or saline control. Mesenchymal stromal cells, hematopoietic stem and progenitor cells and endothelial progenitor cells in the peripheral blood and bone marrow were evaluated by means of flow cytometry, automated hematology analysis and cell culture 24 h after injection and/or fracture. Healing was assessed up to 84 d after fracture by histomorphometry and micro–computed tomography.ResultsAMD3100 injection resulted in higher numbers of circulating mesenchymal stromal cells, hematopoietic stem cells and endothelial progenitor cells. Micro-computed tomography data demonstrated that the fracture callus was significantly larger compared with the saline controls at day 21 and significantly smaller (remodeled) at day 84. AMD3100-treated mice have a significantly higher bone mineral density than do saline-treated counterparts at day 84.ConclusionsOur data demonstrate that early cell mobilization had significant positive effects on healing throughout the regenerative process. Rapid mobilization of endogenous stem cells could provide an effective alternative strategy to cell transplantation for enhancing tissue regeneration.  相似文献   

20.

Background

Increasing number of evidence shows that soluble factors and extracellular matrix (ECM) components provide an optimal microenvironment controlling human bone marrow mesenchymal stem cell (MSC) functions. Successful in vivo administration of stem cells lies in their ability to migrate through ECM barriers and to differentiate along tissue-specific lineages, including endothelium. Lumican, a protein of the small leucine-rich proteoglycan (SLRP) family, was shown to impede cell migration and angiogenesis. The aim of the present study was to analyze the role of lumican in the control of MSC migration and transition to functional endothelial progenitor cell (EPC).

Methodology/Principal Findings

Lumican inhibited tube-like structures formation on Matrigel® by MSC, but not EPC. Since matrix metalloproteinases (MMPs), in particular MMP-14, play an important role in remodelling of ECM and enhancing cell migration, their expression and activity were investigated in the cells grown on different ECM substrata. Lumican down-regulated the MMP-14 expression and activity in MSC, but not in EPC. Lumican inhibited MSC, but not EPC migration and invasion. The inhibition of MSC migration and invasion by lumican was reversed by MMP-14 overexpression.

Conclusion/Significance

Altogether, our results suggest that lumican inhibits MSC tube-like structure formation and migration via mechanisms that involve a decrease of MMP-14 expression and activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号