首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new attractive series of allocolchicinoids were designed as inhibitors of tubulin assembly using the potent ketone 4 and the tetracyclic, pyrazole annulated NCME variant 7 (NCME = N-acetyl colchinol-O-methylether (2)) as lead structures. The first group of inhibitors of type 6 with novel oxepine and azepine B-ring structures belongs to the NCME-series and was synthesized via a multistep total synthesis starting from simple and cheap 3-methoxybenzaldehyde (12) and 3,4,5-trimethoxybenzaldehyde (13). Biaryl-coupling of the starting materials 12 and 13 was accomplished via Ziegler-Ullmann-reaction to furnish the biphenyl 11 equipped with two carbaldehyde functions. The subsequent Cannizzaro reaction of this dicarbaldehyde 11 proceeded with high regioselectivity to yield almost exclusively the key compound, the hydroxymethyl carboxylic acid 9. Ring closure to the o,o'-bridged biphenyls was accomplished by two routes: on the one hand, treatment of 9 with aqueous hydrochloric acid yielded the lactone 15. On the other hand, a four step sequence starting from the isomeric mixture 9/10 furnished the constitutionally isomeric lactams 23 and 24; these could be converted to the corresponding thiolactams 25 and 26 and to the tetrazole annulated NCME-type derivatives 27 and 28. The second series of bioactive compounds are congeners of allocolchicine (3). The well known desacetyl allocolchicine (29) was easily oxidized to the oxime 30, which was further transformed to the corresponding ketone 31. This served as key precursor for the syntheses of various tetracyclic allocolchicine modifications 33-36 annulated with a pyrazole, isoxazole, pyrimidine or 2-aminopyrimidine heterocycle, respectively. Unexpectedly, all the NCME-variants with a substituent in position 7 like in NCME (2) inhibited the tubulin assembly only moderately. In contrast, the new series of allocolchicine modifications proved to be highly potent antimicrotubule agents. Inhibition of tubulin assembly occurred at lower concentrations compared to those measured for the reference colchicine (1). Surprisingly, these promising results could not be confirmed in the cytotoxicity tests against the human MCF-7 breast cancer cell line, where an unexpected loss of effectiveness compared to the corresponding NCME-derivatives was observed.  相似文献   

2.
Several B-ring variations of O-methyl androbiphenyline (8), newly accessible from (-)-(M,7S)-colchicine via photooxygenation and subsequent endoperoxide-transformation, were synthesized and evaluated for their inhibitory effects on tubulin assembly in vitro. The amino-allocolchicinoid (9), a key compound in this study, was transformed to the highly potent ketone 10 and by oxidation with H2O2/Na2WO4 to a mixture of syn/anti-oximes, like 11 and 12. These could easily be transformed to hitherto unknown allocolchicinoids 13 and 14 with an eight membered B-ring lactam obtained via a Beckmann rearrangement. Surprisingly both do not notably affect tubulin assembly, despite obvious structural similarities with active analogues of the thiocolchicine- and azasteganacin-series.  相似文献   

3.
A novel series of phenylimino-10H-anthracen-9-ones and 9-(phenylhydrazone)-9,10-anthracenediones were synthesized and evaluated for interaction with tubulin and for cytotoxicity against a panel of human tumor cell lines. The 10-(3-hydroxy-4-methoxy-phenylimino)-10H-anthracen-9-one 15h and its dichloro analog 16b were identified as potent inhibitors of tumor cell growth (16b, IC(50) K562 0.11 μM), including multidrug resistant phenotypes. Compound 15h had excellent activity as an inhibitor of tubulin polymerization. Concentration-dependent cell cycle analyzes by flow cytometry confirmed that KB/HeLa cells treated by 15h and 16b were arrested in the G2/M phases of the cell cycle. In competition experiments, 15h strongly displaced radiolabeled colchicine from its binding site on tubulin, showing IC(50) values similar to that of colchicine. The results obtained demonstrate that the antiproliferative activity is related to the inhibition of tubulin polymerization.  相似文献   

4.
A series of analogs with nitro or serinamide substituents at the C-2'-, C-5'-, or C-6'-position of the combretastatin A-4 (CA4) B-ring was synthesized and evaluated for cytotoxic effects against heart endothelioma cells, blood flow reduction to tumors in SCID mice, and as inhibitors of tubulin polymerization. The synthesis of these analogs typically featured a Wittig reaction between a suitably functionalized arylaldehyde and an arylphosphonium salt followed by separation of the resultant E- and Z-isomers. Several of these nitrogen-modified CA4 derivatives (both amino and nitro) demonstrate significant inhibition of tubulin assembly as well as cytotoxicity and in vivo blood flow reduction. 2'-Aminostilbenoid 7 and 2'-amino-3'-hydroxystilbenoid 29 proved to be the most active in this series. Both compounds, 7 and 29, have the potential for further pro-drug modification and development as vascular disrupting agents for treatment of solid tumor cancers and certain ophthalmological diseases.  相似文献   

5.
Synthesis and evaluation of new combretastatin analogues with varied modifications on the bridge and the aromatic rings, have shown that the 2-naphthyl moiety is a good surrogate for the 3-hydroxy-4-methoxyphenyl (B-ring) of combretastatin A-4. Other bicyclic systems, such as 6(7)-quinolyl and 5-indolyl, can replace the B-ring, but they produce less potent analogues in the cytotoxicity and tubulin polymerization inhibition assays. Other modifications are detrimental for the potency of the studied analogues. The 2-naphthyl combretastatin 53 and the related 6-quinolyl combretastatin 106 analogues are the most potent among the derivatives of this type, whereas 92 and 95 are the most potent among the naphthalene derivatives with a heterocycle in the bridge. Previous and new results in this family of combretastatin analogues are discussed.  相似文献   

6.
A series of novel cinnamic acyl sulfonamide derivatives (9a-16e) have been designed and synthesized and their biological activities were also evaluated as potential tubulin polymerization inhibitors. Among all the compounds, 10c showed the most potent growth inhibitory activity against B16-F10 cancer cell line in vitro, with an IC(50) value of 0.8μg/mL. Docking simulation was performed to insert compound 10c into the crystal structure of tubulin at colchicine binding site to determine the probable binding model. Based on the preliminary results, compound 10c with potent inhibitory activity in tumor growth may be a potential anticancer agent.  相似文献   

7.
6-Methoxy-3-(3',4',5'-trimethoxybenzoyl)-1H-indole (BPR0L075) (1) is a potent inhibitor of tubulin polymerization which exhibits both in vitro and in vivo activities against a broad spectrum of solid tumors. This compound was designed as a heterocyclic analogue of combretastatin A4 (CA-4), a natural stilbene derivative that disrupts the tumor vasculature and causes tumor regression. In the present work, we describe the design and synthesis of several new disubstituted analogues of 1, along with their biological evaluation as potential antivascular agents. Compound 13, bearing a hydroxyl group at the 7-position of the indole nucleus that mimics the hydroxyl group at the 3-position of the B-ring of CA-4, was identified as a potent inhibitor of tubulin polymerization and also as a cytotoxic agent against B16 melanoma cells at sub-micromolar concentration. In addition, compound 13 displayed marked morphological activity (rounding up) at nanomolar concentrations on endothelial cells (EA.hy 926 cells), which is indicative of potential antivascular activity. Interestingly, the corresponding 7-O-mesylate derivative 28 (an intermediate in the synthesis of 13), was also found active in cellular assays, although it was moderately active in the tubulin polymerization inhibition test. Finally, in order to better understand the SAR of disubstituted analogues of 1, two other position isomers (10 and 14), were synthesized and evaluated for their biological activities. It was noted that the 7-hydroxysubstituted analogue 13 was more potent than the 5-hydroxysubstituted analogue 10. In conclusion, this work has allowed the identification of biologically potent CA-4 analogues (13 and 28) and also contributes to a better understanding of the SAR of 1.  相似文献   

8.
Two colchicine analogs with modifications only in the C ring are better inhibitors than colchicine of cell growth and tubulin polymerization. Radiolabeled thiocolchicine (with a thiomethyl instead of a methoxy group at position C-10) and N-acetylcolchinol O-methyl ether (NCME) (with a methoxy-substituted benzenoid instead of the methoxy-substituted tropone C ring) were prepared for comparison with colchicine. Scatchard analysis indicated a single binding site with KD values of 1.0-2.3 microM. Thiocolchicine was bound 2-4 times as rapidly as colchicine, but the activation energies of the reactions were nearly identical (18 kcal/mol for colchicine, 20 kcal/mol for thiocolchicine). NCME bound to tubulin in a biphasic reaction. The faster phase was 60 times as fast as colchicine binding at 37 degrees C, and a substantial reaction occurred at 0 degrees C. The rate of the faster phase of NCME binding changed relatively little as a function of temperature, so the activation energy was only 7.0 kcal/mol. Dissociation reactions were also evaluated, and at 37 degrees C the half-lives of the tubulin-drug complexes were 11 min for NCME, 24 h for thiocolchicine, and 27 h for colchicine. Relative dissociation rates as a function of temperature varied little among the drug complexes. Activation energies for the dissociation reactions were 30 kcal/mol for thiocolchicine, 27 kcal/mol for NCME, and 24 kcal/mol for colchicine. Comparison of the activation energies of association and dissociation yielded free energies for the binding reactions of -20 kcal/mol for NCME, -10 kcal/mol for thiocolchicine, and -6 kcal/mol for colchicine. The greater effectiveness of NCME and thiocolchicine as compared with colchicine in biological assays probably derives from their more rapid binding to tubulin and the lower free energies of their binding reactions.  相似文献   

9.
Synthesis and evaluation of new combretastatin analogues with varied modifications on the bridge and the aromatic rings, have shown that the 2-naphthyl moiety is a good surrogate for the 3-hydroxy-4-methoxyphenyl (B-ring) of combretastatin A-4. Other bicyclic systems, such as 6(7)-quinolyl and 5-indolyl, can replace the B-ring, but they produce less potent analogues in the cytotoxicity and tubulin polymerization inhibition assays. Other modifications are detrimentral for the potency of the studied analogues. The 2-naphthyl combretastatin 53 and the related 6-quinolyl combretastatin 106 analogues are the most potent among the derivatives of this type, whereas 92 and 95 are the most potent among the naphthalene derivatives with a heterocycle in the bridge. Previous and new results in this family of combretastatin analogues are discussed.  相似文献   

10.
The antimitotic depsipeptide dolastatin 15 was radiolabeled with tritium in its amino-terminal dolavaline residue. Dolastatin 15, although potently cytotoxic, is a relatively weak inhibitor of tubulin assembly and does not inhibit the binding of any other ligand to tubulin. The only methodology found to demonstrate an interaction between the depsipeptide and tubulin was Hummel-Dreyer equilibrium chromatography on Sephadex G-50 superfine. The average apparent Kd value obtained in these studies was about 30 microM, with no difference observed when column size or tubulin concentration was varied. This relatively high dissociation constant is consistent with the apparent weak interaction of dolastatin 15 with tubulin demonstrated indirectly in the assembly assay. We attempted to gain insight into the binding site for dolastatin 15 on tubulin by studying inhibitory effects of other drugs when the gel filtration column was equilibrated with both [3H]dolastatin 15 and a second, nonradiolabeled drug. No inhibition was detected with either the colchicine site agent combretastatin A-4 or with an analog of the antimitotic marine peptide diazonamide A (both the analog and diazonamide A are potent inhibitors of tubulin assembly). Weak inhibition was observed with cemadotin, a structural analog of dolastatin 15, and with the depsipeptide cryptophycin 1. Moderate inhibition occurred with vinblastine and vincristine, and strong inhibition with maytansine, halichondrin B, and the peptides dolastatin 10 and phomopsin A. These observations suggest that the binding site(s) for peptide and depsipeptide antimitotic drugs may consist of a series of overlapping domains rather than a well-defined locus on the surface of beta-tubulin.  相似文献   

11.
Structure-activity relationship studies have established that the A and C rings of colchicine comprise the minimum structural feature necessary for high affinity drug-tubulin binding. Thus, colchicine acts as a bifunctional ligand by making two points of attachment to the protein. Furthermore, analogues belonging to the iso series of colchicine are virtually inactive in binding to tubulin and inhibiting microtubule assembly. In the present study, we found that the substitution of a hydrophobic dansyl group on the B-ring side chain (C7 position) of isocolchicine reverses the structural alterations at the C ring and the newly synthesized -NH-dansyl isocolchicine restores the lost biological activity of the compound. It inhibits microtubule assembly efficiently with an IC(50) value of 10 microM and competes with [(3)H]colchicine for binding to tubulin. Moreover, although -NH-dansyl colchicine binding to tubulin involves two steps, the -NH-dansyl isocolchicine-tubulin interaction has been found to occur via a one-step process. Also, the affinity constant of the -NH-dansyl isocolchicine-tubulin interaction is roughly only 3 times lower than that of the -NH-dansyl colchicine-tubulin interaction. These results suggest that the enhanced microtubule inhibitory ability of -NH-dansyl isocolchicine is therefore related to the affinity of the drug-tubulin interaction and not to any conformational changes upon binding tubulin. We also observed that the competition of -NH-dansyl isocolchicine with [(3)H]colchicine for binding to tubulin was dependent on the tubulin concentration. In conclusion, this paper for the first time indicates that a biologically active bifuntional colchicine analogue can be designed where the drug binds tubulin through its A and B rings, while the C ring remains inactive.  相似文献   

12.
Novel 9-functional heterocyclic coupled 7-deoxy-9-dihydropaclitaxel analogues 17 and 22-24 synthesized from a natural taxoid 5-cinnamoyltriacetyltaxicin-I (3) and their biological evaluation in tubulin assembly activity and cytotoxicity in vitro against several human tumor cell lines are first presented. The biologically tested results show that 17, 22 and 23 are inactive in tubulin assembly assay and have no more remarkable cytotoxicities against human tumor cell lines SK-OV3, WIDR and MCF-7, though 22 and 23 exhibit more potent cytotoxicity against human liver cancer and human esophagus cancer cell lines (BEL-7402 and ECa-109) than paclitaxel.  相似文献   

13.
A number of aprotic solvents which had previously been found to induce mitotic aneuploidy in yeast were tested for their effects on re-assembly of twice recycled tubulin from pig brain. Some of the solvents which were strong aneuploidy-inducing mutagens in yeast slowed down tubulin assembly in vitro at concentrations lower than those required for aneuploidy induction. Ethyl acetate, methyl acetate, diethyl ketone and acetonitrile fell into this category. Other strong aneuploidy-inducing agents like acetone and 2-methoxyethyl acetate accelerated tubulin assembly. Non-genetically active methyl isopropyl ketone and isopropyl acetate both accelerated assembly, whereas methyl n-propyl ketone and n-propyl acetate were weak inducers of aneuploidy and slowed down the rate and extent of assembly. Those chemicals which slowed down the assembly rate also reduced the extent of assembly. Most chemicals which accelerated assembly also led to an increased extent of assembly, with the exception of isopropyl acetate. At the higher concentrations, however, a maximum assembly rate was reached which was followed by a slow decline. Although a perfect correlation between effects on the induction of chromosomal malsegregation and the interference with tubulin assembly in vitro was not seen, the experiments with tubulin were carried out using this class of chemicals because some of them strongly induced mitotic aneuploidy under conditions which suggested tubulin to be the prime target. The lack of a perfect coincidence might be due to species differences between the porcine brain and the yeast spindle tubulin, or the test for aneuploidy induction may have been negative because the concentrations required for an effect on yeast tubulin may be greater than the general lethal toxicity limit. Bearing this reservation in mind, the results suggest that the yeast aneuploidy test has a considerable predictive value for mammalian mutagenicity.  相似文献   

14.
Colchicine-tubulin dimer comPlex, a Potent inhibitor of normal microtubule assembly undergoes extensive self-assembly in the Presence of 1 X 10-4 M zinc sulPhate. Polymers assembled from colchicine-tubulin dimer comPlexes are sensitive to cold. Although colchicine can be accomodated within the Polymeric structure, the drug cannot bind to tubulin subunits in the intact Polymers. This is evidenced by the fact that (a) the colchicine binding activity of tubulin is lost when allowed to Polymerize with zinc sulPhate, (b) the loss in colchicine binding could be Prevented by Preincubation of tubulin with 1 X 10-3 M CaCl2 or 1 X 10-5 M vinblastine sulPhate and finally (c) no loss in colchicine binding activity is found when tubulin is kePt at a concentration far below the critical concentration for Polymerization. Unlike colchicine, its B-ring analogues desacetamido colchicine (devoid of the B-ring subtituent) and 2-methoxy-5-(2′, 3′, 4′-trimethoxyPhenyl) troPone (devoid of the B-ring) can bind to tubulin subunits in the intact Polymers. Thus we conclude that the colchicine binding domain on the tubulin molecule is mostly (if not comPletely) exPosed in the Zn(II) -induced Polymers and the B-ring substituent Plays a major role in determining the binding ability of a colchicine analogue to tubulin in the intact Zn(II) -induced sheets.  相似文献   

15.
A series of 1,2,3-triazole linked aminocombretastatin conjugates were synthesized and evaluated for cytotoxicity, inhibition of tubulin polymerization and apoptosis inducing ability. Most of the conjugates exhibited significant anticancer activity against some representative human cancer cell lines and two of the conjugates 6d and 7c displayed potent cytotoxicity with IC50 values of 53 nM and 44 nM against A549 human lung cancer respectively, and were comparable to combretastatin A-4 (CA-4). SAR studies revealed that 1-benzyl substituted triazole moiety with an amide linkage at 3-position of B-ring of the combretastatin subunit are more active compared to 2-position. G2/M cell cycle arrest was induced by these conjugates 6d and 7c and the tubulin polymerization assay (IC50 of 1.16 μM and 0.95 μM for 6d and 7c, respectively) as well as immunofluorescence analysis showed that these conjugates effectively inhibit microtubule assembly at both molecular and cellular levels in A549 cells. Colchicine competitive binding assay suggested that these conjugates bind at the colchicine binding site of tubulin as also observed from the docking studies. Further, mitochondrial membrane potential, ROS generation, caspase-3 activation assay, Hoechst staining and DNA fragmentation analysis revealed that these conjugates induce cell death by apoptosis.  相似文献   

16.
E A Pyles  R P Rava  S B Hastie 《Biochemistry》1992,31(7):2034-2039
Near-ultraviolet absorption and circular dichroic spectra of several B-ring derivatives of colchicine have been obtained in a variety of solvents. The spectra of the molecules in solvent were analyzed and compared with spectra of the molecules bound to tubulin. Absorption spectra of deacetamidocolchicine, deacetylcolchicine, demecolcine, and N-methyldemecolcine [B-ring substituents = H, NH2, NHCH3, and N(CH3)2, respectively] were analyzed by multiple differentiation of the spectrum. It was found that an amine substituent at the C-7 position on the B-ring of the colchicinoid affected the higher energy transition of the near-ultraviolet spectra of the colchicinoid in the absence of tubulin in a manner consistent with a hyperconjugative alteration of this transition. The fourth derivatives of the absorption spectra of all four molecules bound to tubulin were similar to each other and to colchicine. As was true in the case of colchicine, the negative near-ultraviolet circular dichroic band of the aminoclochicinoids was relatively unaffected by solvent, but the molar ellipticity of the band was greatly reduced with tubulin binding. It is concluded that the binding site environments of the B-ring analogues of colchicine, as probed by absorption and circular dichroic spectroscopy, are equivalent.  相似文献   

17.
In this study, we synthesized a series of hydroxychalcones and examined their tyrosinase inhibitory activity. The results showed that 2',4',6'-trihydroxychalcone (1), 2,2',3,4',6'-pentahydroxychalcone (4), 2',3,4,4',5,6'-hexahydroxychalcone (5), 2',4',6'-trihydroxy- 3,4-dimethoxychalcone (9) and 2,2',4,4',6'-pentahydroxychalcone (15) exhibited high inhibitory effects on tyrosinase with respect to l-tyrosine as a substrate. By the structure-activity relationship study, it was suggested that the 2',4',6'-trihydroxyl substructure in the chalcone skeleton were efficacious for the inhibition of tyrosinase activity. And also, the catechol structure on B-ring of chalcones was not advantageous for the inhibitory potency. Furthermore, 15 (IC(50)=1microM) was found to show the highest activity out of a set of 15 hydroxychalcones, even better than both 2,2',4,4'-tetrahydroxychalcone (13, IC(50)=5microM) and kojic acid (16, IC(50)=12microM), which were known as potent tyrosinase inhibitors. Kinetic study revealed that 15 acts as a competitive inhibitor of tyrosinase with K(i) value of 3.1microM.  相似文献   

18.
A series of chalcone-amidobenzothiazole conjugates (9a-k and 10a,b) have been synthesized and evaluated for their anticancer activity. All these compounds exhibited potent activity and the IC(50) of two potential compounds (9a and 9f) against different cancer cell lines are in the range of 0.85-3.3 μM. Flow cytometric analysis revealed that these compounds induced cell cycle arrest at G2/M phase in A549 cell line leading to caspase-3 dependent apoptotic cell death. The tubulin polymerization assay (IC(50) of 9a is 3.5 μM and 9f is 5.2 μM) and immuofluorescence analysis showed that these compounds effectively inhibit microtubule assembly at both molecular and cellular levels in A549 cells. Further, Annexin staining also suggested that these compounds induced cell death by apoptosis. Moreover, docking experiments have shown that they interact and bind efficiently with tubulin protein. Overall, the current study demonstrates that the synthesis of chalcone-amidobenzothiazole conjugates as promising anticancer agents with potent G2/M arrest and apoptotic-inducing activities via targeting tubulin.  相似文献   

19.
Rhizoxin binding to tubulin at the maytansine-binding site   总被引:1,自引:0,他引:1  
The binding of rhizoxin, a potent inhibitor of mitosis and in vitro microtubule assembly, to porcine brain tubulin was studied. Tubulin possesses one binding site for rhizoxin per molecule with a dissociation constant (Kd) of 1.7.10(-7) M. Ansamitocin P-3, a homologue of maytansine, was a competitive inhibitor of rhizoxin binding, with an inhibition constant of 1.3.10(-7) M. Vinblastine also inhibited rhizoxin binding, but was not fully competitive, and the inhibition constant was 2.9.10(-6) M. In contrast, both rhizoxin and ansamitocin P-3 were potent inhibitors of vinblastine binding. Rhizoxin inhibited tau-promoted tubulin assembly, but it, differing from vinblastine, did not induce tubulin aggregation into spirals, even at a concentration as high as 2.10(-5) M. In addition, rhizoxin strongly inhibited vinblastine-induced tau-dependent tubulin aggregation. Rhizoxin binding to tubulin was completely independent from colchicine binding. These effects resemble those of maytansine. The results suggested that rhizoxin binds to the maytansine-binding site and that the binding sites of rhizoxin and vinblastine are not the same.  相似文献   

20.
A series of novel chalcone derivatives have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of tubulin. These compounds were assayed for growth-inhibitory activity against MCF-7 and A549 cell lines in vitro. Compound 3d showed the most potent antiproliferative activity against MCF-7 and A549 cell lines with IC(50) values of 0.03 and 0.95 μg/mL and exhibited the most potent tubulin inhibitory activity with IC(50) of 1.42 μg/mL. Docking simulation was performed to insert compound 3d into the crystal structure of tubulin at colchicines binding site to determine the probable binding model. Based on the preliminary results, compound 3d with potent inhibitory activity in tumor growth may be a potential anticancer agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号