首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Not all buds developed equally when 7-node rhizome fragmentsof Agropyron repens (L.) Beauv. were incubated in the dark at23 °C. Instead, after an initial flush of several shoots,buds were inhibited in a highly ordered sequence to leave onlyone dominant shoot growing. Applying an exogenous supply ofnitrogen KNO3) early during this sequence increased the meanshoot lengths and delayed the onset of dominance. Additionally,the application of nitrogen after eight days incubation alteredthe sequence of shoot growth such that, in some instances, smallrapidly-growing basal shoots ‘dominated’ largerand more slowly-growing apical ones. Dominance (correlativeinhibition) was maintained in untreated fragments for up to383 days Numbers of active budsand shoot extensionrate weremaximal intherange 13°to 23 °C where dominance was establishedwithin 30 days. Incontrast only 6 per cent of rhizome fragmentskept at 33 °C had dominant shoots after 65 days. At 3 °Cshoot growth was so slow that dominance was not permanentlyestablished within 150 days. Numbers ofactive budsand shoot extensionrate weremaximal intherange 13° to 23°C where dominance was establishedwithin 30 days. Incontrast only 6 per cent of rhizome fragmentskept at 33 °C had dominant shoots after 65 days. At 3 °Cshoot growth was so slow that dominance was not permanentlyestablished within 150 days It is suggested that the effects of nitrogenand temperatureon dominance in multi-noderhizome fragments can be interpretedin terms of competition for nutrients between shoots, and theantagonistic effects of nitrogen on an auxin-mediated inhibitionby the dominant shoot.  相似文献   

2.
Correlative Inhibition in the Shoot of Agropyron repens ( L.) Beauv   总被引:1,自引:0,他引:1  
Correlative inhibition was investigated in plants of Agropyronrepens at two temperatures. Reciprocal inhibition ocrurred betweenthe main shoot apex and the outgrowing axillary shoots, withthe balance of inhibition varying with temperature. Apical dominancewas stronger at 10 °C than at 20 °C , but even at 10°C release of apical dominance by decapitation had onlyminor effects on the timing of outgrowth, growth pattern andrate of dry weight aocumulation of the axillary shoots. Dominanceof the main shoot apex by the axillary shoots was stronger at20 °C than at 10 °C. Removal of axillary buds preventeddecline in size and activity of the main shoot apex ard resultedin increased rates of primordium initiation, leaf emergenceand dry weight accumulation in the main shoot. It is suggestedthat a system of reciprocal dominance provides a mechanism formaintaining the characteristic habit of the grass plant andlimits growth in height of vegetative shoots. Agropyron repens (L.) Beauv, couch grass, correlative inhibition, apical dominance, shoot, apex  相似文献   

3.
Regulation of Branching in Decussate Species with Unequal Lateral Buds   总被引:1,自引:0,他引:1  
In the decussate plants Alternanthera philoxeroides and Hygrophilasp. the opposite axillary bud primordia are of unequal sizefrom the time of their inception; the larger or + buds lie alongone helix and the smaller or – buds along another (helicoidalsystem). In decapitated plants of Alternanthera both buds grewout, but unequally; if the node was vertically split growthof the two shoots was more equal, and if the + buds were excisedgrowth of the – shoots approximately equalled that ofcontrol + shoots. In decapitated shoots of Hygrophila grownin sterile culture only one bud, the + or larger one, grew outat each of the upper nodes. In excised cultured nodes, also,only the + bud grew out; but if the nodes were split longitudinallyboth buds grew out, initially rather unequally. These experimentssupport the view that the regulation of branching in these specieshas two components, apical dominance and the dominance of thelarger (+) bud over the smaller (–) bud at the same node.The restriction of growth potentiality imposed on the –bud is not permanent but can be modified. Further correlativeeffects on bud outgrowth include those of the subtending leavesand of buds at other nodes.  相似文献   

4.
Cucumber explants including at least part of the cotyledon,a short section of hypocotyl, and the apical bud, are capableof producing multiple axillary buds from the seedling apex andadventitious shoots from the hypocotyl base in a medium whichcontains 2·0 mg dm–3 of kinetin. Removal of theapical bud triples the number of shoots produced from the apexof explants with two intact cotyledons but does not affect shootproduction from explants with some or all of their cotyledonsremoved. The area of intact cotyledon also influences morphogenesis,as explants with both cotyledons removed, failed to produceadventitious shoots from the hypocotyl base. Culture in continuousdarkness entirely prevents shoot development from the explantbase, but has little influence on shoot production from theapex. The influence of endogenous growth regulators and apicaldominance on the morphogenesis of shoots in cucumber seedlingsare discussed. Key words: Cucumber, cotyledons, apical dominance, morphogenesis, adventitious shoots, Cucumis sativus  相似文献   

5.
Experiments with five caespitose grass species from temperateand tropical environments showed that the number of lateralshoots (tillers) which emerged following defoliation was notincreased by leaving a greater residual leaf area. Increasedavailability of photosynthate (and perhaps other resources)was effective, however, in increasing the rate of growth anddegree of flowering of new lateral shoots in one tropical species,Panicum maximum. In two temperate Agropyron tussock grasses, decapitation (apicalbud removal) did not stimulate lateral shoot growth. This indicatedthat apical dominance was not a factor preventing growth oflateral buds just prior to inflorescence emergence on the parenttillers. However, defoliation, where both terminal buds andfoliage were removed from the parent tillers stimulated lateralbud growth. Hormones other than those produced by the apicalbud or light quality or intensity may control lateral bud growthin these species. In contrast to the temperate species, lateralbud growth was stimulated by both decapitation and defoliationin the three tropical species. This response is consistent withthe model of correlative inhibition by apical dominance. Agropyron desertorum, Agropyron spicatum, Heteropogon contortus, Panicum maximum, Themeda triandra, crested wheatgrass, bluebunch wheatgrass, black speargrass, green panic grass kangaroo grass, apical dominance, tillering, regrowth, grazing, tussock grasses  相似文献   

6.
The morphology of axillary shoots of pea plants (Pisum sativumL. cv. Alaska) was analysed as a function of the position ofthe bud on the plant axis and the stage of plant developmentwhen the buds began to grow. Buds from the three most basalnodes were stimulated to develop by decapitating the main shootwhen buds were still growing (4 d plants), shortly after budsbecame dormant (7 d plants) or after the initiation of floweringon the main shoot (post-flowering plants, about 21 d after sowing).Branch shoots were scored for node of floral initiation (NFI),shoot length, and node of multiple leaflets (NML), a measureof leaf complexity. Shoots that developed spontaneously fromupper nodes (nodes 5-9) on intact post-flowering plants werescored for NFI. NFI for basal buds on 4 and 7 d plants variedas a function of nodal position and ranged from 5 to 6·7nodes. NFI on these plants was not influenced by bud size orwhether a bud was growing or dormant when the plant was decapitated.NFI for shoots derived from basal buds on decapitated post-floweringplants and upper nodes on intact post-flowering plants was about4. Reduced NFI on post-flowering plants may be due to depletionof a cotyledon-derived floral inhibitor. Basal axillary shootson 4 d plants were about 20% longer than those on 7 d plantsand about five times longer than those on post-flowering plants.These differences may be due to depletion of gibberellic acidsfrom the cotyledons. NFI and NML for the main shoot and forbasal axillary shoots were similar under some experimental conditionsbut different under other conditions, so it is likely that eachdevelopmental transition is regulated independently.Copyright1995, 1999 Academic Press Apical dominance, bud development, garden pea, initiation of flowering, Pisum sativum L., shoot morphology  相似文献   

7.
Freezing avoidance mechanism of primordial shoots of conifer buds   总被引:2,自引:0,他引:2  
Sakai  Akira 《Plant & cell physiology》1979,20(7):1381-1390
Excised winter buds of very hardy fir supercooled to —30or — 35?C, though primordial shoots excised from thesewinter buds (freezing point: about —5.5?C) supercooledonly to —12 to — 14?C. Also, excised primordialshoots did not tolerate freezing, but were rather resistantto desiccation. Differential thermal analysis (DTA) of primordialshoots revealed that the capability of supercooling increasedwith decreasing water content and that no exotherm could bedetected in the primordial shoots with a water content belowabout 20%. When excised whole buds were cooled very slowly,the exotherm temperature shifted markedly to a lower value andthe exotherm became much smaller. Also, masses of needle icewere observed, mainly beneath the crown of the primordial shoot.From these results, it may be concluded that most of the waterin primordial shoots gradually migrates out through the crownand freezes as the temperature decreases (extraorgan freezing),which enables primordial shoots to survive at very low temperatures.Winter buds of Abies balsamea held at — 20?C for 30 daysand then slowly cooled down to —50 or —60?C remainedalive. Thus, there seems to be no low temperature limit to thisfrost avoidance mechanism, if the primordial shoots can resistintensive freeze-dehydration. Low temperature exotherms wereobserved in all genera which belong to Abietoideae and Laricoideaeof Pinaceae, all of which have a crown in the primordial shoots,but not in other conifers. 1 Contribution No. 2037 from the Institute of Low TemperatureScience. (Received June 25, 1979; )  相似文献   

8.
The relationship between a photochemically active chromoprotein(ACP) (cf. ref. 1) and photosystem II was investigated withmembrane fragments of Anabaena cylindrica, A. variabilis andP. boryaman. ACP was solubilized from membrane fragments of A. cylindricabut not from those of A. variabilis or P. boryanum, when themembrane fragments had been incubated in a dilute buffer andhad lost their Hill or photosystem II activity. In A. cylindrica,ACP-solubilization always occurred, independent of photosystemII inactivation, on incubation of the membrane fragments inmedia without PEG. However, the amount of ACP solubilizationaccompanying photosystem II inactivation was twice that withoutphotosystem II inactivation. The increase in ACP solubilizationaccompanying photosystem II inactivation. The kinetics resembledthose for the decrease in 695 nm fluorescence emitted by membranefragments at — 196?C (cf. 2). The ACP solubilized independent of photosystem II inactivationwas assumed to have been released during disruption of intactcells in the preparation of membrane fragments. The slow ACPsolubilization upon the inactivation of photosystem II was attributedto the pigment being bound to membranes. We assume that thephoto-reactive component of ACP, P690 (cf. 3, 4), is releasedfrom the membranes during photosystem II inactivation, and thatP690 is a component of photosystem II which emits the 695 nmfluorescence at — 196?C. (Received March 22, 1974; )  相似文献   

9.
We study apical dominance in Alstroemeria, a plant with an architecture very different from the model species used in research on apical dominance. The standard explant was a rhizome with a tip and two vertically growing shoots from which the larger part had been excised leaving ca. 1 cm stem. The axillary buds that resumed growth were located at this 1-cm stem just above the rhizome. They were released by removal of the rhizome tip and the shoot tips. Replacement of excised tips by lanolin with indole-3-butyric acid (IBA) restored apical dominance. The auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and N-1-napthylphthalamic acid (NPA) reduced apical dominance. 6-Benzylaminopurine (BAP) enhanced axillary bud outgrowth but the highest concentrations (> 9 μM) caused fasciation. Thidiazuron (TDZ) did not show improvement relative to BAP. Even though the architecture of Alstroemeria and the model species are very different, their hormonal mechanisms in apical dominance are for the greater part very similar.  相似文献   

10.
Bud differentiation by direct organogenesis at the apical endof Troyer citrange (Citrus sinensis[L]. OsbeckxPoncirus trifoliata[L].Raf.) epicotyl cuttings inserted vertically in a semi-solidculture medium did not require hormone additions. The numberof buds regenerated was slightly, but significantly, increasedwhen the incubation was performed in the light as compared tothe dark, and by the addition of benzyladenine (BA; 2.2 to 22µM) to the medium. Bud sprouting and subsequent shootformation required the addition of BA and was increased by lightto a higher extent than bud formation. The best response wasobtained with the highest BA concentration tested (22 µM).Regeneration through the indirect organogenic pathway at thetwo edges of the epicotyl cuttings when in contact with theculture medium did not occur in the absence of benzyladenine,which was an absolute requirement for callus development. Thebest regeneration response was obtained when the explants wereincubated in the light in the presence of 4.4 µM BA andan auxin. Indole-3-acetic acid (IAA; 5.8 µM) was moreeffective in increasing shoot formation than naphthaleneaceticacid (NAA; 0.54 µM). Higher NAA concentrations inhibitedshoot formation. Incubation in the dark or increasing the BAconcentration (22 µM) increased markedly callus growth,but inhibited both bud differentiation and sprouting, almostcompletely suppressing shoot formation. The conditions duringregeneration affected the rooting of the regenerated shoots.Rooting of 86% of the shoots was achieved in a medium with 2.7µM NAA and 2.6 µM indole-3-butyric acid. All therooted explants acclimated and survived transplanting. Underthe optimal conditions tested, the proliferation rate obtainedthrough the indirect regeneration pathway ranged from 60 to86 plants per seedling. Copyright 2000 Annals of Botany Company Troyer citrange, Citrus sinensisxPoncirus trifoliata, auxins, benzyladenine, direct organogenesis, hormone requirement, indirect organogenesis, light, morphogenesis, rooting.  相似文献   

11.
JONES  M. B. 《Annals of botany》1973,37(5):1027-1034
Detached shoots of Bryophyllum fedtschenkoi maintained in continuouslight and at a constant temperature exhibit a circadian rhythmin CO2 compensation. The rhythm has a period of 21.6±0.1h at 23 °C and its phase can be set and shifted by suitabletreatments. These observations suggest that the ryhthm is trulyendogenous in nature. The phase is set by a light-on stimulus, or a drop in lightintensity. Phase shift can be induced by short periods (3 h)of reduced light intensity as well as similar periods of darknessgiven during the day phase of the rhythm. A change from whitelight to the same number of incident quanta of monochromaticlight of 450 nm (blue), 550 nm (green), or 652 nm (red) alwaysshifted the phase, but the degree of shift was less in red lightthan in blue or green. The plant reacted to achange to blueor green light as though it had been placed in the dark. Althbughred light was apparently ‘recognized’, the changefrom white to red was still sufficient to alter the phase ofthe rhythm. The possible role of phosphoenolpyruvate carboxylase activityin controlling the rhythm is discussed.  相似文献   

12.
Intact and decapitated 6-node shoots of Hygrophila sp. weregrown aseptically immersed in liquid half-strength Knop's solutionwith microelements and 2% (w/v) sucrose (control medium), andin medium with 0.1 mg l–1 benzyladenine (BA). In intactshoots grown in control medium apical dominance suppressed outgrowthof the lateral buds; in decapitated shoots buds grew out atseveral of the most apical nodes, increasing in size acropetally.There was a lag in outgrowth of the bud at the most apical node,attributable to its initially smaller size. Lateral shoots grewout first at basal nodes of intact shoots in BA medium, decreasingin size acropetally; in decapitated shoots in BA medium lateralshoots of approximately equal size grew out at all nodes. Differentialeffects of decapitation and cytokinin treatment on lateral shootoutgrowth along the shoot could be interpreted by postulatinga basipetally decreasing gradient of endogenous auxin concentrationin the intact shoot. Application of 20 mg l–1 indoleaceticacid (IAA) in agar to decapitated shoots completely preventedbud outgrowth for at least 7 d in control medium, inhibitingit thereafter, and inhibited bud outgrowth in BA medium, thussupporting the hypothesis. Comparison of lateral shoot outgrowthin whole decapitated shoots and severed decapitated shoots (isolatednodes) lent no support to the alternative hypothesis that theremight be an acropetally decreasing concentration gradient ofa bud-promoting substance in the intact shoot, and demonstratedmuch greater lateral shoot growth in isolated nodes. The resultsemphasize important correlative relationships between the partsof a shoot with several nodes.  相似文献   

13.
Floral buds of the ‘False Horn’ plantain clonesMusa (AAB) ‘Harton Verde’, ‘Harton Negra’,and ‘Currare’ terminate in a large single floralstructure. The apices of these floral buds are here designatedas determinate since they have lost the ability to produce additionalfloral initials or buds. Terminal peduncle segments can be culturedin a modified Murashige and Skoog (1962) medium supplementedwith N6-benzyl-aminopurine (5 mg I–1). Under these conditions,this apparent inability to yield buds can be overcome as vegetativeshoot clusters form in the axils of the bracts. Rooted plantletsare obtainable by treating shoots with naphthaleneacetic acid(1 mg I–1) and activated charcoal (0.025%). The adventitiousorigin of the shoots has been established. Musa cultivars, plantains, floral bud, adventitious buds, tissue culture  相似文献   

14.
Fluorescence spectra of the pigment system at –196°Cin membrane fragments of Anabaena variabilis and A. cylindricawere investigated. The fluorescence spectra of membrane fragments having four emissionbands at 645–655, 685, 695 and 725 nm were basically similarto those reported for intact cells of blue-green algae, thoughthe emission from phycocyanin (645–655 nm) was far strongerwith membrane fragments than with intact algal cells. Incubation of membrane fragments of A. variabilis in a dilutebuffer (10–2M, pH 7.5) caused an increase in the 645 nmfluorescence and slight decreases in the 685 and 695 nm fluorescences,but had no influence on the 725 nm fluorescence. The decreasein the 685 and 695 nm fluorescences of A. cylindrica was moremarked and had the same kinetics as the inactivation of photosystemII reaction measured by DPIP-photoreduction. When membrane fragments of A. cylindrica were incubated in thebuffer solution at room temperature or in the presence of MgCl2(10–3M) at 0°C; phycobilin aggregates, which emittedthe 655 and 685 nm fluorescence, were solubilized. This solubilizationwas not observed with membrane fragments of A. variabilis. (Received August 31, 1972; )  相似文献   

15.
Shoots of Hygrophila sp., which are decussate and have budsof unequal size at a node, were grown in liquid culture. Inexcised nodes it is known that the larger (+) bud inhibits thesmaller (–) bud in the axil of the opposite leaf, andonly one shoot grows out; in nodes split longitudinally bothbuds grow out. When nodes were split and grafted together again(+/– grafts), in general only one bud grew out; if aluminiumfoil was introduced at the nodal region both buds grew out.Thus the inhibitory effect of a + on a – bud is laterallytransmissible across a graft union. In +/– grafts of half-nodesdiffering in age by two plastochrones, a higher proportion yieldedtwo shoots, suggesting that the age differential had some importance.This view is supported by observations on sectioned material.Grafts having two + or two – buds (+/+ grafts) were madebetween half-nodes differing in age by two plastochrones; inthe majority both buds grew out. Thus a + bud inhibits a –bud but usually not another + bud; in either case a considerabledifference in stage of development of the half-nodes may affectthe results. It is concluded that bud dominance resembles apicaldominance, and is probably mediated by hormonal means.  相似文献   

16.
Restriction of apical growth in Phaseolus by enclosing the upperpart of the shoot in sealed or ventilated tubes induced developmentof axillary buds beneath the enclosure. Enclosed parts of shootsshowed a reduction of leaf growth and, in experiments wherethe tubes were sealed, of internode extension. Enclosure ofthe shoots in large vessels that did not restrict leaf expansion,but which contained 0?5 vols 10–6 ethylene, similarlyinduced axillary bud growth. Analysis of the gaseous extractof physically restricted shoots showed a 2?5-fold increase inethylene concentration. The results suggest involvement of ethylenein the release of correlative inhibition brought about by physicalrestriction of apical growth.  相似文献   

17.
Scanning electron microscopy (SEM) was used to provide directevidence that shoots produced in vitro from fragmented shootapices of grapevine were adventitious in origin. The effectof temperature on the formation of the adventitious buds wasalso examined using SEM. At 27°C, shoot buds were initiatedby 31 d following fragmentation of the apex, while at 35°Cshoot initiation and multiplication were already well-advancedat only 18 d after the start of culture. At 38°C, apicalfragments quickly browned and died. After 25 d at 35°C,structures resembling inflorescence primordia were also visible.These did not occur in cultures at 27°C. The primordia laterdeveloped into multiple-branched tendrils, structures whichappear to be intermediate between tendrils and inflorescencesand have not been previously described.  相似文献   

18.
COCKSHULL  K. E. 《Annals of botany》1979,44(4):451-460
The short-day plant Chrysanthemum morifolium cv. Polaris initiatedflower buds in all irradiances of continuous light from 7.5to 120 W m–2. As the irradiance increased, the transitionto reproductive development began earlier and the number ofleaves initiated before the flower bud was reduced. The autumn-floweringcultivars Polaris and Bright Golden Anne, and the summer-floweringGolden Stardust were also grown in continuous light at differenttemperatures; all initiated flower buds at temperatures from10 to 28 °C but only the buds of Golden Stardust developedto anthesis and then only at 10 and 16°C. Flower initiationbegan earliest at 16–22 °C, and the number of leavesformed before the flower bud was increased at 28°C. GoldenStardust was exceptional in that the number of leaves formedwas also increased at 10 °C. Axillary meristems adjacentto the terminal meristem initiated flower buds rapidly at 10°C but not at 28 °C in all three cultivars. These resultsare discussed in relation to the autonomous induction of flowerinitiation and the effects of the natural environment on floweringof chrysanthemum. Chrysanthemum morifolium Ramat, flowering, irradiance, temperature  相似文献   

19.
Buds of shoots from the trunk, main branches, secondary branchesand short branches of 10–21 year-old Nothofagus pumiliotrees were dissected and their contents recorded. The numberof differentiated nodes in buds was compared with the numberof nodes of sibling shoots developed at equivalent positionsduring the following growing season. Axillary buds generallyhad four cataphylls, irrespective of bud position in the tree,whereas terminal buds had up to two cataphylls. There were morenodes in terminal buds, and the most distal axillary buds, oftrunk shoots than in more proximal buds of trunk shoots, andin all buds of shoots at all other positions. The highest numberof nodes in the embryonic shoot of a bud varied between 15 and20. All shoots had proximal lateral buds containing an embryonicshoot with seven nodes, four with cataphylls and three withgreen leaf primordia. The largest trunk, and main branch, shootswere made up of a preformed portion and a neoformed portion;all other shoots were entirely preformed. In N. pumilio, theacropetally-increasing size of the sibling shoots derived froma particular parent shoot resulted from differences in: (1)the number of differentiated organs in the buds; (2) the probabilityof differentiation of additional organs during sibling shootextension; (3) sibling shoot length; (4) sibling shoot diameter;and (5) the death of the apex and the most distal leaves ofeach sibling shoot. Copyright 2000 Annals of Botany Company Axis differentiation, branching, bud structure, leaf primordia, neoformation, Nothofagus pumilio, preformation, size gradient  相似文献   

20.
R.  HARMER 《Annals of botany》1991,67(4):463-468
The time at which a bud began to expand was related to its positionnot only on an individual shoot but also within the crown. Thedistribution of buds and branches on the shoot was uneven; theshoot tip, where they were densely clustered, was termed the‘whorl; and the remainder of the shoot, where they werewidely spaced, the ‘interwhorl’ stem. In spring,the terminal bud started expanding before the ‘whorl’buds which preceded the ‘interwhorl’ stem buds;completion of the flush of growth, determined by the end ofleaf expansion, occurred in the reverse order, ‘interwhorl’> ‘whorl’ > terminal. Similarly bud expansionstarted at the top of the crown and progressed downwards, andthe first shoots to complete their flush were at the bottomof the crown. Approximately 60% of the buds on each shoot beganexpanding in spring but only about half of these formed branches.Bud abscission began in May and by Sep. 45% of buds originallypresent had abscised. Most of-the buds that did not abscisewere the small buds at the base of the shoot that were not originallyassociated with a leaf. Approximately 42% of ‘whorl’buds and 28% of MnterwhorP stem buds formed branches. ‘Whorl’branches were approx. 60% longer that ‘interwhorl’stem branches; buds on the lower surface of the shoot producedlonger branches than those on the upper surface. The implicationsof the results for the development of crown form and selectionof superior oak are discussed. Quercus petraea, oak, buds, branches, crown form  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号