首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel fibrinolytic enzyme subtilisin FS33 was purified from Bacillus subtilis DC33, isolated from a traditional flavour-rich food in China. The purified subtilisin FS33 was a single chain protein with a molecular mass of 30 kDa measured by SDS-PAGE. After activated SDS-PAGE, the enzyme band exhibited strong fibrinolytic activity on the fibrin plate. Subtilisin FS33 was temperature-stable below 60°C over the pH range 5–12, with a maximum activity at pH 8.0, but the activity completely disappeared after 10 min above 65°C. The NH2-terminal amino acid sequence of the enzyme was different from that of other known fibrinolytic enzymes, such as NK, CK, SMCE, KA38, subtilisin E, subtilisin DFE and Katsuwokinase. The amidolytic activities of subtilisin FS33 were inhibited completely by phenylmethanesulfonyl fluoride (PMSF) and soybean trypsin inhibitor (SBTI). EDTA did not affect the enzyme activity, and none of the ions tested activated the activity. Therefore, the enzyme was thought to be a subtilisin-like serine protease. The enzyme degraded the Bβ-chains of fibrin(ogen) very rapidly and then degraded the Aα-chain and at least five fragments from fibrin(ogen) were obtained after hydrolysis. Subtilisin FS33 was also able to cleave blood clots in the absence of endogenous fibrinolytic factors.  相似文献   

2.
Two fibrinolytic enzymes (QK-1 and QK-2) purified from the supernatant of Bacillus subtilis QK02 culture broth had molecular masses of 42,000 Da and 28,000 Da, respectively. The first 20 amino acids of the N-terminal sequence are AQSVPYGISQ IKAPALHSQG. The deduced protein sequence and its restriction enzyme map of the enzyme QK-2 are different from those of other proteases. The enzyme QK-2 digested not only fibrin but also a subtilisin substrate, and PMSF inhibited its fibrinolytic and amidolytic activities completely; while QK-1 hydrolyzed fibrin and a plasmin substrate, and PMSF as well as aprotinin inhibited its fibrinolytic activity. These results indicated QK-1 was a plasmin-like serine protease and QK-2 a subtilisin family serine protease. Therefore, these enzymes were designated subtilisin QK. The sequence of a DNA fragment encoding subtilisin QK contained an open reading frame of 1149 base pairs encoding 106 amino acids for signal peptide and 257 amino acids for subtilisin QK, which is highly similar with that of a fibrinolytic enzyme, subtilisin NAT (identities 96.8%). Asp32, His64 and Ser221 in the amino acid sequence deduced from the QK gene are identical to the active site of nattokinase (NK) produced by B. subtilis natto.  相似文献   

3.
We have isolated a bacterium (TP-6) from the Indonesian fermented soybean, Tempeh, which produces a strong fibrinolytic protease and was identified as Bacillus subtilis. The protease (TPase) was purified to homogeneity by ammonium sulfate fractionation and octyl sepharose and SP sepharose chromatography. The N-terminal amino acid sequence of the 27.5 kDa enzyme was determined, and the encoding gene was cloned and sequenced. The result demonstrates that TPase is a serine protease of the subtilisin family consisting of 275 amino acid residues in its mature form. Its apparent K m and V max for the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-pNA were 259 μM and 145 μmol mg−1 min−1, respectively. The fibrinogen degradation pattern generated by TPase as a function of time was similar to that obtained with plasmin. In addition, N-terminal amino acid sequence analysis of the fibrinogen degradation products demonstrated that TPase cleaves Glu (or Asp) near hydrophobic acids as a P1 site in the α- and β-chains of fibrinogen to generate fragments D′, E′, and D′ similar to those generated by plasmin. On plasminogen-rich fibrin plates, TPase did not seem to activate fibrin clot lysis. Moreover, the enzyme converted the active plasminogen activator inhibitor-1 to the latent form.Seong-Bo Kim and Dong-Woo Lee contributed equally to the work.  相似文献   

4.
β-Galactosidase purified from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. rittmannii isolated from Antarctica is a member of the GH42 family. The enzyme was not effected by various concentrations of its reaction product glucose, but was greatly inhibited by the other reaction product galactose using both substrates, ONPG and lactose. Linewever-Burk plot analysis derived from both ONPG and lactose hydrolysis results showed that galactose is a mixed-type inhibitor of the purified β-galactosidase. The enzyme was slightly activated by Mg2+ (13% at 20 mM), while inhibited at higher concentrations of Ca+2 (33% at 10 mM), Zn+2 (86% at 8 mM) and Cu+2 (87% at 4 mM). The enzyme activity was not significantly altered by the metal ion chelators EDTA and 1,10-phenanthroline up to 20 mM, indicating that this enzyme is not a metalloenzyme. 2-Mercaptoethanol and DTT were found to enhance β-galactosidase activity, while p-chloromercuribenzoic acid (PCMB) completely inhibited enzymatic activity (97% at 1 mM; 99.7% at 2 mM), indicating at least one essential Cys residue modified by the reagents in the active site of β-galactosidase. Iodoacetamide and Nethylmaleimide had little effect on the β-galactosidase. Phenylmethylsulfonyl fluoride (PMSF) inhibited the enzyme strongly (19.8% at 1 mM; 71.9% at 10 mM), also showing the participation of serine for enzyme activity.  相似文献   

5.
A novel fibrinolytic enzyme (AJ) was purified from Staphylococcus sp. strain AJ screened from Korean salt-fermented Anchovy-jeot. Relative molecular weight of AJ was determined as 26 kDa by using SDS-PAGE and fibrin zymography. Based on a 2D gel, AJ was found to consist of three active isoforms (pI 5.5–6.0) with the same N-terminal amino acid sequence. AJ exhibited optimum pH and temperature at 2.5–3.0 and 85°C, respectively. AJ kept 85% of the initial activity after heating at 100°C for 20 min on the zymogram gel. The Michaelis constant (K m) and K cat values of AJ towards α-casein were 0.38 mM and 19.73 s−1, respectively. AJ cleaved the Aα-chain of fibrinogen but did not affect the Bβ- and γ-chains, indicating that it is an α-fibrinogenase. The fibrinolytic activity was inhibited by diisopropyl fluorophosphate, indicating AJ is a serine protease. Interestingly, AJ was very stable at acidic condition, SDS, and heat (100°C), whereas it was easily degraded at neutral and alkaline conditions. In particular, AJ formed an active homo-dimer in the pH range from 7.0 to 8.0. To our knowledge, a similar combination of acid and heat stability has not yet been reported for other fibrinolytic enzymes.  相似文献   

6.
Bacillus amyloliquefaciens DC-4, which produces a strongly fibrinolytic enzyme, was isolated from douchi, a traditional Chinese soybean-fermented food. A fibrinolytic enzyme (subtilisin DFE) was purified from the supernatant of B. amyloliquefaciens DC-4 culture broth and displayed thermophilic, hydrophilic and strong fibrinolytic activity. Subtilisin DFE was demonstrated to be homogeneous by SDS-PAGE and isoelectric focusing electrophoresis, and has molecular mass of 28000 Da and a pI of 8.0. The optimal reaction pH value and temperature were 9.0 and 48 degrees C, respectively. Subtilisin DFE not only hydrolyzed fibrin but also several synthetic substrates, particularly Suc-Ala-Ala-Pro-Phe-pNA, and phenylmethylsulfony fluoride can completely inhibit its fibrinolytic activity. These results indicated that subtilisin DFE is a subtilisin-family serine protease, similar to nattokinase from Bacillus natto. The first 24 amino acid residues of the N-terminal sequence of subtilisin DFE were AQSVPYGVSQIKAPALHSQGFTGS, which is identical to that of subtilisin K-54, and different from that of NK and CK. Results from subtilisin DFE gene sequence analysis showed that subtilisin DFE is a novel fibrinolytic enzyme.  相似文献   

7.
Bacillus sp. strain DJ-4, which produces extracellular proteases, was screened from Doen-Jang, a traditional Korean fermented food. A fibrinolytic enzyme (subtilisin DJ-4) was purified using commercial chromatographic techniques. The relative molecular mass of the isolated protein was 29 kDa by SDS-PAGE and fibrin zymography assay. The enzyme was characterized as a serine protease by an inhibitor assay on the fibrin zymography gel and by an amidolytic assay using a chromogenic substrate. The enzyme was inhibited by PMSF, but not by EDTA or leupeptin. The first 14 amino acids of the N-terminal sequence were identical to that of subtilisin BPN', but the activity of subtilisin DJ-4 was 2.2 and 4.3 times higher than those of subtilisin BPN' and subtilisin Carlsberg, respectively.  相似文献   

8.
W Kim  K Choi  Y Kim  H Park  J Choi  Y Lee  H Oh  I Kwon    S Lee 《Applied microbiology》1996,62(7):2482-2488
Bacillus sp. strain CK 11-4, which produces a strongly fibrinolytic enzyme, was screened from Chungkook-Jang, a traditional Korean fermented-soybean sauce. The fibrinolytic enzyme (CK) was purified from supernatant of Bacillus sp. strain CK 11-4 culture broth and showed thermophilic, hydrophilic, and strong fibrinolytic activity. The optimum temperature and pH were 70 degrees C and 10.5, respectively, and the molecular weight was 28,200 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The first 14 amino acids of the N-terminal sequence of CK are Ala-Gin-Thr-Val-Pro-Tyr-Gly-Ile-Pro-Leu-Ile-Lys-Ala-Asp. This sequence is identical to that of subtilisin Carlsberg and different from that of nattokinase, but CK showed a level of fibrinolytic activity that was about eight times higher than that of subtilisin Carlsberg. The amidolytic activity of CK increased about twofold at the initial state of the reaction when CK enzyme was added to a mixture of plasminogen and substrate (H-D-Val-Leu-Lys-pNA). A similar result was also obtained from fibrin plate analysis.  相似文献   

9.
A novel fibrinolytic enzyme, subtilisin BSF1, from a newly isolated Bacillus subtilis A26 was purified, characterized and the gene was isolated and sequenced. The subtilisin BSF1 was purified to homogeneity by five-step procedure with a 4.97-fold increase in specific activity and 6.28% recovery. The molecular weight of the purified enzyme was estimated to be 28 kDa by SDS-PAGE and gel filtration. The purified enzyme exhibited high fibrinolytic activity on fibrin agar plates.Interestingly, the enzyme was highly active over a wide range of pH from 7.0 to 12.0, with an optimum at pH 9.0. The relative activities at pH 10.0 and 11.0 were 97.8% and 85.2% of that at pH 9.0. The optimum temperature for enzyme activity was 60 °C. The activity of subtilisin BSF1 was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The N-terminal amino acid sequence of the first 11 amino acids (aa) of the purified fibrinolytic enzyme was AQSVPYGISQI.The bsf1 gene encoding the subtilisin BSF1 was isolated and its DNA sequence was determined. The bsf1 gene consisted of 1146 bp encoding a pre-pro-protein of 381 amino acids organized into a signal peptide (29 aa), a pro-peptide (77 aa) and a mature domain (275 aa). The deduced amino acids sequence of the mature enzyme (BSF1) differs from those of nattokinase from B. subtilis natto and subtilisin DFE from Bacillus amyloliquefaciens DC-4 by 5 and 39 amino acids, respectively.  相似文献   

10.
The effects of hypotensive agents (captopril, enalaprilat, and lisinopril) on the activities of components of the fibrinolytic system (FS) and the effects of antifibrinolytic agents (6-aminohexanoic acid (6-AHA) and tranexamic acid (t-AMCHA)) on the activities of angiotensin converting enzyme (ACE) were studied in vitro. Enalaprilat did not affect the FS activity. Captopril considerably inhibited the amidase activities of urokinase (u-PA), tissue plasminogen activator (t-PA), and plasmin ([I]50 (2.0?2.6) ± 0.1 mM), and the activation of Glu-plasminogen by t-PA and u-PA ([I]50 (1.50?1.80) ± 0.06 mM), which may be due to the presence of a mercapto group in the inhibitor molecule. Lisinopril did not affect the amidase activities of FS enzymes, but stimulated Glu-plasminogen activation by u-PA and inhibited activation fibrin-bound Glu-plasminogen by t-PA ([I]50 (12.0 ± 0.5) mM). Presumably, these effects can be explained by the presence in lisinopril of a Lys side residue, whose binding to lysine-binding Glu-plasminogen centers resulted, on the one hand, in the transformation from its closed conformation to a semi-open one and, on the other hand, in its desorption from fibrin. Unspecific inhibition of the activity of ACE, a key enzyme of the renin-angiotensin system, in the presence of 6-AHA and t-AMCHA ([I]50 10.0 ± 0.5 and 7.5 ± 0.4 mM, respectively) was found. A decrease in the ACE activity along with the growth of the fibrin monomer concentration was revealed. The data demonstrate that, along with endogenous mediated interaction between FS and RAS, relations based on the direct interactions of exogenous inhibitors of one system affecting the activities of components of another system can take place.  相似文献   

11.
We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis.  相似文献   

12.
A novel fibrinolytic enzyme from Fusarium sp. CPCC 480097, named Fu-P, was purified to electrophoretic homogeneity using ammonium sulfate precipitation and ion exchange and gel filtration chromatography. Fu-P, a single protein had a molecular weight of 28 kDa, which was determined by SDS-PAGE and gel filtration chromatography. The isoelectric point of Fu-P determined by isoelectric focusing electrophoresis (IEF) was 8.1, and the optimum temperature and pH value were 45°C and 8.5, respectively. Fu-P cleaved the α-chain of fibrin (ogen) with high efficiency, and the β-chain and γ-γ (γ-)-chain with lower efficiency. Fu-P activity was inhibited by EDTA and PMSF, and the enzyme exhibited a high specificity for the chymotrypsin substrate S-2586. Fu-P was therefore identified as a chymotrypsin-like serine metalloprotease. The first 15 amino acids of the N-terminal sequence of Fu-P were Q-A-S–S-G-T-P-A-T-I-R-V-L-V–V and showed no homology with that of other known fibrinolytic enzymes. This protease may have potential applications in thrombolytic therapy and in thrombosis prevention.  相似文献   

13.
经过 75% 饱和度硫酸铵沉淀、 Sephadex G 75 凝胶过滤层析、 Lys Sepharose 4 B 亲和层析和电泳制备洗脱,从华广虻( Tabanus am aenus W alker)腹部组织匀浆液中分离纯化出分子量约为 67k D 的溶纤活性蛋白 T A F P经纤维蛋白平板测定表明, T A F P 只具有纤溶酶作用,不具有激活纤溶酶原的作用;但 T A F P 能分解纤溶酶原激活剂的生色底物—— Chrom ozym U K 及 S 2288还能水解胰蛋白酶专一底物 Bz Phe Val Arg N A 及 C B Z Gly Pro Arg N A,表明 T A F P具有类胰蛋白酶活性,专一水解精氨酸形成的酰胺键(或肽键) T A F P无胰凝乳蛋白酶活性   相似文献   

14.
In this report, we demonstrate an interaction between subtilisin NAT (formerly designated BSP, or nattokinase), a profibrinolytic serine proteinase from Bacillus subtilis, and plasminogen activator inhibitor 1 (PAI-1). Subtilisin NAT was purified to homogeneity (molecular mass, 27.7 kDa) from a saline extract of B. subtilis (natto). Subtilisin NAT appeared to cleave active recombinant prokaryotic PAI-1 (rpPAI-1) into low molecular weight fragments. Matrix-assisted laser desorption/ionization in combination with time-of-flight mass spectroscopy and peptide sequence analysis revealed that rpPAI-1 was cleaved at its reactive site (P1-P1': Arg(346)-Met(347)). rpPAI-1 lost its specific activity after subtilisin NAT treatment in a dose-dependent manner (0.02-1.0 nm; half-maximal effect at approximately 0.1 nm). Subtilisin NAT dose dependently (0.06-1 nm) enhanced tissue-type plasminogen activator-induced fibrin clot lysis both in the absence of rpPAI-1 (48 +/- 1.4% at 1 nm) and especially in the presence of rpPAI-1 (78 +/- 2.0% at 1 nm). The enhancement observed in the absence of PAI-1 seems to be induced through direct fibrin dissolution by subtilisin NAT. The stronger enhancement by subtilisin NAT of rpPAI-1-enriched fibrin clot lysis seems to involve the cleavage and inactivation of active rpPAI-1. This mechanism is suggested to be important for subtilisin NAT to potentiate fibrinolysis.  相似文献   

15.
Nattokinase producing bacterium, B. subtilis YF38, was isolated from douchi, using the fibrin plate method. The gene encoding this enzyme was cloned by polymerase chain reaction (PCR). Cytoplasmic expression of this enzyme in E. coli resulted in inactive inclusion bodies. But with the help of two different signal peptides, the native signal peptide of nattokinase and the signal peptide of PelB, active nattokinase was successfully expressed in E. coli with periplasmic secretion, and the nattokinase in culture medium displayed high fibrinolytic activity. The fibrinolytic activity of the expressed enzyme in the culture was determined to reach 260 urokinase units per micro-liter when the recombinant strain was induced by 0.7 mmol l−1 isopropyl-β-D- thiogalactopyranoside (IPTG) at 20°C for 20 h, resulting 49.3 mg active enzyme per liter culture. The characteristic of this recombinant nattokinase is comparable to the native nattokinase from B. subtilis YF38. Secretory expression of nattokinase in E. coli would facilitate the development of this enzyme into a therapeutic product for the control and prevention of thrombosis diseases.  相似文献   

16.
Plant endophytes are among the most important resources of biologically active metabolites. Twenty-three endophyte strains residing in Trachelospermum jasminoides were cultivated in vitro with the cultures assayed for the fibrinolytic substance production. As a result, the culture of VerticUlium sp. Tj33 was shown to be the most active. A fibrinolytic enzyme designated as verticase was subsequently purified from the supernatant of Verticillium sp. culture broth by a combination of DEAE-52, Sephadex G-75 and hydrophobic column chromatographies. Verticase, with its molecular mass of 31 kDa and pl of 8.5, was demonstrated to be homogeneous by sodium dodecyl suIfate-polyacrylamide gel electrophoresis and isoelectric focusing electrophoresis. Verticase is an enzyme that hydrolyzes fibrin directly without activation of plaminogen. It was stable in a broad pH range from 4 through to 11 with the optimal reaction pH value and temperature shown to be around 9-10 and 50-60℃, respectively. The fibrinolytic activity of verticase was severely inhibited by phenylmethylsulfony fluoride, indicating that verticase was a serine protease.  相似文献   

17.
A fibrinolytic enzyme from Bacillus subtilis strain Al was purified by chromatographic methods, including DEAE Sephadex A-50 column chromatography and Sephadex G-50 column gel filtration. The purified enzyme consisted of a monomeric subunit and was estimated to be approximately 28 kDa in size by SDS-PAGE. The specific activity of the fibrinolytic enzyme was 1632-fold higher than that of the crude enzyme extract. The fibrinolytic activity of the purified enzyme was approximately 0.62 and 1.33 U/ml in plasminogen-free and plasminogen-rich fibrin plates, respectively. Protease inhibitors PMSF, DIFP, chymostatin, and TPCK reduced the fibrinolytic activity of the enzyme to 13.7, 35.7, 15.7, and 23.3%, respectively. This result suggests that the enzyme purified from B. subtilis strain Al was a chymotrypsin-like serine protease. In addition, the optimum temperature and pH range of the fibrinolytic enzyme were 50°C and 6.0–10.0, respectively. The N-terminal amino acid sequence of the purified enzyme was identified as Q-T-G-G-S-I-I-D-P-I-N-G-Y-N, which was highly distinguished from other known fibrinolytic enzymes. Thus, these results suggest a fibrinolytic enzyme as a novel thrombolytic agent from B. subtilis strain Al.  相似文献   

18.
根霉12#发酵产生纤溶酶的酶学性质   总被引:5,自引:0,他引:5  
溶栓疗法是血栓性疾病安全有效的治疗手段,开发新型纤溶酶具有实际应用意义.分离自南方小酒药的根霉12豆粕和麸皮为原料可产生纤溶酶.已采用盐析,疏水层析、离子交换层析和凝胶层析方法对纤溶酶分离提纯.提纯的纤溶酶比活力2143u/mg(尿激酶单位),有直接溶解血栓和激活纤溶酶原的双重溶栓作用,降解纤维蛋白α、β和γ肽链速度快;最适作用温度45℃,适宜作用pH范围6.8~8.8;等电聚焦方法测定该酶等电点8.5±0.1;只分解生色底物N-Succinvl-Ala-Ala-Pro-Phe-pNA,其米氏常数Km为O.23mmol/L,酶转换数Kcat为16.36 s-1;Molish实验和甲苯胺蓝实验均证明该酶为糖蛋白,地衣酚-硫酸法测得该酶含糖量4.70%;EDTA、PMSF、PCMB对该纤溶酶有抑制作用,说明活性中心含有巯基、金属和丝氨酸;N端12个氨基酸序列为NH2-Ser-Val-Ser-Glu-Ile-Gln-Leu-Met-His-Asn-Leu-Gly,与其它生物来源的纤溶酶相比较没有同源性.根霉12#产生的纤溶酶为新型纤溶酶,有希望开发成溶栓药物.  相似文献   

19.
Jeot-gal is a traditional Korean fermented seafood and has long been used for seasoning. We isolated 188 strains from shrimp, anchovy, and yellow corvina Jeot-gal, and screened sixteen strains that showed strong fibrinolytic activities on a fibrin plate. Among those strains, the strain that had the largest halo zone was chosen and identified as Bacillus licheniformis by using 16S rDNA sequencing and an API CHB kit. The fibrinolytic activity of Bacillus licheniformis was characterized and designated as bpKJ-31. The active component of bpKJ-31 was identified as a 37 kDa protein, designated bacillopeptidase F, by internal peptide mapping and N-terminal sequencing. The optimum activity of bpKJ-31 was shown at pH 9 and 40 degrees C, with a chromogenic substrate for plasmin. It had high degrading activity for the Bbeta-chain and Aalpha-chain of fibrin(ogen), and also acted on thrombin, but not skim milk and casein. The amidolytic activity of bpKJ-31 was inhibited by 1 mM phenylmethanesulfonyl fluoride, but 1 mM EDTA did not affect the enzyme activity, indicating that bpKJ-31 is an alkaline serine protease, like a plasmin. The bpKJ-31 showed approximately 14.3% higher fibrinolytic activity than the plasmin. These features of bpKJ-31 make it attractive as a health-promoting biomaterial.  相似文献   

20.
Abstract After ammonium sulphate precipitation, Sephadex G-75 gel filtration, Lys-Sepharose 4B affinity chromatography and elution from electrophoresis, the fibrinolytic protease (TAFP) was isolated and purified from the extract of T. amaenus Walker gut. It appeared a single band corresponding to molecular weight of approximately 67kD on SDS-PAGE and an probably pI of 7.2 on IEF. On fibrin plate and plasminogen-free fibrin plate (heated at 85°C for 30 minutes to eliminate plasminogen), TAFP showed same fibrinolytic activity. The result might indicate that TAFP is a fibrinolytic enzyme degrading fibrin, as well as a plasminogen activator degrading fibrin via activating plasminogen. The result of chromogenic substrates indicated that TAFP possesses trypsin-like activity specifically degrading argininyl amide bond or peptide bond, but has no chymotrypsin activity. TAFP was almost inhibited powerfully by antipain, PMSF, soybean trypsin inhibitor and soybean Bowman-Birk inhibitor. However, leupeptin, antitrypsin and TLCK was more powerful effective inhibitors of TAFP. Optimal reaction pH of TAFP was 7.5, and it was stable in 5.5–7.0 of pH range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号