首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli K-12 mutants constitutive for the synthesis of the enzymes of fatty acid degradation (fad) synthesize significantly less unsaturated fatty acid (UFA) than do wild-type (fadR+) strains. The constitutive fadR mutants synthesize less UFA than do fadR+) strains both in vivo and in vitro. The inability of fadR strains to synthesize UFAs at rates comparable to those of fadR+ strains is phenotypically asymptomatic unless the fadR strain also carries a lesion in fabA, the structural gene for beta-hydroxydecanoyl-thioester dehydrase. Unlike fadR+ fabA(Ts) mutants, fadR fabA(Ts) strains synthesize insufficient UFA to support their growth even at low temperatures and, therefore, must be supplemented with UFA at both low and high temperatures. The low levels of UFA in fadR strains are not due to the constitutive level of fatty acid-degrading enzymes in these strains. These results suggest that a functional fadR gene is required for the maximal expression of UFA biosynthesis in E. coli.  相似文献   

2.
A set of genetically engineered Escherichia coli strains was constructed, in which the promoter of the fabA gene is fused to Vibrio fischeri luxCDABE either in a multi-copy plasmid or as a single copy chromosomal integration. The fabA gene codes for beta-hydroxydecanoyl-ACP dehydrase, a key enzyme in the synthesis of unsaturated fatty acids, and is induced when fatty acid biosynthesis pathways are interrupted. A dose-dependent and highly sensitive bioluminescent response to a variety of chemicals was controlled by the fadR gene. A tolC mutant E. coli host displayed generally lower detection threshold for toxicants. A chromosomal integration of a single copy of the fabA'::lux fusion led to a markedly lower background luminescence, but did not yield an improvement in overall performance. It is proposed that these or similarly constructed reporters of fatty acid biosynthesis inhibition may serve as novel microbial toxicity biosensors.  相似文献   

3.
Plasmids that corrected the temperature-sensitive unsaturated fatty acid auxotrophy of strain M6 [fabA6 (Ts)] were isolated from an Escherichia coli genomic library. Subcloning and physical mapping localized the new gene (called sfa for suppressor of fabA) at 1,070 kb on the E. coli chromosome. DNA sequencing revealed the presence of a 227-bp open reading frame which directed the synthesis of a peptide of approximately 8 kDa, which correlated with the correction of the fabA6(Ts) phenotype. However, the sfa gene was an allele-specific suppressor since plasmids harboring the sfa gene corrected the growth phenotype of fabA6(Ts) mutants but did not correct the growth of fabA2(Ts) or fabB15(Ts) unsaturated fatty acid auxotrophs. Overexpression of the sfa gene in fabA6(Ts) mutants restored unsaturated fatty acid content at 42 degrees C, and overexpression in wild-type cells resulted in a substantial increase in the unsaturated fatty acid content of the membrane. Thus, the suppression of the fabA6(Ts) mutation by sfa was attributed to its ability to increase the biosynthesis of unsaturated fatty acids.  相似文献   

4.
5.
6.
The nucleotide sequence of the fabA gene encoding beta-hydroxydecanoyl thioester dehydrase, a key enzyme of the unsaturated fatty acid synthesis pathway of Escherichia coli, has been determined by the dideoxynucleotide sequencing technique. Most of the sequence was obtained by sequencing intragenic insertions of the transposon, Tn1000, isolated in vivo. A synthetic primer complementary to a portion of the inverted repeat sequences at the ends of the transposon was used to prime DNA synthesis into the flanking fabA sequences. The gene is composed of 516 nucleotides (171 amino acid residues) encoding a protein with a molecular weight of 18,800. Approximately half of the derived amino acid sequence was confirmed by automated Edman sequencing of peptides obtained by cyanogen bromide cleavage. The active site histidine residue (His-70) has been identified by analysis of the peptides labeled by reaction with 14C-labeled 3-decynoyl-N-acetylcysteamine, a specific mechanism-activated inhibitor. A cysteine residue (Cys-69) adjacent to the active site histidine may play the role in catalysis previously assigned to a tyrosine residue. We also report a simplified purification process for the dehydrase beginning with extracts of a brain which greatly overproduces the enzyme.  相似文献   

7.
8.
9.
The Rsp5 ubiquitin ligase plays a role in many cellular processes including the biosynthesis of unsaturated fatty acids. The PIS1 (phosphatidylinositol synthase gene) encoding the enzyme Pis1p which catalyses the synthesis of phosphatidylinositol from CDP-diacyglycerol and inositol, was isolated in a screen for multicopy suppressors of the rsp5 temperature sensitivity phenotype. Suppression was allele non-specific. Interestingly, expression of PIS1 was 2-fold higher in the rsp5 mutant than in wild-type yeast, whereas the introduction of PIS1 in a multicopy plasmid increased the level of Pis1p 6-fold in both backgrounds. We demonstrate concomitantly that the expression of INO1 (inositol phosphate synthase gene) was also elevated approx. 2-fold in the rsp5 mutant as compared with the wild-type, and that inositol added to the medium improved growth of rsp5 mutants at a restrictive temperature. These results suggest that enhanced phosphatidylinositol synthesis may account for PIS1 suppression of rsp5 defects. Analysis of lipid extracts revealed the accumulation of saturated fatty acids in the rsp5 mutant, as a consequence of the prevention of unsaturated fatty acid synthesis. Overexpression of PIS1 did not correct the cellular fatty acid content; however, saturated fatty acids (C(16:0)) accumulated preferentially in phosphatidylinositol, and (wild-type)-like fatty acid composition in phosphatidylethanolamine was restored.  相似文献   

10.
Temperature-sensitive, unsaturated fatty acid (fabB) auxotrophs of Escherichia coli can grow at the restrictive temperature in the absence of unsaturated fatty acid in a medium with a high osmotic pressure. If a mutant culture was starved for unsaturated fatty acids and harvested just before the lysis started, the fatty acid composition of the cells was the same as that of cells grown until late log phase in a high-osmotic medium. Evidence is presented that the in vivo unsaturated fatty acid biosynthesis is significantly increased in a high osmotic medium. The increase is probably due to a partial activation of the temperature-sensitive fabB product. Besides the stimulation of the temperature-sensitive fabB product, a minimal osmotic pressure of the medium appeared to be necessary to allow growth of cells containing lipids with a changed fatty acid composition. fabA mutants are unable to grow in a high-osmotic medium in the absence of unsaturated fatty acids. No increase in the in vivo unsaturated fatty acid biosynthesis could be detected in the temperature-sensitive fabA mutants.  相似文献   

11.
A multicopy suppressor of the cold-sensitive secG null mutation was isolated. The suppressor contained sfa and yccL, the former of which has been reported to be a multicopy suppressor of the fabA6 mutation carried by a temperature-sensitive unsaturated fatty acid auxotroph. Subcloning of the suppressor gene revealed that yccL, renamed gnsA (secG null mutant suppressor), was responsible for the suppression of both the secG null mutation and the fabA6 mutation. In contrast, the sfa gene did not suppress the fabA6 mutation. The ydfY (gnsB) gene, encoding a protein which is highly similar to GnsA, also suppressed both the secG null mutation and the fabA6 mutation. Although both gnsA and gnsB are linked to cold shock genes, the levels of GnsA and GnsB did not exhibit a cold shock response. A gnsA-gnsB double null mutant grew normally under all conditions examined; thus, the in vivo functions of gnsA and gnsB remain unresolved. However, overexpression of gnsA and gnsB stimulated proOmpA translocation of the secG null mutant at low temperature and caused a significant increase in the unsaturated fatty acid content of phospholipids. Taken together, these results suggest that an increase in membrane fluidity due to the increase in unsaturated fatty acids compensates for the absence of the SecG function, especially at low temperature.  相似文献   

12.
Fats and fatty acids as growth factors for Lactobacillus delbrueckii   总被引:3,自引:0,他引:3  
The effects of various fats and fatty acids on the growth of Lactobacillus delbrueckii strains have been studied using modified MRS broth without Tween 80 as a basic growth medium. Among the six L. delbrueckii strains studied all except one strain required Tween 80 or Tween 20 as a fatty acid supplement for the growth. Tween 40 and Tween 60, which contain solely medium and long chain saturated fatty acids, inhibited the growth of all L. delbrueckii strains when present as a sole fat supplement in MRS broth. Free oleic acid but not free lauric acid could substitute Tween 80 or Tween 20 supplement suggesting that unsaturated fatty acids are essential growth factors for most L. delbrueckii strains. Among the natural food oils tested, the oils containing the lowest amounts of saturated long chain fatty acids promoted the growth of L. delbrueckii most effectively. Especially cellular C18:1 and C19 cyclopropane fatty acid contents of L. delbrueckii were strongly affected by exogenous fatty acid composition and by strain suggesting genetic diversity and polymorphism among the genes encoding and/or regulating cyclopropane synthase. In addition obviously most if not all L. delbrueckii strains lack particular synthase, desaturase and/or dehydrase activities required for de novo synthesis of long chain unsaturated fatty acids. These biochemical features could be used as informative chemotaxonomic characteristics for L. delbrueckii starter strain identification and selection.  相似文献   

13.
14.
Unsaturated fatty acid auxotrophs of Escherichia coli are able to use only unsaturated fatty acids of the cis configuration as the required growth supplement. A mutation in the fatA gene allows such auxotrophs to utilize unsaturated fatty acids with a trans double bond as well as fatty acids having a cis double bond. The fatA gene was mapped to min 69 near argG, and the allele studied (fatA1) was found to be dominant over the wild-type gene. fatA1 mutant strains grew at similar rates when supplemented with elaidate (trans-9-octadecenoate) or oleate (cis-9-octadecenoate). The fat+ strain, however, lysed when supplemented with the trans fatty acid. Physiological characterization of the fatA mutant strain was undertaken. The mutation appeared not to be involved with long-chain fatty acid transport. Introduction of lesions in known fatty acid transport genes abolished trans fatty acid utilization in the fatA mutant strain. Also, growth characteristics of the fat+ and the fatA1 mutant strains on elaidate as the sole carbon source were identical, which indicated comparables rate of fatty acid accumulation. The mutation appeared to be involved with recognition of the trans configuration after uptake into the cell. The levels of trans fatty acid incorporation into the phospholipids of the fat+ and the fatA strains differed considerably, with the mutant incorporating much higher levels. No significant accumulation of elaidate into nonphospholipid cellular components was observed. The fatA mutation did not appear to be involved with the cellular metabolic state, as cyclic AMP had no effect on the ability of the strains to utilize trans fatty acids.  相似文献   

15.
16.
W D Nunn 《Biochemistry》1977,16(6):1077-1081
Experiments were performed to determine how phenethyl alcohol inhibits phospholipid synthesis in E. coli. At a nonbacteriostatic concentration, the drug reduces the rate of de novo fatty acid and phospholipid synthesis by 60 to 70%. The inhibition of fatty acid synthesis was found to be a secondary consequence of the inhibition of phospholipid synthesis. Phenethyl alcohol reduces the rate of incorporation of exogenous fatty acids into the phospholipids of a fatty acid auxotroph by 60%. These results indicate that this drug controls phospholipid synthesis beyond the level of fatty acid synthesis. Phenethyl alcohol inhibits the synthesis of phospholipids containing saturated fatty acids to a greater extent than it does the synthesis of phospholipids containing unsaturated fatty acids. It controls the synthesis of phospholipids containing saturated fatty acids at both the level of fatty acid synthesis and the level of incorporation of the saturated fatty acids into phospholipids. The synthesis of phospholipids containing unsaturated fatty acids is inhibited at the level of incorporation of the fatty acids into phospholipids.  相似文献   

17.
beta-Ketoacyl-acyl carrier protein (ACP) synthase III (KAS III, also called acetoacetyl-ACP synthase) encoded by the fabH gene is thought to catalyze the first elongation reaction (Claisen condensation) of type II fatty acid synthesis in bacteria and plant plastids. However, direct in vivo evidence that KAS III catalyzes an essential reaction is lacking, because no mutant organism deficient in this activity has been isolated. We report the first bacterial strain lacking KAS III, a fabH mutant constructed in the Gram-positive bacterium Lactococcus lactis subspecies lactis IL1403. The mutant strain carries an in-frame deletion of the KAS III active site region and was isolated by gene replacement using a medium supplemented with a source of saturated and unsaturated long-chain fatty acids. The mutant strain is devoid of KAS III activity and fails to grow in the absence of supplementation with exogenous long-chain fatty acids demonstrating that KAS III plays an essential role in cellular metabolism. However, the L. lactis fabH deletion mutant requires only long-chain unsaturated fatty acids for growth, a source of long-chain saturated fatty acids is not required. Because both saturated and unsaturated fatty acids are required for growth when fatty acid synthesis is blocked by biotin starvation (which prevents the synthesis of malonyl-CoA), another pathway for saturated fatty acid synthesis must remain in the fabH deletion strain. Indeed, incorporation of [1-14C]acetate into fatty acids in vivo showed that the fabH mutant retained about 10% of the fatty acid synthetic ability of the wild-type strain and that this residual synthetic capacity was preferentially diverted to the saturated branch of the pathway. Moreover, mass spectrometry showed that the fabH mutant retained low levels of palmitic acid upon fatty acid starvation. Derivatives of the fabH deletion mutant strain were isolated that were octanoic acid auxotrophs consistent with biochemical studies indicating that the major role of FabH is production of short-chain fatty acid primers. We also confirmed the essentiality of FabH in Escherichia coli by use of a plasmid-based gene insertion/deletion system. Together these results provide the first genetic evidence demonstrating that FabH conducts the major condensation reaction in the initiation of type II fatty acid biosynthesis in both Gram-positive and Gram-negative bacteria.  相似文献   

18.
Saccharomyces cerevisiae is an ideal model eukaryote for studying fatty-acid transport. Yeast are auxotrophic for unsaturated fatty acids when grown under hypoxic conditions or when the fatty-acid synthase inhibitor cerulenin is included in the growth media. The FAT1 gene encodes a protein, Fat1p, which is required for maximal levels of fatty-acid import and has an acyl CoA synthetase activity specific for very-long-chain fatty acids suggesting this protein plays a pivotal role in fatty-acid trafficking. In the present work, we present evidence that Fat1p and the murine fatty-acid transport protein (FATP) are functional homologues. FAT1 is essential for growth under hypoxic conditions and when cerulenin was included in the culture media in the presence or absence of unsaturated fatty acids. FAT1 disruptants (fat1Delta) fail to accumulate the fluorescent long-chain fatty acid fatty-acid analogue 4, 4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-do decanoic acid (C1-BODIPY-C12), have a greatly diminished capacity to transport exogenous long-chain fatty acids, and have very long-chain acyl CoA synthetase activities that were 40% wild-type. The depression in very long-chain acyl CoA synthetase activities were not apparent in cells grown in the presence of oleate. Additionally, beta-oxidation of exogenous long-chain fatty acids is depressed to 30% wild-type levels. The reduction of beta-oxidation was correlated with a depression of intracellular oleoyl CoA levels in the fat1Delta strain following incubation of the cells with exogenous oleate. Expression of either Fat1p or murine FATP from a plasmid in a fat1Delta strain restored these phenotypic and biochemical deficiencies. Fat1p and FATP restored growth of fat1Delta cells in the presence of cerulenin and under hypoxic conditions. Furthermore, fatty-acid transport was restored and was found to be chain length specific: octanoate, a medium-chain fatty acid was transported in a Fat1p- and FATP-independent manner while the long-chain fatty acids myristate, palmitate, and oleate required either Fat1p or FATP for maximal levels of transport. Lignoceryl CoA synthetase activities were restored to wild-type levels in fat1Delta strains expressing either Fat1p or FATP. Fat1p or FATP also restored wild-type levels of beta-oxidation of exogenous long-chain fatty acids. These data show that Fat1p and FATP are functionally equivalent when expressed in yeast and play a central role in fatty-acid trafficking.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号