首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Tidal volumes used in high-frequency ventilation (HFV) may be smaller than anatomic dead space, but since gas exchange does take place, physiological dead space (VD) must be smaller than tidal volume (VT). We quantified changes in VD in three dogs at constant alveolar ventilation using the Bohr equation as VT was varied from 3 to 15 ml/kg and frequency (f) from 0.2 to 8 Hz, ranges that include normal as well as HFV. We found that VD was relatively constant at tidal volumes associated with normal ventilation (7-15 ml/kg) but fell sharply as VT was reduced further to tidal volumes associated with HFV (less than 7 ml/kg). The frequency required to maintain constant alveolar ventilation increased slowly as tidal volume was decreased from 15 to 7 ml/kg but rose sharply with attendant rapid increases in minute ventilation as tidal volumes were decreased to less than 7 ml/kg. At tidal volumes less than 7 ml/kg, the data deviated substantially from the conventional alveolar ventilation equation [f(VT - VD) = constant] but fit well a model derived previously for HFV. This model predicts that gas exchange with volumes smaller than dead space should vary approximately as the product of f and VT2.  相似文献   

2.
The effects of changing tidal volume (VT) and frequency (f) on the distribution of ventilation during high-frequency ventilation (HFV) were assessed from the washout of nitrogen-13 by positron emission tomography. Six dogs, anesthetized and paralyzed, were studied in the supine position during conventional ventilation (CV) and during HFV at f of 3, 6, and 9 Hz. In CV and HFV at 6 Hz, VT was selected to achieve eucapnic arterial partial pressure of CO2 (37 +/- 3 Torr). At 3 and 9 Hz, VT was proportionally changed so that the product of VT and f remained constant and equal to that at 6 Hz. Mean residence time (MRT) of nitrogen-13 during washout was calculated for apical, midheart, and basal transverse sections of the lung and further analyzed for gravity-dependent, cephalocaudal and radial gradients. An index of local alveolar ventilation per unit of lung volume, or specific ventilation (spV), was calculated as the reciprocal of MRT. During CV vertical gradients of regional spV were seen in all sections with ventral (nondependent) regions less ventilated than dorsal (dependent) regions. Regional nonuniformity in gas transport was greatest for HFV at 3 and 6 Hz and lowest at 9 Hz and during CV. During HFV, a central region at the base of the lungs was preferentially ventilated, resulting in a regional time-averaged tracer concentration equivalent to that of the main bronchi. Because the main bronchi were certainly receiving fresh gas, the presence of this preferentially ventilated area, whose ventilation increased with VT, strongly supports the hypothesis that direct convection of fresh gas is an important mechanism of gas transport during eucapnic HFV. Aside from the local effect of increasing overall lung ventilation, this central area probably served as an intermediate shuttle station for the transport of gas between mouth and deeper alveoli when VT was less than the anatomic dead space.  相似文献   

3.
To identify a general relationship between eucapnic oscillatory flow (Vosc) and frequency (f) in high-frequency ventilation (HFV), we searched the literature for eucapnic HFV data in different mammalian species. We found suitable results for rat, rabbit, monkey, dog, human, and horse, which we expressed in terms of two dimensionless variables, Q = Vosc/Va and F = f/(VA/VD), with VA the alveolar ventilation and VD the volume of the conducting airways. The experimental HFV data define the linear regression equation in Q = 0.54 In F + 0.92 (R = 0.94). Krogh's equation for conventional ventilation (CV), Vosc = VA + fVD, in dimensionless terms becomes Q = 1 + F, which is valid for low F. The intersection of the CV and HFV equations at F = 5.0 defines a transition frequency, ft = 5.0 (VA/VD). At that point the alveolar ventilation per breath, VA/f, represents 20% of VD, and tidal volume (VT) equals 1.20 VD. For eucapnia ft ranges from 5.9 Hz in the rat to 0.9 Hz in the dog. The dimensional form of our HFV equation, VA = 0.13 (VT/VD)1.2 (VTf) is very similar to other empirical equations reported for dogs in noneucapnic settings. Therefore the dimensionless equation should also be valid within a species at noneucapnic settings.  相似文献   

4.
The effects of body position and respiratory frequency (f) on regional gas transport during eucapnic conventional ventilation (CV) and high-frequency ventilation (HFV) were assessed from the washout of nitrogen 13 (13NN) using positron-emission tomography. In one protocol, six dogs were ventilated with CV or HFV at f = 6 Hz and tidal volume (VT) selected supine for eucapnia. A coronal cross section of the lung base was studied in the supine, prone, and right and left lateral decubitus positions. In a second protocol, six dogs were studied prone: apical and basal cross sections were studied in CV and in HFV with f = 3 and 9 Hz at eucapnic VT. Regional alveolar ventilation per unit of lung volume (spVr) was calculated for selected regions and analyzed for gravity-dependent cephalocaudal and right-to-left gradients. In both CV and HFV, nonuniformity in spVr was highest supine and lowest prone. In CV there were vertical gradients of spVr in all body positions: nondependent less ventilated than dependent regions, particularly in the supine position. In HFV there was a moderate vertical gradient in spVr in addition to a preferentially ventilated central region in all body positions. Overall lung spV was unaffected by body position in CV but in HFV was highest supine and lowest prone. Nonuniformity in eucapnic prone HFV was unaffected by f and always higher than in CV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In 10 anesthetized, paralyzed, supine dogs, arterial blood gases and CO2 production (VCO2) were measured after 10-min runs of high-frequency ventilation (HFV) at three levels of mean airway pressure (Paw) (0, 5, and 10 cmH2O). HFV was delivered at frequencies (f) of 3, 6, and 9 Hz with a ventilator that generated known tidal volumes (VT) independent of respiratory system impedance. At each f, VT was adjusted at Paw of 0 cmH2O to obtain a eucapnia. As Paw was increased to 5 and 10 cmH2O, arterial PCO2 (PaCO2) increased and arterial PO2 (PaO2) decreased monotonically and significantly. The effect of Paw on PaCO2 and PaO2 was the same at 3, 6, and 9 Hz. Alveolar ventilation (VA), calculated from VCO2 and PaCO2, significantly decreased by 22.7 +/- 2.6 and 40.1 +/- 2.6% after Paw was increased to 5 and 10 cmH2O, respectively. By taking into account the changes in anatomic dead space (VD) with lung volume, VA at different levels of Paw fits the gas transport relationship for HFV derived previously: VA = 0.13 (VT/VD)1.2 VTf (J. Appl. Physiol. 60: 1025-1030, 1986). We conclude that increasing Paw and lung volume significantly decreases gas transport during HFV and that this effect is due to the concomitant increase of the volume of conducting airways.  相似文献   

6.
Alveolar ventilation during high-frequency ventilation (HFV) was estimated from the washout of the positron-emitting isotope (nitrogen-13-labeled N2) from the lungs of anesthetized paralyzed supine dogs by use of a positron camera. HFV was delivered at a mean lung volume (VL) equal to the resting functional residual capacity with a ventilator that generated tidal volumes (VT) between 30 and 120 ml, independent of the animal's lung impedance, at frequencies (f) from 2 to 25 Hz, with constant inspiratory and expiratory flows and an inspiration-to-expiration time ratio of unity. Specific ventilation (SPV), which is equivalent to ventilation per unit of compartment volume, was found to follow closely the relation: SPV = 1.9(VT/VL)2.1 X f. From this relation and from arterial PCO2 measurements we found an expression for the normocapnic settings of VT and f, given VL and body weight (W). We found that the VL was an important normalizing parameter in the sense that VT/VL yielded a better correlation (r = 0.91) with SPV/f than VT/W (r = 0.62) or VT alone (r = 0.8).  相似文献   

7.
Model of gas transport during high-frequency ventilation   总被引:1,自引:0,他引:1  
We analyze gas exchange during high-frequency ventilation (HFV) by a stochastic model that divides the dead space into N compartments in series where each compartment has a volume equal to tidal volume (V). We then divide each of these compartments into alpha subcompartments in series, where each subcompartment receives a well-mixed concentration from one compartment and passes a well-mixed concentration to another in the direction of flow. The number of subcompartments is chosen on the basis that 1/alpha = (sigma t/-t)2, where -t is mean transit time across a compartment of volume, and sigma t is standard deviation of transit times. If (sigma t/-t)D applies to the transit times of the entire dead space, the magnitude of gas exchange is proportional to (sigma t/-t)D, frequency, and V raised to some power greater than unity in the range where V is close to VD. When V is very small in relation to VD, gas exchange is proportional to (sigma t/-t)2D, frequency, and V raised to a power equal to either one or two depending on whether the flow is turbulent or streamline, respectively. (sigma t/-t)D can be determined by the relation between the concentration of alveolar gas at the air outlet and volume expired as in a Fowler measurement of the volume of the dead space.  相似文献   

8.
Ten anesthetized normal dogs were each given two methacholine inhalational challenges to produce large amounts of low ventilation-perfusion (VA/Q) regions but little shunt. After one challenge, high-frequency ventilation (HFV) was applied, whereas after the other conventional mechanical ventilation (MV) was used, the order being randomized. Levels of both ventilatory modes were selected prior to challenge so as to result in similar and normal mean airway pressures and arterial PCO2 levels during control conditions. Gas exchange was assessed by both respiratory and multiple inert-gas transfer. Comparing the effect of HFV and MV, no statistically significant differences were found for lung resistance, pulmonary hemodynamic indices, arterial and mixed venous PO2, expired-arterial PO2 differences, or inert-gas data expressed as retention-excretion differences. The only variables that were different were mean airway pressure (2 cm higher during HFV, P less than 0.04) and arterial PCO2 (10 Torr higher during HFV, P less than 0.002). These results suggest that in this canine model of lung disease characterized by large amounts of low VA/Q regions, HFV is no more effective in delivering fresh gas to such regions than is MV.  相似文献   

9.
The purpose of this study was to determine oxygen uptake (VO2) at various water flow rates and maximal oxygen uptake (VO2max) during swimming in a hypobaric hypoxic environment. Seven trained swimmers swam in normal [N; 751 mmHg (100.1 kPa)] and hypobaric hypoxic [H; 601 mmHg (80.27 kPa)] environments in a chamber where atmospheric pressure could be regulated. Water flow rate started at 0.80 m.s-1 and was increased by 0.05 m.s-1 every 2 min up to 1.00 m.s-1 and then by 0.05 m.s-1 every minute until exhaustion. At submaximal water flow rates, carbon dioxide production (VCO2), pulmonary ventilation (VE) and tidal volume (VT) were significantly greater in H than in N. There were no significant differences in the response of submaximal VO2, heart rate (fc) or respiratory frequency (fR) between N and H. Maximal VE, fR, VT, fc, blood lactate concentration and water flow rate were not significantly different between N and H. However, VO2max under H [3.65 (SD 0.11) l.min-1] was significantly lower by 12.0% (SD 3.4)% than that in N [4.15 (SD 0.18) l.min-1]. This decrease agrees well with previous investigations that have studied centrally limited exercise, such as running and cycling, under similar levels of hypoxia.  相似文献   

10.
It has been suggested that the increase in inspiratory flow rate caused by a decrease in the inspiratory-to-expiratory time ratio (I:E) at a constant tidal volume (VT) could increase the efficiency of ventilation in high-frequency ventilation (HFV). To test this hypothesis, we studied the effect of changing I:E from 1:1 to 1:4 on steady-state alveolar ventilation (VA) at a given VT and frequency (f) and at a constant mean lung volume (VL). In nine anesthetized, paralyzed, supine dogs, HFV was performed at 3, 6, and 9 Hz with a ventilator that delivered constant inspiratory and expiratory flow rates. Mean airway pressure was adjusted so that VL was maintained at a level equivalent to that of resting FRC. At each f and one of the I:E chosen at random, VT was adjusted to obtain a eucapnic steady state [arterial pressure of CO2 (PaCO2) = 37 +/- 3 Torr]. After 10 min of each HFV, PaCO2, arterial pressure of O2 (PaO2), and CO2 production (VCO2) were measured, and I:E was changed before repeating the run with the same f and VT. VA was calculated from the ratio of VCO2 and PaCO2. We found that the change of I:E from 1:1 to 1:4 had no significant effects on PaCO2, PaO2, and VA at any of the frequencies studied. We conclude, therefore, that the mechanism or mechanisms responsible for gas transport during HFV must be insensitive to the changes in inspiratory and expiratory flow rates over the VT-f range covered in our experiments.  相似文献   

11.
Our objectives were to determine 1) the effects of increased respiratory dead space (VD) on the ventilatory response to exercise and 2) whether changes in the ventilatory response are due to changes in chemoreceptor feedback (rest to exercise) vs. changes in the feedforward exercise stimulus. Steady-state ventilation (VI) and arterial blood gas responses to mild or moderate hyperoxic exercise in goats were compared with and without increased VD. Responses were compared using a simple mathematical model with the following assumptions: 1) steady state, 2) linear CO2 chemoreceptor feedback, 3) linear feedforward exercise stimulus proportional to CO2 production (VCO2) and characterized by an exercise gain (Gex), and 4) additive exercise stimulus and CO2 feedback producing the system gain (Gsys = delta VI/delta VCO2). Model predictions at constant Gex [assuming VD-to-tidal volume (VT) ratio independent of VCO2] are that increased VD/VT will 1) increase arterial PCO2 (PaCO2) and VI at rest and 2) increase Gsys via changes in chemoreceptor feedback due to a small increase in the PaCO2 vs. VCO2 slope. Experimental results indicate that increased VD increased VD/VT, PaCO2, and VI at rest and increased Gsys during exercise. However, measurable changes in the PaCO2 vs. VCO2 slope occurred only at high VD/VT or running speeds. Gex was estimated at each VD for each goat by using the model in conjunction with experimental measurements. With 0.2 liter VD, Gex increased 40% (P less than 0.01); with 0.6 liter VD, Gex increased 110% between 0 and 2.4 km/h and 5% grade (P less than 0.01) but not between 2.4 and 4.8 km/h. Thus, Gex is increased by VD through a limited range. In goats, increases in Gsys with increased VD result from increases in both Gex and CO2 chemoreceptor feedback. These results are consistent with other experimental treatments that increase the exercise ventilatory response, maintaining constant relative PaCO2 regulation, and suggest that a common mechanism linked to resting ventilatory drive modulates Gex.  相似文献   

12.
In healthy man, the central chemosensitivity to CO2 was studied after depression of the arterial chemoreflex drive by inhalation of pure oxygen. The effectiveness of the functional decrease of arterial chemoreceptor function was assessed by the delayed hyperventilation which followed transient inhalation of hypercapnic gas mixtures for 3 or 5 breaths in hyperoxic conditions. In such a case the first significant increase in tidal volume (VT) occurred 13.9 +/- 3.2 (SE) sec later than the early change in this variable measured in normoxic conditions. The stimulus strength was estimated by the change in CO2 partial pressure in end-tidal alveolar gas (delta PETCO2). The central chemosensitivity (SCO2), defined as the ratio between change in ventilation (delta V) and delta PETCO2, was assessed either by transient inhalation of gas mixtures containing 5 to 8% CO2 in pure O2 ("varying transients") or by progressive hypercapnia (rebreathing in pure O2). In both cases, the first significant change in ventilation was due to an increase in VT, but, for a given delta PETCO2, VT changes were higher during rebreathing than after transient hypercapnia; (2) The respiratory frequency (fR) was progressively enhanced during rebreathing (shortening of expiratory duration in all cases and of inspiratory time in some subjects) but the ventilatory rhythm diminished after transient stimulation as soon as delta PETCO2 reached one kPa, and this was due to an increase in inspiratory duration; (3) The associated changes in VT and fR during rebreathing could explain that SCO2 values given by this method were 5.2 times greater than after transient hypercapnia ("varying tests"). The differences are discussed in terms of, (1) isolated changes in arterial PCO2 or associated decrease in pH of the cerebrospinal fluid; (2) changes in brain blood flow, and (3) stimulation of lung stretch receptors by the important increase in VT during rebreathing.  相似文献   

13.
To determine the acute action of cigarette smoking on cardiorespiratory function under stress, the immediate effects of cigarette smoking on the ventilatory, gas exchange, and cardiovascular responses to exercise were studied in nine healthy male subjects. Each subject performed an incremental exercise test to exhaustion on two separate days, one without smoking (control) and one after smoking 3 cigarettes/h for 5 h. The order of the two tests was randomized. Arterial blood gases and pH were measured during rest and all levels of exercise; CO blood levels confirmed the absorption of cigarette smoke. In addition, minute ventilation (VE), end-tidal PCO2 and PO2, O2 uptake (VO2), CO2 production, directly measured blood pressure, electrocardiogram, and heart rate (HR) were recorded every 30 s. The dead space-to-tidal volume ratio (VD/VT), maximal aerobic capacity (VO2max), and anaerobic threshold (AT) were determined from the gas exchange data. Cigarette smoking resulted in a significantly lower VO2max, AT, and VO2/HR (O2 pulse) and a significantly higher HR, pulse-pressure product, and pulse pressure (P less than 0.05) compared with the control. Additionally, a trend toward a higher VD/VT and arterial-end-tidal PCO2 difference was found during exercise after smoking. We conclude that cigarette smoking causes immediate detrimental effects on cardiovascular function during exercise, including tachycardia, increased pulse-pressure product, and impaired O2 delivery. The acute effects on respiratory function were less striking and primarily limited to abnormalities reflecting ventilation-perfusion mismatching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Gas exchange in avian lungs is described by a cross-current model that has several differences from the alevolar model of mammalian gas exchange [e.g., end-expired PCO2 greater than arterial PCO2 (PaCO2)]. Consequently the methods available for estimating effective ventilation and physiological dead space (VDphys) in alveolar lungs are not suitable for an analysis of gas exchange in birds. We tested a method for measuring VDphys in birds that is functionally equivalent to the conventional alveolar VDphys. A cross-current O2-CO2 diagram was used to define the ideal expired point (PEi) and VDphys was calculated as from the equation, VDphys = [(PEiCO2--PECO2)/PEiCO2]. VT, where VT is tidal volume. In seven Pekin ducks VDphys was 13.8 ml greater than anatomic dead space and measured changes in the instrument dead space volume. VDphys also reflected changes in ventilation-perfusion inequality induced by temporary unilateral pulmonary arterial occlusion. Bohr dead space, calculated by substituting end-expired PCO2 for PEiCO2, was insensitive to such inhomogeneity. Enghoff dead space, calculated by substituting PaCO2 for PEiCO2, is theoretically incorrect for cross-current gas exchange and was often less than anatomic dead space. We conclude that VDphys is a useful index of avian gas exchange and propose a standard definition for effective parabronchial ventilation (VP) analogous to alveolar ventilation (i.e., VP = VE--VDphys, where VE is total ventilation).  相似文献   

15.
The objective of the present study was to determine the effect of elevated inspired CO2 on respiratory dead space (VD) of 12 normal, 8 carotid body-denervated (CBD), 7 hilar nerve-denervated (HND), and 6 CBD+HND ponies. The Fowler technique was used to determine VD on a breath-by-breath basis while the ponies breathed room air and inspired CO2 at 3 and 6%. During room air breathing, tidal volume (VT) and VD were greater in HND ponies than in normal and CBD ponies (P less than 0.05), and VT was less and VD/VT was greater after CBD than before CBD. For all groups. VD, VT, and breathing frequency (f) increased and VD/VT decreased significantly (P less than 0.01) with increasing inspired CO2. During CO2 breathing, VT and VD were higher (P less than 0.05) in the HND ponies than in all other groups, the decrease (P less than 0.05) in VD/VT was greatest in the CBD+HND group, and f was lower in the HND and HND+CBD than in the normal and CBD ponies. In addition, when inspired CO2 was increased from 0 to 6%, the decrease in VD/VT was greater and the increase in arterial PCO2 was less (P less than 0.05) after CBD than before CBD. For 70% of the ponies in all groups, VD increased linearly with increases in VT; for most of the remainder, VD tended to plateau at higher values of VT.  相似文献   

16.
Kinetics of cardiorespiratory response to dynamic (DE) and then to rhythmic-static exercise (RSE) was compared in nine male subjects exercising in an upright position on a cycle ergometer at an intensity of about 50% VO2max and a mean pedalling frequency of 60 rpm over 5 min. Respiratory frequency (fR), tidal volume (VT), minute ventilation (VE), heart rate (fc), stroke volume (SV), and cardiac output (Qt) were measured continuously. The RSE caused a greater increase in fR than DE, whereas VT increased more during DE. The effect of reciprocal changes in fR and VT was that VE and its kinetics, expressed as a time constant (tau), did not differ between experimental situations. The ventilatory equivalent for O2 (VE: VO2) was greater for RSE (31.3) than for DE (23.0, P less than 0.01). Elevation of fc was similar for both types of exercise. The SV increased suddenly at the beginning of DE from 54 ml to 74 ml and then decreased to the end of exercise. At the onset of RSE only a moderate increase in SV was observed, from 56 ml to 62 ml, and then SV remained stable. The DE caused a greater and faster increase in Qt (4.20 l.min-1, for tau equal to 16.1 s) than RSE (3.25 l.min-1, for tau equal to 57.0 s, P less than 0.05 and P less than 0.002, respectively). Total peripheral resistance was almost 40% greater for RSE than for DE. No relationship was found between Qt and VE at the first 15 s of both types of exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
High-frequency external body vibration, combined with constant gas flow at the tracheal carina, was previously shown to be an effective method of ventilation in normal dogs. The effects of frequency (f) and amplitude of the vibration were investigated in the present study. Eleven anesthetized and paralyzed dogs were placed on a vibrating table (4-32 Hz). O2 was delivered near the tracheal carina at 0.51.kg-1.min-1, while mean airway pressure was kept at 2.4 +/- 0.9 cmH2O. Table vertical displacement (D) and acceleration (a), esophageal (Pes), and tracheal (Ptr) peak-to-peak pressures, and tidal volume (VT) were measured as estimates of the input amplitude applied to the animal. Steady-state arterial PCO2 (PaCO2) and arterial PO2 (PaO2) values were used to monitor overall gas exchange. Typically, eucapnia was achieved with f greater than 16 Hz, D = 1 mm, a = 1 G, Pes = Ptr = 4 +/- 2 cmH2O, and VT less than 2 ml. Inverse exponential relationships were found between PaCO2 and f, a, Pes, and Ptr (exponents: -0.69, -0.38, -0.48, and -0.54, respectively); PaCO2 decreased linearly with increased displacement or VT at a fixed frequency (17 +/- 1 Hz). PaO2 was independent of both f and D (393 +/- 78 Torr, mean +/- SD). These data demonstrate the very small VT, Ptr, and Pes associated with vibration ventilation. It is clear, however, that mechanisms other then those described for conventional ventilation and high-frequency ventilation must be evoked to explain our data. One such possible mechanism is forcing of flow oscillation between lung regions (i.e., forced pendelluft).  相似文献   

18.
A model of gas exchange by low-tidal-volume (VT), high-frequency ventilation (HFV) is presented, based on the physical principles of dispersion. These are the nonuniformity of the velocity profile and the nonreversible mixing of fluid components in a diffusive manner. A numerical method was used to incorporate these principles into a quantitative model. The airways of a symmetrically bifurcating bronchial-tree model were partitioned in the radial direction into two concentric layers representing the kinematic dispersion by nonuniformity of the velocity profile. Mixing between the layers was invoked in proportion to the diffusivity and local dimensions. The effects of frequency (f), VT, shape of the velocity profile, and bronchial-model configuration were tested in the model, with favorable comparison to available experimental data. The model predicts that for a frequency-dependent velocity profile, the rate of tracer exchange is proportional to the square root of f and to the square of VT-V0, where V0 is a constant small volume under which gas exchange was nil. Intracycle asymmetric mixing is predicted to have a stronger effect on gas exchange than asymmetric velocity profile. Gas exchange when turbulent-flow regime is assumed is predicted to be less for the higher VT values than with laminar flow and with mixing by molecular diffusivity. This model was found to be didactic, flexible, and capable of modeling combinations of factors affecting either one of the two fundamental processes of dispersion.  相似文献   

19.
We examined the effects of dead space (VD) loading on breathing pattern during maximal incremental exercise in eight normal subjects. Addition of external VD was associated with a significant increase in tidal volume (VT) and decrease in respiratory frequency (f) at moderate and high levels of ventilation (VI); at a VI of 120 l/min, VT and f with added VD were 3.31 +/- 0.33 liters and 36.7 +/- 6.7 breaths/min, respectively, compared with 2.90 +/- 0.29 liters and 41.8 +/- 7.3 breaths/min without added VD. Because breathing pattern does not change with CO2 inhalation during heavy exercise (Gallagher et al. J. Appl. Physiol. 63: 238-244, 1987), the breathing pattern response to added VD is probably a consequence of alteration in the PCO2 time profile, possibly sensed by the carotid body and/or airway-pulmonary chemoreceptors. The increase in VT during heavy exercise with VD loading indicates that the tachypneic breathing pattern of heavy exercise is not due to mechanical limitation of maximum ventilatory capacity at high levels of VT.  相似文献   

20.
The regional effects of tidal volume (VT), respiratory frequency, and expiratory-to-inspiratory time ratio (TE/TI) during high-frequency ventilation (HFV) were studied in anesthetized and paralyzed dogs. Regional ventilation per unit of lung volume (spVr) was assessed with a positron camera during the washout of the tracer isotope 13NN from the lungs of 12 supine dogs. From the washout data, functional images of the mean residence time (MRT) of 13NN were produced and spVr was estimated as the inverse of the regional MRT. We found that at a constant VT X f product (where f represents frequency), increasing VT resulted in higher overall lung spV through the local enhancement of the basal spVr and with little effect in the apical spVr. In contrast, increasing VT X f at constant VT increased overall ventilation without significantly affecting the distribution of spVr values. TE/TI had no substantial effect in regional spVr distribution. These findings suggest that the dependency of gas transport during HFV of the form VT2 X f is the result of a progressive regional transition in gas transport mechanism. It appears, therefore, that as VT increases, the gas transport mechanism changes from a relative inefficient dispersive mechanism, dependent on VT X f, to the more efficient mechanism of direct fresh gas convection to alveoli with high regional tidal volume-to-dead-space ratio. A mathematical model of gas transport in a nonhomogeneous lung that exhibits such behavior is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号