共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma membrane fractions were isolated from maize (Zea mays L.) endosperms and etiolated kernels to investigate the possible membrane location of the sucrose synthase (SS) protein. Endosperms from seedlings at both 12 and 21 days after pollination (DAP), representing early and mid-developmental stages, were used, in addition to etiolated leaf and elongation zones from seedlings. Plasma membrane fractions were isolated from this material using differential centrifugation and aqueous two-phase partitioning. The plasma membrane-enriched fraction obtained was then analyzed for the presence of sucrose synthase using protein blots and activity measurements. Both isozymes SS1 and SS2, encoded by the lociSh1 andSus1, respectively, were detected in the plasma membrane-enriched fraction using polyclonal and monoclonal antisera to SS1 and SS2 isozymes. In addition, measurements of sucrose synthase activity in plasma membrane fractions of endosperm revealed high levels of specific activity. The sucrose synthase enzyme is tightly associated with the membrane, as shown by Triton X-100 treatment of the plasma membrane-enriched fraction. It is noteworthy that the gene products of bothSh1 andSus1 were detectable as both soluble and plasma membrane-associated forms. 相似文献
2.
Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants show evidence for a third SuSy gene 总被引:1,自引:0,他引:1
Previous studies have identified two tissue- and cell-specific, yet functionally redundant, sucrose synthase (SuSy) genes, Sh1 and Sus1, which encode biochemically similar isozymes, SH1 and SUS1 (previously referred to as SS1 and SS2, respectively). Here we report evidence for a third SuSy gene in maize, Sus3, which is more similar to dicot than to monocot SuSys. RNA and/or protein blot analyses on developing kernels and other tissues show evidence of expression of Sus3, although at the lowest steady-state levels of the three SuSy gene products and without a unique pattern of tissue specificity. Immunoblots of sh1sus1-1 embryos that are either lacking or deficient for the embryo-specific SUS1 protein have shown a protein band which we attribute to the Sus3 gene, and may contribute to the residual enzyme activity seen in embryos of the double mutant. We also studied developing seeds of the double mutant sh1sus1-1, which is missing 99.5% of SuSy enzyme activity, for evidence of co-regulation of several genes of sugar metabolism. We found a significant reduction in the steady-state levels of Miniature-1 encoded cell wall invertase2, and Sucrose transporter (Sut) mRNAs in the double mutant, relative to the lineage-related sh1Sus1 and sh1Sus1 kernels. Down-regulation of the Mn1 gene was also reflected in significant reductions in cell wall invertase activity. Co-regulatory changes were not seen in the expression of Sucrose phosphate synthase, UDP-glucose pyrophosphorylase, and ADP-glucose pyrophosphorylase. 相似文献
3.
4.
A. Cavallini L. Natali C. Balconi E. Rizzi M. Motto G. Cionini F. D. Amato 《Protoplasma》1995,189(3-4):156-162
Summary Chromosome endoreduplication is a very common process in higher plants but its function and genetic control are still to be clarified. In our experiments we analyzed, by Feulgen cytophotometry, chromosome endoreduplication in endosperm cells of two maize genotypes, IHP and ILP, having high and low protein content in their seed, respectively. Chromosome endoreduplication occurs in both lines within 24 days after pollination, attaining a maximum ploidy level of 384C (7 DNA replication rounds) in IHP and of 192C (6 replication rounds) in ILP. In the mature seed, endosperms of the two lines show different mean ploidy level. In reciprocal crosses between IHP and ILP the f1 endosperms have mean ploidy levels analogous to that of the maternal parent, showing that the difference in ploidy level between the two genotypes is maintained. After selfing of the f1 plants, the difference in ploidy level between the two F2 populations is reduced. In F2 the mean ploidy level is as variable as in f1, indicating the absence of genetic segregation. From our data, it is apparent that both the genetic constitution (cytoplasmic and nuclear) of the maternal parent and the genotype of the individual endosperms influence the ploidy level. An analysis of the protein content in endosperms carried out on the same seed sample as analyzed cytophotometrically showed that the protein content increases, during seed development, parallel to chromosome endoreduplication and varies, in the two lines, in reciprocal crosses and their progeny, according to the same trend as mean ploidy level, suggesting a correlation between the two parameters. 相似文献
5.
Summary A developing maize leaf grows by the activity of a basal meristematic region and an adjacent elongating zone, resulting in a morphological and functional gradient along the leaf. We have used this system to detect the spatial and temporal expression of an enzyme, sucrose synthase, which plays a pivotal role in the sucrose import-export transition which occurs along a monocotyledon leaf. Immunogold labeling was used to detect the cellular and sub-cellular distribution of sucrose synthase (SS) at the electron microscopical level; the protein was visualized using a polyclonal antiserum on embedded tissue sections. Immunolabel was observed in the cytosol of dividing meristematic cells, expanding cells of the elongation zone, and in differentiating cells of young photosynthetic tissue. In fully differentiated leaf tissue, however, the protein was no longer immuno-detectable in photosynthetic cells, but was present in the guard and subsidiary cells of stomata and in companion cells within the phloem tissue of vascular bundles. The tissue- and cell-specific localization of sucrose synthase changes along the growing leaf as a function of the developmental state and the associated need for sucrose import or export. 相似文献
6.
P. S. Chourey E. W. Taliercio S. J. Carlson Y.-L. Ruan 《Molecular & general genetics : MGG》1998,259(1):88-96
In maize, two paralogous genes, Sh1 and Sus1, encode two biochemically similar isozymes of sucrose synthase, SS1 and SS2, respectively. Previous studies have attributed
the mild starch deficiency of the shrunken1 (sh1) endosperm to the loss of the SS1 isozyme in the mutant. Here we describe the first mutation in the sucrose synthase1 (Sus1) gene, sus1-1, and the isolation of a double recessive genotype, sh1 sus1-1. Combined data from diverse studies, including Northern and Western analyses, RT-PCR and genomic PCR, cloning and sequencing
data for the 3′ region, show that the mutant sus1-1 gene has a complex pattern of expression, albeit at much reduced levels as compared to the Sus1 gene. Endosperm sucrose synthase activity in sh1 sus1-1 was barely 0.5% of the total activity in the Sh1 Sus1 genotype. Significantly, comparative analyses of Sh1 Sus1, sh1 Sus1 and sh1 sus1-1 genotypes have, for the first time, allowed us to dissect the relative contributions of each isozyme to endosperm development.
Starch contents in endosperm of the three related genotypes were 100, 78 and 53%, respectively. Anatomical analyses, which
confirmed the previously described early cell degeneration phenotype unique to the sh1 Sus1 endosperm, revealed no detectable difference between the two sh1 genotypes. We conclude that the SS1 isozyme plays the dominant role in providing the substrate for cellulose biosynthesis,
whereas the SS2 protein is needed mainly for generating precursors for starch biosynthesis.
Received: 22 January 1998 / Accepted: 30 March 1998 相似文献
7.
8.
E. Frascaroli S. Galletti P. Landi 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1994,88(6-7):780-784
The objectives of this research were to determine if genes controlling the reaction to the herbicide acetochlor in maize (Zea mays L.) are active during both the haploid and the diploid phases of the life cycle and if pollen selection can be utilized for improving sporophytic resistance. Pollen of eight inbred lines, previously characterized through sporophytic analysis for the level of tolerance to acetochlor, showed a differential reaction to the herbicide forin vitro tube length; moreover, such pollen reactions proved to be significantly correlated (r =0.786*,df=6) with those of the sporophytes producing the pollen. Pollen analysis of two inbred lines (i.e. Mo17, tolerant, and B79, susceptible) and their single cross showed that thein vitro pollen-tube length reaction of the hybrid was intermediate between those of two parents. An experiment on pollen selection was then performed by growing tassels of Mo17xB79 in the presence of the herbicide. Pollen obtained from treated tassels showed a greater tolerance to acetochlor, assessed asin vitro tube length reaction, than pollen obtained from control tassels. Moreover, the backcross [B79 (Mo17xB79)] sporophytic population obtained using pollen from the treated tassels was more tolerant (as indicated by the fresh weight of plants grown in the presence of the herbicide) than was the control backcross population. The two populations did not differ when grown without the herbicide. These findings indicate that genes controlling the reaction to acetochlor in maize have haplodiploid expression; consequently, pollen selection can be applied for improving plant tolerance. 相似文献
9.
10.
Spielbauer G Margl L Hannah LC Römisch W Ettenhuber C Bacher A Gierl A Eisenreich W Genschel U 《Phytochemistry》2006,67(14):1460-1475
The central carbohydrate metabolism provides the precursors for the syntheses of various storage products in seeds. While the underlying biochemical map is well established, little is known about the organization and flexibility of carbohydrate metabolic fluxes in the face of changing biosynthetic demands or other perturbations. This question was addressed in developing kernels of maize (Zea mays L.), a model system for the study of starch and sugar metabolism. 13C-labeling experiments were carried out with inbred lines, heterotic hybrids, and starch-deficient mutants that were selected to cover a wide range of performances and kernel phenotypes. In total, 46 labeling experiments were carried out using either [U-13C6]glucose or [U-13C12]sucrose and up to three stages of kernel development. Carbohydrate flux distributions were estimated based on glucose isotopologue abundances, which were determined in hydrolysates of starch by using quantitative 13C-NMR and GC-MS. Similar labeling patterns in all samples indicated robustness of carbohydrate fluxes in maize endosperm, and fluxes were rather stable in response to glucose or sucrose feeding and during development. A lack of ADP-glucose pyrophosphorylase in the bt2 and sh2 mutants triggered significantly increased hexose cycling. In contrast, other mutations with similar kernel phenotypes had no effect. Thus, the distribution of carbohydrate fluxes is stable and not determined by sink strength in maize kernels. 相似文献
11.
12.
Julie Anderson Kirihara John P. Hunsperger Walter C. Mahoney Joachim W. Messing 《Molecular & general genetics : MGG》1988,211(3):477-484
Summary A methionine-rich 10 kDa zein storage protein from maize was isolated and the sequence of the N-terminal 30 amino acids was determined. Based on the amino acid sequence, two mixed oligonucleotides were synthesized and used to probe a maize endosperm cDNA library. A fulllength cDNA clone encoding the 10 kDa zein was isolated by this procedure. The nucleotide sequence of the cDNA clone predicts a polypeptide of 129 amino acids, preceded by a signal peptide of 21 amino acids. The predicted polypeptide is unique in its extremely high content of methionine (22.5%). The maize inbred line BSSS-53, which has increased seed methionine due to overproduction of this protein, was compared to W23, a standard inbred line. Northern blot analysis showed that the relative RNA levels for the 10 kDa zein were enhanced in developing seeds of BSSS-53, providing a molecular basis for the overproduction of the protein. Southern blot analysis indicated that there are one or two 10 kDa zein genes in the maize genome. 相似文献
13.
Intron-dependent transient expression of the maize GapA1 gene 总被引:2,自引:0,他引:2
14.
E. B. Lillehoj W. F. Kwolek W. D. Guthrie D. Barry W. W. McMillian N. W. Widstrom 《Plant and Soil》1982,65(1):95-102
Summary The interaction was studied among: 1) developing maize kernels (Zea mays L.); 2) European Corn Borer (ECB) (Ostrinia nubilalis Hubner); 3) and three fungal species,Aspergillus flavus Lk. ex Fr.,Penicillium oxalcium Currie and Thom, andFusarium moniliforme Sheld. Two hybrids with varying degrees of resistance to ECB stalk damage were grown in Iowa, Georgia, and Missouri in 1980.
One-half of the plots were hand-infested with ECB egg masses. Fungal spores of individual isolates or combinations of the
three species were introduced into the silk channels of developing ears in designated plots. ECB larvae were subsequently
collected from developing ears. A higher incidence ofA. flavus group isolates was observed in ECB larvae collected from ears that had been inoculated withA. flavus than from insects collected from control ears. Although the resistant hybrid exhibited reduced ECB stalk damage compared
with the susceptible variety, no consistent pattern of hybrid effect on the association betweenA. flavus and ECB was observed at all three locations. Differences in aflatoxin B1 levels in mature kernels from the three locations ranged from 8 ppb in Iowa samples to 419 ppb in Missouri kernels. Conditions
during crop development at the Missouri location were particularly conducive to elevated presence ofA. flavus propagules in ECB larvae, increased ECB-mediated stalk damage, and greater toxin concentration in mature kernels. 相似文献
15.
Y. -C. Chen P. S. Chourey 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,78(4):553-559
Summary The DNAs of two diploid species of Gossypium, G. herbaceum var. africanum (A1 genome) and G. raimondii (D5 genome), and the allotetraploid species, G. hirsutum (Ah and Dh genomes), were characterized by kinetic analyses of single copy and repetitive sequences. Estimated haploid genome sizes of A1 and D5 were 1.04 pg and 0.68 pg, respectively, in approximate agreement with cytological observations that A genome chromosomes are about twice the size of D genome chromosomes. This differences in genome size was accounted for entirely by differences in the major repetitive fraction (0.56 pg versus 0.20 pg), as single copy fractions of the two genomes were essentially identical (0.41 pg for A1 and 0.43 pg for D5). Kinetic analyses and thermal denaturation measurements of single copy duplexes from reciprocal intergenomic hybridizations showed considerable sequence similarity between A1 and D5 genomes (77% duplex formation with an average thermal depression of 6 °C). Moreover, little sequence divergence was detectable between diploid single copy sequences and their corresponding genomes in the allotetraploid, consistent with previous chromosome pairing observations in interspecific F1 hybrids.Journal paper No. 4461 of the Arizona Agricultural Experiment Station 相似文献
16.
Frederick C. Felker Douglas C. Doehlert Kenneth Eskins 《Plant Cell, Tissue and Organ Culture》1995,42(2):147-152
Growth and development of plants are known to be affected by exposure to red and blue light. Mechanisms by which light quality influences gene expression in maize (Zea mays L.) embryos have not been explored. Maize kernels can be cultured in vitro allowing experimental manipulation of environmental factors during seed development. We used the in vitro kernel culture system to investigate the response of developing maize seeds, which normally develop without exposure to light, to controlled light quality. Kernels grown under red light accumulated more dry weight than those grown in darkness, whereas kernels grown under blue light accumulated less. Reciprocal color shift experiments showed that light quality during the first week in culture had more influence on kernel weight than during the subsequent three weeks in culture. Soluble sugars were higher in both light treatments than in darkness. Blue-grown kernels had higher amino acid and lower lipid levels than red-or dark-grown kernels. Embryo morphology was markedly affected by red light, under which the upper shoot axis was longer than under blue light or in darkness. Embryo morphology was influenced by light quality during the later stages of development rather than the first week. We suggest, based on these results, that gene expression in the embryo and endosperm of developing maize seeds is sensitive to light quality, and the mechanism and time dependence of this effect warrant further study. In vitro maize kernel culture affords a convenient system for such light quality experiments. 相似文献
17.
Summary The ability to recover male gametophyte derived plants, which is necessary to get transformed haploid plants, was verified for a hybrid of maize. Using the isolated microspore culture technique, a 9 × 10–5 plant regeneration frequency was obtained. Maize microspores were bombarded with tungsten particles using a PDS He/1000 apparatus. GUS expression in the microspores was maximum with 1.1 m diameter tungsten microprojectiles for 1100 and 1350 psi helium pressures at a 6 cm distance between the launch point and the target cells. Increasing the amount of DNA coated on the microparticles from 1.66 to 4 g DNA/mg of particles allowed a two-fold and four-fold increase of the GUS-expressing microspore frequency for 1100 and 1350 psi helium pressure bombardment, respectively. Optimal concentration of solidifying agent in the bombardment support culture medium was found to be 1%. Cell density ranging from 25000 microspores/bombardment to 100000 microspores/bombardment did not affect the frequency of GUS-expressing microspores. Using these optimal conditions, the maximum frequency of GUS-expressing microspores was found to be about 9 × 10–4, while maintaining an embryo formation frequency about 5 × 10–4.Abbreviations GUS
-glucuronidase
- PEG
polyethylene glycol 相似文献
18.
19.