首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
2.
Apoptosis is morphologically related to premature mitosis, an aberrant form of mitosis. Staurosporine, a potent protein kinase inhibitor, induces not only apoptotic cell death in a wide variety of mammalian cells but also premature initiation of mitosis in hamster cells that are arrested in S phase by DNA synthesis inhibitors. Here we report on the biochemical differences between the two phenomena commonly caused by staurosporine. Rat 3Y1 fibroblasts that had been arrested in S phase with hydroxyurea underwent apoptosis by treatment with staurosporine, whereas S-phase-arrested CHO cells initiated mitosis prematurely when similarly treated with a low concentration of staurosporine. Chromosome condensation occurred in both apoptosis (3Y1) and premature mitosis (CHO). However, neither formation of mitotic spindles nor mitosis-specific phosphorylation of MPM-2 antigens was observed in apoptosis of 3Y1 cells, unlike premature mitosis of CHO cells. The p34cdc2kinase activated in normal and prematurely mitotic cells remained inactive in the apoptotic cells, probably because the active cyclin B/p34cdc2complex was almost absent in the S-phase-arrested 3Y1 cells. The absence of intracellular activation of p34cdc2in apoptosis was confirmed by immunohistochemical analyses using a specific antibody raised against Ser55-phosphorylated vimentin which is specifically phosphorylated by p34cdc2during M phase. Furthermore, phosphorylation of histones H1 and H3, which is associated with mitotic chromosome condensation, did not occur in the apoptotic cells. These results indicate that the two phenomena, staurosporine-induced apoptosis and premature mitosis, are different in their requirement for p34cdc2kinase activation and histone phosphorylation.  相似文献   

3.
Staurosporine has been reported to cause arrest of cells in G1 phase at low concentration and in G2 phase at high concentration. This raises the question of why the effects of staurosporine on the cell cycle depend on the applied concentration. In order to verify these multiple functions of staurosporine in Meth-A cells, we used cyclin E as a landmark of G1/S transition, cyclin B as a landmark of G2/M transition and MPM2 as a hallmark of M phase. We found that staurosporine arrested cells in G1 phase at a low concentration (20 nM) and in G2/M phase at a high concentration (200 nM). However, 200 nM staurosporine increased the expression of cyclin B and cdc2 proteins, suggesting that the cells progressed through the G2/M transition, and increased the expression of MPM2 protein, indicating that the cells entered M phase. Moreover, 200 nM staurosporine increased the expression of p53 and p21 proteins and inhibited the expression of cyclin E and cdk2 proteins, suggesting that the cells were arrested in the G1 phase of the next cycle. Morphological observation showed similar results as well. These data suggest that the G2/M accumulation induced by 200 nM staurosporine does not reflect G2 arrest, but rather results from M phase arrest, followed by progression from M phase to the G1 phase of the next cycle without cytokinesis, and finally arrest of the cells in G1 phase.  相似文献   

4.
An affinity-purified antibody (anti-Cdc2C) raised against the carboxy terminal sequence LDNQIKKM of p34cdc2 uncovered in NIH 3T3 cells a protein subpopulation, the location and the level of accumulation of which evolve during progression through the cell cycle: it first emerges inside the nucleus in late G1/early S phase and continues to build up principally in this location throughout S phase; a cytoplasmic expression then becomes apparent near the end of S phase, develops during G2 and sometimes prevails over the nuclear expression; it finally relocates to the nucleus in early prophase. We propose that a major part of this subpopulation would represent p34cdc2 molecules existing inside a complex with cyclin B1. NIH 3T3 cells arrested in early S phase with aphidicolin do not commit prematurely to mitosis which indicates that the regulatory pathway involved in preserving the temporal order of S and M phases is functioning in these conditions. Conjugated Western blot analysis and immunofluorescence microscopy showed that cyclin A, cyclin B1 and tyrosine-phosphorylated p34cdc2 continue to build up predominantly in the nucleus of the arrested cells. After release from the block, the cells rapidly reenter S and G2 phases and, concomitantly, cyclin B1 and tyrosine-phosphorylated p34cdc2 relocate to the cytoplasm before redistributing again in the nucleus in early prophase. These data would suggest that delaying the onset of M phase in NIH 3T3 cells in which the rate of DNA replication is reduced, is first ensured by a mechanism that prevents the cytoplasmic relocation of inactive p34cdc2/cyclin B1 complexes continually forming in the nucleus once the G1 period of mitotic cyclin instability is over.  相似文献   

5.
6.
The Vpr accessory gene product of human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus is believed to play a role in permitting entry of the viral core into the nucleus of nondividing cells. A second role for Vpr was recently suggested by Rogel et al. (M. E. Rogel, L. I. Wu, and M. Emerman, J. Virol. 69:882-888, 1995), who showed that Vpr prevents the establishment in vitro of chronically infected HIV producer cell lines, apparently by causing infected cells to arrest in the G2/M phase of the cell cycle. In cycling cells, progression from G2 to M phase is driven by activation of the p34cdc2/cyclin B complex, an event caused, in part, by dephosphorylation of two regulatory amino acids of p34cdc2 (Thr-14 and Tyr-15). We show here that Vpr arrests the cell cycle in G2 by preventing the activation of the p34cdc2/cyclin B complex. Vpr expression in cells caused p34cdc2 to remain in the phosphorylated, inactive state, p34cdc2/cyclin B complexes immunoprecipitated from cells expressing Vpr were almost completely inactive in a histone H1 kinase assay. Coexpression of a constitutively active mutant p34cdc2 molecule with Vpr relieved the G2 arrest. These findings strongly suggest that Vpr arrests cells in G2 by preventing the activation of the p34cdc2/cyclin B complex that is required for entry into M phase. In vivo, Vpr might, by preventing p34cdc2 activation, delay or prevent apoptosis of infected cells. This would increase the amount of virus each infected cell produced.  相似文献   

7.
The progression of cells from G(2) into mitosis is blocked by exposure to DNA-damaging agents such as ionizing radiation. This G(2) delay is associated with reduced cyclin B1-specific associated histone H1 kinase activity, increased inhibitory phosphorylation of p34(Cdc2), and depressed cyclin B1 levels in HeLa cells. Induction of cyclin B1 or expression of Cdc2AF, a mutant p34(Cdc2) that lacks the sites of inhibitory phosphorylation, only partially reverses the radiation-associated G(2) delay, although both maneuvers rapidly result in increased histone H1 kinase activity. To account for the persistent G(2) delay in the face of active p34(Cdc2) kinase, we determined the location of the kinase activity. Although p34(Cdc2) was active in the cytoplasm, the nuclear p34(Cdc2) was inactive. Irradiation led to nuclear accumulation of the inactive tyrosine-phosphorylated form of p34(Cdc2), whereas the active form was seen in the cytoplasm. At later times when cells had resumed cell cycle progression, nuclear kinase activity was detectable. These results give evidence of segregation of cytoplasmic and nuclear kinase activity after DNA damage that has the effect of enhancing checkpoint control. Shielding the nucleus from the potentially deleterious effects of kinase activity after DNA damage may help irradiated human cancer cells respond to irradiation.  相似文献   

8.
Cytoskeleton reorganization, leading to mitotic spindle formation, is an M-phase-specific event and is controlled by maturation promoting factor (MPF: p34cdc2–cyclinB1 complex). It has previously been demonstrated that the p34cdc2–cyclin B complex associates with mitotic spindle microtubules and that microtubule-associated proteins (MAPs), in particular MAP4, might be responsible for this interaction. In this study, we report that another ubiquitous MAP, TOG in human and its homologue in Xenopus XMAP215, associates also with p34cdc2 kinase and directs it to the microtubule cytoskeleton. Costaining of Xenopus cells with anti-TOGp and anti-cyclin B1 antibodies demonstrated colocalization in interphase cells and also with microtubules throughout the cell cycle. Cyclin B1, TOG/XMAP215, and p34cdc2 proteins were recovered in microtubule pellets isolated from Xenopus egg extracts and were eluted with the same ionic strength. Cosedimentation of cyclin B1 with in vitro polymerized microtubules was detected only in the presence of purified TOG protein. Using a recombinant C-terminal TOG fragment containing a Pro-rich region, we showed that this domain is sufficient to mediate cosedimentation of cyclin B1 with microtubules. Finally, we demonstrated interaction between TOG/XMAP215 and cyclin B1 by co-immunoprecipitation assays. As XMAP215 was shown to be the only identified assembly promoting MAP which increases the rapid turnover of microtubules, the TOG/XMAP215–cyclin B1 interaction may be important for regulation of microtubule dynamics at mitosis.  相似文献   

9.
10.
Although cell polyploidization is not an infrequent event in mammalian cells and is common in tumours, the mechanisms involved are not well understood. Using the murine B16 cell line as a model, we evaluated the role of some key proteins involved in cell cycle progression: p34cdc2, cyclin B1 and PCNA. By means of flow cytometry, we showed that both in modal- and in high-ploidy subpopulations, almost all cells were p34cdc2-positive. In the modal-ploidy subpopulation only 17.1% cells were cyclin B1-positive and 85.6% PCNA-positive; in contrast, in the high-ploidy subpopulation up to 91.8% cells were cyclin B1-positive and 97.3% cells were PCNA-positive (P < 0.001). Immunofluorescence microscopy showed that PCNA was located in the nucleus; p34cdc2, both in the nucleus and cytoplasm; and cyclin B1 yielded a cytoplasmic spotted pattern with a perinuclear reinforcement. After a 24-h incubation with 3[H]-thymidine followed by withdrawal of the isotope, high-ploidy cells remained labelled 8 days after thymidine withdrawal, in contrast to modalploidy cells. Taken together, our results suggest that polyploid cells are not quiescent, their cell cycle is longer than that of the modal-ploidy population, and they maintain cyclin B1 throughout the cycle, which may contribute to their genesis by impeding the exit from mitosis.  相似文献   

11.
It is known that neoplastic transformation of rodent primary embryonic fibroblasts culturedin vitro requires coexpression at least of two cooperating oncogenes. In the case of transduction into cells of oncogenesras andmyc, the cell transformation is poorly effective. To study some additional factors necessary for such transformation, c-myc and N-ras Asp12 were consecutively introduced into REF52 cells by retroviral infection, and the cell cultures obtained were analyzed. Expression ofmyc broke the regulation of the cell cycle, in particular, canceled the G1 phase arrest for cells with damaged DNA, despite the normal function of protein p53 and induction of the p53-responsive genep21 Waf1 in these cells. The subsequent transduction ofras led to morphological transformation of cells and an increase of p53 level. However, reversion of the transformed phenotype to normal morphology took place after less than five passages. On this background, rare clones generated the stable transformed cell lines characterized by accelerated proliferation and having a mutation in thep53 gene. Attempts to obtain stable transformed cell lines by transduction ofras into REF52 cells not expressing exogenousmyc were unsuccessful. Analysis of the stable transformed clones revealed a mutation at codon 271 of thep53 gene, a hot spot of mutations, which led to the replacement of arginine by cysteine. In these clones, p53 is accumulated owing to the increased life time, and has a flexible conformation, being able to interact with monoclonal PAb1620 and PAb240 antibodies recognizing alternative protein conformations. The results obtained suggest that p53 participates in negative regulation of the cell cycle under conditions of oncogenic stimulation, and its inactivation is necessary for full transformation of cells by cooperating oncogenesmyc andras.  相似文献   

12.
M phase-promoting factor (MPF) consists of a p34cdc2 (cdc2) kinase and cyclin B complex which in its active form promotes G2 to M transition. The role of MPF in G2 arrest following DNA damage, however, has remained largely uncharacterized. We have investigated whether nitrogen mustard (HN2) interfered with either the formation of MPF or its activation. For this purpose, we measured cdc2 kinase activity relative to cdc2 and cyclin B protein turnover and the phosphorylation status of cdc2. Studies were performed in two exceptional human lymphoma cell lines, which differed in HN2 sensitivity by 5-fold (CA46, 50% growth-inhibitory dose = 1.0 microM; JLP119, 50% growth-inhibitory dose = 0.2 microM) but exhibited virtually identical DNA interstrand and DNA-protein cross-link exposure. Following HN2 treatment, CA46 cells ceased to enter mitosis and exhibited a marked delay in G2 phase. Failure to enter mitosis paralleled inhibition of cdc2 kinase. Inhibition was not due to decreased levels of cdc2 or cyclin B protein; rather, G2 arrest correlated with the accumulation of both tyrosine-phosphorylated cdc2 and cyclin B. These findings implied that G2 arrest resulted from a down-regulation of the processes that activate MPF. We also found that JLP119 cells, within a few hours of mitosis at the time of drug treatment, evaded checkpoint control and continued cell division unabated by DNA damage. Furthermore, despite similar DNA cross-link exposure, JLP119 cells within the window of checkpoint control were more susceptible to S phase delay than CA46 cells. Altered cell cycle responses correlated with the greater susceptibility of JLP119 cells to the cytotoxic effects of HN2.  相似文献   

13.
Initiation of mitosis in Aspergillus nidulans requires activation of two protein kinases, p34cdc2/cyclin B and NIMA. Forced expression of NIMA, even when p34cdc2 was inactivated, promoted chromatin condensation. NIMA may therefore directly cause mitotic chromosome condensation. However, the mitosis-promoting function of NIMA is normally under control of p34cdc2/cyclin B as the active G2 form of NIMA is hyperphosphorylated and further activated by p34cdc2/cyclin B when cells initiate mitosis. To see the p34cdc2/cyclin B dependent activation of NIMA, okadaic acid had to be added to isolation buffers to prevent dephosphorylation of NIMA during isolation. Hyperphosphorylated NIMA contained the MPM-2 epitope and, in vitro, phosphorylation of NIMA by p34cdc2/cyclin B generated the MPM-2 epitope, suggesting that NIMA is phosphorylated directly by p34cdc2/cyclin B during mitotic initiation. These two kinases, which are both essential for mitotic initiation, are therefore independently activated as protein kinases during G2. Then, to initiate mitosis, we suggest that each activates the other's mitosis-promoting functions. This ensures that cells coordinately activate p34cdc2/cyclin B and NIMA to initiate mitosis only upon completion of all interphase events. Finally, we show that NIMA is regulated through the cell cycle like cyclin B, as it accumulates during G2 and is degraded only when cells traverse mitosis.  相似文献   

14.
The mouse FT210 cell line is a temperature-sensitive cdc2 mutant. FT210 cells are found to arrest specifically in G2 phase and unlike many alleles of cdc2 and cdc28 mutants of yeasts, loss of p34cdc2 at the nonpermissive temperature has no apparent effect on cell cycle progression through the G1 and S phases of the division cycle. FT210 cells and the parent wild-type FM3A cell line each possess at least three distinct histone H1 kinases. H1 kinase activities in chromatography fractions were identified using a synthetic peptide substrate containing the consensus phosphorylation site of histone H1 and the kinase subunit compositions were determined immunochemically with antisera prepared against the "PSTAIR" peptide, the COOH-terminus of mammalian p34cdc2 and the human cyclins A and B1. The results show that p34cdc2 forms two separate complexes with cyclin A and with cyclin B1, both of which exhibit thermal lability at the non-permissive temperature in vitro and in vivo. A third H1 kinase with stable activity at the nonpermissive temperature is comprised of cyclin A and a cdc2-like 34-kD subunit, which is immunoreactive with anti-"PSTAIR" antiserum but is not recognized with antiserum specific for the COOH-terminus of p34cdc2. The cyclin A-associated kinases are active during S and G2 phases and earlier in the division cycle than the p34cdc2-cyclin B1 kinase. We show that mouse cells possess at least two cdc2-related gene products which form cell cycle regulated histone H1 kinases and we propose that the murine homolog of yeast p34cdc/CDC28 is essential only during the G2-to-M transition in FT210 cells.  相似文献   

15.
The progression of cells from G2 into mitosis is mainly controlled by formation of the cyclin B1/p34cdc2 complex. The behaviour of this complex in the irradiation-induced G2 cell cycle delay is still unclear. A prior study demonstrated that the expression of the cyclin B1 protein is reduced by irradiation, and restored to control levels by the methylxanthine drug pentoxifylline, which is a potent G2 block abrogator. The present study shows that irradiation, and 2 mM pentoxifylline affect the expression of the cyclin-dependent kinase p34cdc2 in HeLa cells. Irradiation induces p34cdc2 levels to increase and cyclin B1 levels to decrease. Addition of pentoxifylline at the G2 maximum reverses these trends. This is also evident from the cyclin B1/p34cdc2 ratios which decline after irradiation and are rapidly restored to control levels upon addition of pentoxifylline. It is concluded that cyclin B1 and p34cdc2 protein expression are important events and act in concert to control the irradiation induced G2 block. Analysis of cyclin B1 expression in whole cells and in isolated nuclei furthermore show that cyclin B1 is translocated from the nucleus into the cytoplasm when the G2 block is abrogated by pentoxifylline.  相似文献   

16.
By incubating at 30°C in the presence of an energy source, p34cdc2/cyclin B was activated in the extract prepared from a temperature-sensitive mutant, tsBN2, which prematurely enters mitosis at 40°C, the nonpermissive temperature (Nishimoto, T., E. Eilen, and C. Basilico. 1978. Cell. 15:475–483), and wild-type cells of the hamster BHK21 cell line arrested in S phase, without protein synthesis. Such an in vitro activation of p34cdc2/cyclin B, however, did not occur in the extract prepared from cells pretreated with protein synthesis inhibitor cycloheximide, although this extract still retained the ability to inhibit p34cdc2/cyclin B activation. When tsBN2 cells arrested in S phase were incubated at 40°C in the presence of cycloheximide, Cdc25B, but not Cdc25A and C, among a family of dual-specificity phosphatases, Cdc25, was lost coincidentally with the lack of the activation of p34cdc2/cyclin B. Consistently, the immunodepletion of Cdc25B from the extract inhibited the activation of p34cdc2/cyclin B. Cdc25B was found to be unstable (half-life < 30 min). Cdc25B, but not Cdc25C, immunoprecipitated from the extract directly activated the p34cdc2/cyclin B of cycloheximide-treated cells as well as that of nontreated cells, although Cdc25C immunoprecipitated from the extract of mitotic cells activated the p34cdc2/cyclin B within the extract of cycloheximide-treated cells. Our data suggest that Cdc25B made an initial activation of p34cdc2/cyclin B, which initiates mitosis through the activation of Cdc25C.  相似文献   

17.
Deletion of the fission yeast mitotic B-type cyclin gene cdc13 causes cells to undergo successive rounds of DNA replication. We have used a strain which expresses cdc13 conditionally to investigate re-replication. Activity of Start genes cdc2 and cdc10 is necessary and p34cdc2 kinase is active in re-replicating cells. We tested to see whether other cyclins were required for re-replication using cdc13delta. Further deletion of cig1 and puc1 had no effect, but deletion of cig2/cyc17 caused a severe delay in re-replication. Deletion of cig1 and cig2/cyc17 together abolished re-replication completely and cells arrested in G1. This, and analysis of the temperature sensitive cdc13-117 mutant, suggests that cdc13 can effectively substitute for the G1 cyclin activity of cig2/cyc17. We have characterized p56cdc13 activity and find evidence that in the absence of G1 cyclins, S-phase is delayed until the mitotic p34cdc2-p56cdc13 kinase is sufficiently active. These data suggest that a single oscillation of p34cdc2 kinase activity provided by a single B-type cyclin can promote ordered progression into both DNA replication and mitosis, and that the level of cyclin-dependent kinase activity may act as a master regulator dictating whether cells undergo S-phase or mitosis.  相似文献   

18.
Cyclin B targets p34cdc2 for tyrosine phosphorylation.   总被引:28,自引:7,他引:21       下载免费PDF全文
L Meijer  L Azzi    J Y Wang 《The EMBO journal》1991,10(6):1545-1554
A universal intracellular factor, the 'M phase-promoting factor' (MPF), triggers the G2/M transition of the cell cycle in all organisms. In late G2, it is present as an inactive complex of tyrosine-phosphorylated p34cdc2 and unphosphorylated cyclin Bcdc13. In M phase, its activation as an active MPF displaying histone H1 kinase (H1K) originates from the concomitant tyrosine dephosphorylation of the p34cdc2 subunit and the phosphorylation of the cylin Bcdc13 subunit. We have investigated the role of cyclin in the formation of this complex and the tyrosine phosphorylation of p34cdc2, using highly synchronous mitotic sea urchin eggs as a model. As cells leave the S phase and enter the G2 phase, a massive tyrosine phosphorylation of p34cdc2 occurs. This large p34cdc2 tyrosine phosphorylation burst does not arise from a massive increase in p34cdc2 concentration. It even appears to affect only a fraction (non-immunoprecipitable by anti-PSTAIR antibodies) of the total p34cdc2 present in the cell. Several observations point to an extremely close association between accumulation of unphosphorylated cyclin and p34cdc2 tyrosine phosphorylation: (i) both events coincide perfectly during the G2 phase; (ii) both tyrosine-phosphorylated p34cdc2 and cyclin are not immunoprecipitated by anti-PSTAIR antibodies; (iii) accumulation of unphosphorylated cyclin by aphidicolin treatment of the cells, triggers a dramatic accumulation of tyrosine-phosphorylated p34cdc2; and (iv) inhibition of cyclin synthesis by emetine inhibits p34cdc2 tyrosine phosphorylation without affecting the p34cdc2 concentration. These results show that, as it is synthesized, cyclin B binds and recruits p34cdc2 for tyrosine phosphorylation; this inactive complex then requires the completion of DNA replication before it can be turned into fully active MPF. These results fully confirm recent data obtained in vitro with exogenous cyclin added to cycloheximide-treated Xenopus egg extracts.  相似文献   

19.
HeLa cells in G2 phase are temporarily inhibited and prevented from entering mitosis by treatment with the phorbol ester TPA (12-O-tetradecanoylphorbol-13-acetate), whereas cells in mitosis are refractory to TPA and divide. In this study the possibility was tested that TPA may interfere with the regulatory cycle of MPF (mitosis promoting factor), the rate-limiting protein kinase for cell division. MPF, consisting of the catalytic subunit p34cdc2 and the regulatory subunit Cyclin B, is known to be activated at the transition from G2 phase to mitosis through dephosphorylation at Tyr15 and to become inactivated after metaphase by proteolysis. Treatment of HeLa cells (synchronized around the G2-M transition) with TPA (10-7M) has now been shown to induce an overall decrease of the histone H1 kinase activity associated with anti-p34cdc2 immunoprecipitates after about 20 to 30 min. In metaphase cells, the histone H1 kinase activity of p34cdc2 was shown to remain unaffected by TPA treatment. In cultures enriched in G2 cells neither the amount of p34cdc2 protein nor that of Cyclin B was influenced by TPA. Moreover, the p34cdc2/Cyclin B complex formation was also unaffected. However, p34cdc2 from cultures treated with TPA was more intensely stained by anti-phosphotyrosine antibodies than that of control cells, indicating that TPA treatment probably prevented the tyrosine dephosphorylation required for expression of the histone H1 kinase activity of the complex. The results indicate that TPA treatment of HeLa cultures rapidly stops the G2-M transition because it very rapidly prevents the p34cdc2/Cyclin B complex in G2 cells from developing histone H1 kinase activity.  相似文献   

20.
Primary human fibroblasts arrest growth in response to the inhibition of mitosis by mitotic spindle-depolymerizing drugs. We show that the mechanism of mitotic arrest is transient and implicates a decrease in the expression of cdc2/cdc28 kinase subunit Homo sapiens 1 (CKsHs1) and a delay in the metabolism of cyclin B. Primary human fibroblasts infected with a retroviral vector that drives the expression of a mutant p53 protein failed to downregulate CKsHs1 expression, degraded cyclin B despite the absence of chromosomal segregation, and underwent DNA endoreduplication. In addition, ectopic expression of CKsHs1 interfered with the control of cyclin B metabolism by the mitotic spindle cell cycle checkpoint and resulted in a higher tendency to undergo DNA endoreduplication. These results demonstrate that an altered regulation of CKsHs1 and cyclin B in cells that carry mutant p53 undermines the mitotic spindle cell cycle checkpoint and facilitates the development of aneuploidy. These data may contribute to the understanding of the origin of heteroploidy in mutant p53 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号