首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R E Kohnken  E A Berger 《Biochemistry》1987,26(13):3949-3957
Discoidin I is the most abundant galactose binding lectin produced by the cellular slime mold Dictyostelium discoideum and has been implicated in cell-substratum adhesion. We have developed an assay of carbohydrate binding activity utilizing binding of 125I-asialofetuin to discoidin I, or to other lectins, immobilized on nitrocellulose. Among the proteins examined, only lectins exhibited the ability to bind asialofetuin. Specificity of asialofetuin binding was demonstrated by competition with monosaccharides, which inhibited binding consistent with the known sugar specificity of the lectins examined. Experiments with fetuin and derivatives differing in their oligosaccharide structure indicated a requirement for terminal galactosyl residues for probe binding to discoidin I. We have used this assay to characterize the carbohydrate binding behavior of discoidin I. The extent of asialofetuin binding to discoidin I was dependent on the concentrations of both lectin and ligand. Interpretation of equilibrium binding data suggested that, under saturating conditions, 1 mol of oligosaccharide was bound per mole discoidin I monomer. Furthermore, discoidin I in solution and discoidin I on nitrocellulose were equally effective at competing for soluble asialofetuin, suggesting that immobilization had no effect on the carbohydrate binding behavior of discoidin I. Binding was strongly inhibited by ethylenediaminetetraacetic acid; both Ca2+ and Mn2+ could overcome that inhibition, but Mg2+ could not. Preincubation of discoidin I at 60 degrees C stimulated asialofetuin binding 2-fold by increasing the affinity, while preincubation at higher temperatures resulted in a complete loss of activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The diazonium salt of 9,11-dimethylmethano-11,12-methano-16-(4-aminophenoxy)13,14- dihydro-13-aza-15 alpha beta-omega-tetranor TXA2 (PTA-POA) was synthesized and used as a photoaffinity ligand for the putative human platelet TXA2/PGH2 receptor. Incubation of human platelet membranes with the diazonium salt of PTA-POA followed by photolysis at 290 nm(hv) resulted in a 40% decrease in the specific binding of [125I]PTA-OH as measured in the radioligand binding assay. Co-incubation with a TXA2/PGH2 agonist followed by photolysis resulted in no decrease in specific binding. Incubation of the diazonium salt of PTA-POA with solubilized platelet membranes without photolysis followed by Scatchard analysis resulted in no change in the Kd for [125I]PTA-OH (38 nM) and the preparation which was incubated with the diazonium salt (42 nM). However, the Bmax for [125I]PTA-OH binding was reduced from 2.4 pmole/mg protein for control to 1.4 pmole/mg protein. These studies show that the diazonium salt of PTA-POA may be a useful photoaffinity ligand for human platelet TXA2/PGH2 receptors.  相似文献   

3.
The neuronal dopamine transporter/uptake site can be covalently labeled with the photoaffinity probe 1-(2-[bis-(4-fluorophenyl) methoxy]ethyl)-4-[2-(4-azido-3-[125I]iodophenyl)ethyl]piperazine [( 125I]FAPP) and visualized following sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. Upon photolysis, [125I]FAPP specifically incorporated into a polypeptide of apparent Mr = 62,000 in membranes from both the putamen and the caudate nucleus of control, Alzheimer's, schizophrenia, and Huntington's diseased brain, and following complete deglycosylation, migrated as an Mr approximately 48,000 polypeptide. In parkinsonian postmortem putamen, however, there was no detectable photoincorporation of [125I]FAPP into the ligand binding subunit of the dopamine transporter. [125I]FAPP did specifically label the Mr 62,000 polypeptide of parkinsonian caudate, although with efficiencies of 20-50% of control. The asymmetrical loss of the dopamine transporter in Parkinson's diseased striatum was confirmed in reversible receptor binding experiments using [3H]GBR-12935 (3H-labeled 1-[2-(diphenylmethoxy) ethyl]-4-(3-phenylpropyl)piperazine). In parkinsonian putamen, mazindol competitively inhibited the binding of [3H]GBR-12935 with an estimated affinity (Ki approximately 2,000 nM) 10 times lower than in controls (Ki approximately 30 nM), while the affinity of maxindol for [3H]GBR-12935 binding in the caudate was equal to that seen with controls (Ki approximately 50 nM). The proportion of [3H]GBR-12935 binding sites recognized by mazindol with high affinity in Parkinson's diseased caudate was, however, reduced by 50-80%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Vegetative wild-type (strain NC4) D. discoideum cells and cells at the 10h stage of development (aggregation) were harvested in the presence of 0.5 M-galactose to remove any endogenous discoidin I already bound to the cell surface, and fixed with glutaraldehyde. Affinity-purified 125I-labelled discoidin I bound to these fixed cells in a specific manner, greater than or equal to 95% of binding being inhibited by 0.5 M-galactose. Binding of 125I-labelled discoidin I was essentially complete in 90 min at 22 degrees C. Based on specific radioactivity measurements, vegetative (0h) D. discoideum (NC4) cells bind approx. 8.4 x 10(5) discoidin I tetramers/cell and aggregated (10h) cells bind 5.1 x 10(5) discoidin I tetramers/cell, each exhibiting apparent positive co-operativity of binding with highest limiting affinity constants (Ka) of approx. 1 x 10(7) and 2 x 10(7) M-1, respectively. Klebsiella aerogenes, the food source used for growth of D. discoideum NC4 amoebae, also binds 125I-labelled discoidin I and this is greater than 99% inhibited by 0.5 M-galactose. However, at the levels of bacterial contamination present, greater than 97% of 125I-labelled discoidin I binding to D. discoideum cell preparations was to the cells themselves. Confirmation of the number of discoidin I tetramers bound per D. discoideum cell was obtained by elution of bound 125I-labelled discoidin I followed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and then quantification by scanning of stained discoidin I bands.  相似文献   

5.
The turkey erythrocyte beta 1-adrenergic receptor can be purified by affinity chromatography on alprenolol-Sepharose and characterized by photoaffinity labeling with N-(p-azido-m-[125I]iodobenzyl)-carazolol. Through the use of the specific glycosidases neuraminidase and endo-beta-N-acetylglucosaminidase H and affinity chromatography on lectin-Sepharose gels, we show here that the receptor is an N-glycosyl protein that contains complex carbohydrate chains. No high-mannose carbohydrate chains appear to be present. The binding of the radiolabeled antagonist dihydroalprenolol to the receptor is affected neither by the enzymic treatments nor by the presence of lectins, suggesting that the carbohydrate moiety is not involved in the catecholamine binding site.  相似文献   

6.
A ligand affinity matrix has been developed and utilized to purify the dopamine D2 receptor approx. 2100 fold from bovine striatal membranes. 3-[2-Aminoethyl]-8-[3-(4-fluorobenzoyl)propyl]-4-oxo-1-phenyl-1,3,8- triazaspiro[4.5]decan-4-one (AES) was synthesized and used to prepare the affinity matrix by coupling to epoxy-activated Sepharose 6B (AES-Sepharose). AES (Ki approximately 1.7 nM) is similar in potency to the parent compound, spiperone (Ki approximately 0.8 nM), in competing for [3H]spiperone-binding activity. AES has no significant potency in competing for the dopamine D1 receptor as assessed by competition for [3H]SCH23390 binding (Ki greater than 1 microM). Covalent photoaffinity labeling of the dopamine D2 receptor in bovine striatal membranes with N-(p-azido-m-[125I]iodophenethyl)spiperone [( 125I]N3-NAPS) was prevented by AES at nanomolar concentrations. The dopamine D2 receptor was solubilized from bovine striatal membranes using 0.25% cholate in the presence of high ionic strength, followed by precipitation and subsequent treatment with 0.5% digitonin. Nearly 100% of the [3H]spiperone-binding activity in the cholate-digitonin solubilized preparation was absorbed at a receptor-to-resin ratio of 2:1 (v/v). Dopamine D2 receptor was eluted from the affinity resin using a competing dopaminergic antagonist molecule, haloperidol. Recovery of dopamine D2 receptor activity from the affinity matrix was approx. 9% of the activity adsorbed to the resin. The [3H]spiperone-binding activity in AES-Sepharose affinity purified preparations is saturable and of high affinity (0.2 nM). Affinity-purified preparations maintain the ligand-binding characteristics of a dopamine D2 receptor as assessed by agonist and antagonist competition for [3H]spiperone binding.  相似文献   

7.
The endogenous lectins discoidins I and II are believed to be primary components of the morphogenetic cell cohesion system of D discoideum. We have developed two immunochemical methods to analyze the association of the discoidins with the cell surface. One method is a two-stage specific antibody binding assay in which intact cells are incubated on ice with rabbit serum (either control serum or antidiscoidin I and II), washed, then incubated with 125I-Protein A. Specific antibody binding is defined as the difference between percent radioactivity bound with antidiscoidin versus control serum during the first stage. Substantial specific binding was observed with developed A3 cells but not with vegetative cells, and nearly all of the activity could be removed by pread-sorption of the antiserum with discoidin-Sepharose. As a complementary method, quantitative immunoadsorption analysis was performed in which we tested the ability of intact cells to remove antibodies reactive with purified 125I-discoidin I or II. Developed cells, but not vegetative cells, were capable of adsorbing antibodies reactive with discoidin I as well as those reactive with discoidin II. This represents the first demonstration that both lectins are present on the surface of cohesive cells. These procedures, coupled with other methods to analyze soluble discoidin in cell extracts, were used to study discoidin expression in wild type cells and in two newly isolated aggregation-defective mutants. Strain EB-32 fails to aggregate and displays little or no discoidin in cell extracts or at the cell surface. On the other hand, strain EB-18 forms loose amorphous mounds, and expresses substantial quantities of the discoidins, both in cell extracts and at the cell surface. These mutants should prove valuable in studying the organization and regulation of discoidins I and II at the surface of aggregating cells.  相似文献   

8.
A peptide, AC-Pro-Cys-Lys-Ala-Arg-Ile-DPhe-Pro-Tyr-Gly-Gly-Cys-Arg-NH2, which resembles the binding site of the basic pancreatic trypsin inhibitor, has been prepared by solid-phase peptide synthesis. A partially protected peptide was first obtained from the solid-phase product by removal of all side-chain protecting groups except the acetamidomethyl (Acm) groups on the cysteines. This di-Acm-peptide was deprotected, with concomitant formation of the cyclic product, by treatment with I2 in AcOH. The cyclic 13-residue peptide is a reversible, competitive inhibitor of trypsin with a Ki (app) of 2 . 10(-6) M, but loses its inhibitory activity upon incubation with trypsin. The di-Acm-peptide precursor has a Ki (app) of 5 . 10(-5) M and is deactivated more rapidly by trypsin. The effectiveness of the 13-residue peptides as inhibitors is in part attributed to the conformation induced by the beta-turn directing the -DPhe-Pro portion of the sequence.  相似文献   

9.
Following nutrient depletion, cells of the cellular slime mould Dictyostelium discoideum become cohesive and aggregate to form multicellular complexes. Several proteins that accumulate on the cell surface during this period have been implicated in mediating aggregative-phase cell cohesion, namely contact sites A (CsA), gp 150, and two endogenous lectins (discoidin I and discoidin II). The aggregating cells also possess receptors for both discoidin I and discoidin II but these have not yet been isolated and characterised for both lectins.
In the present study we investigated the relationship between the receptors for these lectins, in particular to what extent discoidin I and discoidin II receptors are common. Radio-iodinated discoidin I and discoidin II were purified and used in binding assays for lectin receptors on the surface of aggregated (10 h stage of development) D. discoideum NC4 cells. Sugar competition of 125I-labelled discoidin I and 125I-labelled discoidin II binding indicated distinct but overlapping sugar specificities for these lectins when binding to their in vivo receptors. Competition of the binding of radio-iodinated lectin with either unlabelled discoidin I or unlabelled discoidin II showed that at least 50% of the cell-surface binding sites for these lectins are in common and for these receptors the binding affinity of discoidin I is 9–20 times higher than for discoidin II. Approximately 35% of discoidin II binding sites appear to be unavailable for discoidin I binding.  相似文献   

10.
The ligand binding subunit of the D2 subtype of the dopamine receptor has been identified by photoaffinity labeling. In order to develop a specific covalent receptor probe, an analogue of the potent D2 selective antagonist spiperone, N-(p-aminophenethyl)spiperone (NAPS) has been synthesized. The aminophenethyl substituent of NAPS can be radioiodinated to theoretical specific radioactivity (2,175 Ci/mmol) and then the arylamine group converted to an arylazide to yield a photosensitive probe [( 125I]N3-NAPS). In rat striatal membranes, the nonradiolabeled azide probe (N3-NAPS) binds to the receptor with high affinity (KD congruent to 1.6 +/- 0.05 nM) and upon photoactivation irreversibly decreases the number of available receptors in these membranes as measured by [3H]spiperone binding. More importantly, however, incubation of rat striatal membranes with [125I]N3-NAPS leads to the photodependent covalent incorporation of the probe into a peptide of Mr = 94,000 as assessed by autoradiography of gels after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Labeling of this Mr = 94,000 peptide can be blocked specifically and stereoselectively by dopaminergic antagonists such as (+)- and (-)-butaclamol but not by non-dopaminergic antagonists. Moreover, dopaminergic agonists also attenuate the covalent labeling of this peptide with an order of potency which is typically D2-dopaminergic. Therefore, the specificity of [125I]N3-NAPS labeling of the Mr = 94,000 peptide suggests that this peptide represents the ligand binding subunit of the D2-dopamine receptor.  相似文献   

11.
An iodinated photosensitive derivative of norepinephine, N-(p-azido-m-iodophenethylamidoisobutyl)-norepinephrine (NAIN), has been synthesized and characterized. NAIN stimulated adenylate cyclase activity in guinea pig lung membranes in a manner similar to (-)-isoproterenol and was inhibited by (-)-alprenolol. NAIN was shown to compete with [125I]iodocyanobenzylpindolol for the beta-adrenergic receptor in guinea pig lung membranes with an affinity which was dependent on the presence of guanyl nucleotides. Carrier-free radioiodinated NAIN ([125I]NAIN) was used at 2 nM to photoaffinity label the beta-adrenergic receptor in guinea pig lung membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of (-)-alprenolol (1 microM) protectable [125I]NAIN labeling showed the same molecular mass polypeptide (65 kDa) that was specifically derivatized with the antagonist photolabel [125I]iodoazidobenzylpindolol. Specific labeling of the beta-adrenergic receptor with [125I]NAIN was dependent on the presence of MgCl2 and the absence of guanyl nucleotide. Guanosine-5'-O-(3-thiotriphosphate (100 microM) abolished specific labeling by [125I]NAIN. N-Ethylmaleimide (2 mM) in the presence of [125I]NAIN protected against the magnesium and guanyl nucleotide effect. These data show that NAIN is an agonist photolabel for the beta-adrenergic receptor.  相似文献   

12.
Binding of porcine interleukin 1, radiolabeled with Bolton-Hunter reagent (125I IL 1), to monolayers of porcine synovial fibroblasts (PSF) was found to be a temperature-dependent process. The rate of uptake and the amount of cell-associated ligand was higher at 37 degrees C than at 4 degrees C or 19 degrees C, and exceeded the apparent equilibrium binding capacity. The amount of bound 125I IL 1 that was removed by brief treatment with acidic buffers decreased from 80% at 4 degrees C to 35% for PSF incubated at 37 degrees C; this procedure was used to distinguish surface-bound from internalized ligand. In untreated PSF, surface binding was maximal at 1 hr and was maintained for at least 5 hr during which time the internal pool continued to increase. The lysosomotropic agent methylamine (20 mM) decreased surface binding by 50%; monensin (20 microM) decreased the rate and extent of internalization. Cycloheximide (10 micrograms/ml) did not affect ligand uptake, hence, continual expression of surface receptors could not be ascribed to their de novo synthesis. 40% of the radioactivity taken up by PSF during incubation at 37 degrees C subsequently appeared in the culture medium upon prolonged postincubation (5 hr) in the absence of added 125I IL 1: 60% of this fraction was trichloroacetic acid-soluble in untreated cultures, but the extent of degradation was halved by treatment with methylamine or monensin. Direct measurement of the rate of internalization of prebound 125I IL 1 was obtained by monitoring the formation of covalently cross-linked ligand-receptor complexes after warming PSF monolayers to 37 degrees C. By using gel electrophoresis we observed a decrease (t1/2 = 9 to 11 min) in labeling of the major cross-linkable species.  相似文献   

13.
We have shown previously that the lipophilic photoreagent 3-(trifluoromethyl)3-m-([125I]iodophenyl)-diazirine ([125I]TID) photolabels all four subunits of the Torpedo nicotinic acetylcholine receptor (AChR) and that greater than 70% of this photoincorporation is inhibited by cholinergic agonists and some noncompetitive antagonists, including histrionicotoxin (HTX), but not phencyclidine (PCP; White, B.H., and Cohen, J.B. (1988) Biochemistry 27, 8741-8751). We have now examined the effects of nonradioactive TID on (a) AChR photoincorporation of [125I]TID, (b) AChR-mediated ion transport, and (c) AChR binding of several cholinergic ligands. We find that TID inhibits [125I]TID photoincorporation into the AChR to the same extent as carbamylcholine. The saturable component of [125I]TID photolabeling is half-maximal at 4 microM [125I]TID with 0.5 mol specifically incorporated per mol of AChR after 30 min photolysis with 60 microM [125I]TID. Repeated labeling of membranes at a fixed [125I]TID concentration gave results consistent with a maximal incorporation of one [125I]TID molecule per AChR. Nonradioactive TID also noncompetitively inhibits agonist-stimulated 22Na+ efflux from Torpedo vesicles with an IC50 of 1 microM. Furthermore, TID inhibits allosterically the binding of [3H]HTX, decreasing its affinity for the AChR 5-fold both in the presence and absence of agonist. In contrast, TID has little effect on [3H]PCP binding in the absence of agonist but completely inhibits it in the presence of agonist. TID enhances the cooperativity of [3H]nicotine binding. [125I]TID is thus a photoaffinity label for a novel noncompetitive antagonist binding site on the AChR that is linked allosterically to the binding sites of both agonists and other noncompetitive antagonists. The [125I]TID site is presumably located within the central pore of the AChR.  相似文献   

14.
Characterization of cholecystokinin receptors in toad retina   总被引:2,自引:0,他引:2  
E A Bone  S A Rosenzweig 《Peptides》1988,9(2):373-381
The binding characteristics, structure, and pharmacologic properties of a cholecystokinin binding protein in toad retinal membranes have been studied. In competition binding studies using 125I-CCK-8, toad retinal membranes exhibited a high affinity binding site having a Ki50 of 1.5 nM using CCK-8 as competitive ligand. The relative potencies of CCK-related peptides in inhibiting radioligand binding were caerulein greater than gastrin II approximately equal to CCK-8 approximately equal to CCK-33 greater than CCK-8-DS approximately equal to gastrin I. L-364,718, a potent inhibitor of peripheral CCK receptors, was ineffective at competition binding at concentrations up to 1 microM; dibutyryl cyclic GMP was modestly effective at competing (KD approximately 10 mM). Covalent binding of 125I-CCK-33 to toad retinal membranes using chemical cross-linkers or UV irradiation resulted in the labeling of a major Mr 62,000 protein and the intermittent labeling of minor components of Mr 105,000 and Mr 40,000 as determined by SDS-PAGE and autoradiography. The binding of 125I-CCK-33 to retinal membranes and the concomitant labeling of the Mr 62,000 component was specifically inhibited by CCK-8 (KD approximately 1.5 nM). Reduction of membranes with DTT abolished specific binding of 125I-CCK. SDS-PAGE analysis of affinity cross-linked membranes under non-reducing conditions revealed that the Mr 62,000 protein migrated with an apparently lower molecular weight. These results suggest that the Mr 62,000 CCK binding protein in the toad retina contains an intramolecular disulfide bond(s). The Mr 62,000 protein was retained on a wheat germ agglutinin-agarose column and eluted with N-acetyl D-glucosamine, suggesting the glycoprotein nature of this protein. Digestion of the Mr 62,000 protein with neuraminidase together with O-glycanase resulted in a discrete product of Mr approximately 60,000. These results indicate that the Mr 62,000 protein is a glycoprotein with O-linked oligosaccharide chains. Taken together, these data indicate that the CCK receptor in toad retina has a distinct structure compared to that described in rat pancreas or brain. It will be important to establish whether this difference is reflected in differences in signal transduction mechanisms.  相似文献   

15.
Receptor for the cell binding site of discoidin I   总被引:13,自引:0,他引:13  
Discoidin I, a developmentally regulated lectin in Dictyostelium discoideum, has been implicated in cell-substratum adhesion and ordered cell migration during aggregation. This depends on the cell binding site of discoidin I, which is distinct from its carbohydrate binding site. We have isolated a receptor for the cell binding site by affinity chromatography. The receptor binds immobilized discoidin I in the presence of 0.3 M galactose and can be eluted with gly-arg-gly-asp-his-asp, a synthetic peptide the sequence of which is found in discoidin I, and which blocks cell migration into aggregates. The receptor is a developmentally regulated cell-surface glycoprotein of apparent Mr approximately 67,000. Univalent antibodies specific for this glycoprotein block aggregation.  相似文献   

16.
Two iodophenylazide derivatives of reserpine and one iodophenylazide derivative of tetrabenazine have been synthesized and characterized as photoaffinity labels of the vesicle monoamine transporter (VMAT2). These compounds are 18-O-[3-(3'-iodo-4'-azidophenyl)-propionyl]methyl reserpate (AIPPMER), 18-O-[N-(3'-iodo-4'-azidophenethyl)glycyl]methyl reserpate (IAPEGlyMER), and 2-N-[(3'-iodo-4'-azidophenyl)-propionyl]tetrabenazine (TBZ-AIPP). Inhibition of [3H]dopamine uptake into purified chromaffin granule ghosts showed IC50 values of approximately 37 nM for reserpine, 83 nM for AIPPMER, 200 nM for IAPEGlyMER, and 2.1 microM for TBZ-AIPP. Carrier-free radioiodinated [125I]IAPEGlyMER and [125I]TBZ-AIPP were synthesized and used to photoaffinity label chromaffin granule membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed specific [125I]IAPEGlyMER labeling of a polypeptide that migrated as a broad band (approximately 55-90 kDa), with the majority of the label located between 70 and 80 kDa. The labeling by [125I]IAPEGlyMER was blocked by 100 nM reserpine, 10 microM tetrabenazine, 1 mM serotonin, and 10 mM (-)-norepinephrine and dopamine. Analysis of [125I]TBZ-AIPP-labeled chromaffin granule membranes by SDS-PAGE and autoradiography demonstrated specific labeling of a similar polypeptide, which was blocked by 1 microM reserpine and 10 microM tetrabenazine. Incubation of [125I]TBZ-AIPP-photolabeled chromaffin granule membranes in the presence of the glycosidase N-glycanase shifted the apparent molecular weight of VMAT2 to approximately 51 kDa. These data indicate that [125I]IAPEGlyMER and [125I]TBZ-AIPP are effective photoaffinity labels for VMAT2.  相似文献   

17.
Photoaffinity labeling of dopamine D1 receptors   总被引:5,自引:0,他引:5  
A high-affinity radioiodinated D1 receptor photoaffinity probe, (+/-)-7-[125I]iodo-8-hydroxy-3-methyl-1-(4-azidophenyl)-2,3,4,5-tetra hyd ro- 1H-3-benzazepine ([125I]IMAB), has been synthesized and characterized. In the absence of light, [125I]IMAB bound in a saturable and reversible manner to sites in canine brain striatal membranes with high affinity (KD approximately equal to 220 pM). The binding of [125I]IMAB was stereoselectively and competitively inhibited by dopaminergic agonists and antagonists with an appropriate pharmacological specificity for D1 receptors. The ligand binding subunit of the dopamine D1 receptor was visualized by autoradiography following photoaffinity labeling with [125I]IMAB and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Upon photolysis, [125I]IMAB incorporated into a protein of apparent agents in a stereoselective manner with a potency order typical of dopamine D1 receptors. In addition, smaller subunits of apparent Mr 62,000 and 51,000 were also specifically labeled by [125I]IMAB in these species. Photoaffinity labeling in the absence or presence of multiple protease inhibitors did not alter the migration pattern of [125I]IMAB-labeled subunits upon denaturing electrophoresis in both the absence or presence of urea or thiol reducing/oxidizing reagents. [125I]IMAB should prove to be a useful tool for the subsequent molecular characterization of the D1 receptor from various sources and under differing pathophysiological states.  相似文献   

18.
Helix pomatia agglutinin (HPA) is a N-acetylgalactosamine (GalNAc) binding lectin found in the albumen gland of the roman snail. As a constituent of perivitelline fluid, HPA protects fertilized eggs from bacteria and is part of the innate immunity system of the snail. The peptide sequence deduced from gene cloning demonstrates that HPA belongs to a family of carbohydrate-binding proteins recently identified in several invertebrates. This domain is also present in discoidin from the slime mold Dictyostelium discoideum. Investigation of the lectin specificity was performed with the use of glycan arrays, demonstrating that several GalNAc-containing oligosaccharides are bound and rationalizing the use of this lectin as a cancer marker. Titration microcalorimetry performed on the interaction between HPA and GalNAc indicates an affinity in the 10(-4) M range with an enthalpy-driven binding mechanism. The crystal structure of HPA demonstrates the occurrence of a new beta-sandwich lectin fold. The hexameric quaternary state was never observed previously for a lectin. The high resolution structure complex of HPA with GalNAc characterizes a new carbohydrate binding site and rationalizes the observed preference for alphaGalNAc-containing oligosaccharides.  相似文献   

19.
A photoaffinity analog of colchicine, 6-(4'-azido-2'-nitrophenylamino)hexanoyldeacetylcolchicine, was synthesized by reacting deacetylcolchicine or [3H]deacetylcochicine with N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate. Homogeneity of the photoaffinity analog was established by thin-layer chromatography and high-pressure liquid chromatography. The structure of the photoaffinity analog was determined by 1H and 13C NMR, infrared and ultraviolet-visible spectroscopies, and elemental analysis. Binding of 6-(4'-azido-2'-nitrophenylamino)hexanoyldeacetylcolchicine to bovine renal tubulin was measured by competition with [3H]colchicine. The value of the apparent Ki for the photoaffinity analog was 0.28 microM in the concentration range of 0.8-1.2 microM of the analog. A value of 0.50 microM for the apparent Kd was measured by the direct binding of the tritiated photoaffinity analog to tubulin. The analog is slightly more potent an inhibitor of microtubule formation than colchicine. The photoaffinity analog reacted with renal tubulin upon irradiation with a mercury lamp equipped with a 420-nm cutoff filter. Spectral and radiochemical analyses of the tubulin after photolysis and dialysis have demonstrated a stoichiometric incorporation of the photoaffinity analog in the alpha-subunit of the tubulin. Covalent labeling of tubulin with the photoaffinity analog decreases the extent of [3H]colchicine binding by more than 90%.  相似文献   

20.
In an in vitro incubation, 8-azidoguanosine 5'-[gamma-32P]triphosphate ( [gamma-32P]-8-azido-GTP) labeled bleached rhodopsin independent of ultraviolet light. Characterization of this labeling indicated that rhodopsin was phosphorylated with [gamma-32P]-8-azido-GTP as a phosphate donor. At low concentrations, ATP increased this labeling activity 5-fold. In the same incubation, [gamma-32P]-8-azido-GTP also labeled G alpha (Mr 40 000). This labeling was ultraviolet light dependent. G beta (Mr 35 000) was also labeled dependent for the most part upon ultraviolet light, but a smaller component of labeling appeared to result from phosphorylation. Differential labeling of G alpha and G beta was found to vary intricately with experimental conditions, especially prebleaching of rhodopsin, tonicity of the medium, and the presence or absence of 2-mercaptoethanol. Affinity labeling of G alpha and G beta by [gamma-32P]-8-azido-GTP in competition with ATP or GTP was kinetically complex, consistent with possible multiple binding sites for GTP on both subunits. Independent evidence for two or more binding sites on G alpha has been offered by other laboratories, and recently, at least one binding site on G beta and its analogues among the N proteins of adenylate cyclases has been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号