首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid equilibrium dialysis (RED) assay followed by a solid phase extraction (SPE) high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantitative determination of unbound vismodegib in human plasma was developed and validated. The equilibrium dialysis was carried out using 0.3 mL plasma samples in the single-use plate RED system at 37°C for 6h. The dialysis samples (0.1 mL) were extracted using a Strata-X-C 33u Polymeric Strong Cation SPE plate and the resulting extracts were analyzed using reverse-phase chromatography and positive electrospray ionization (ESI) mass spectrometry. The standard curve, which ranged from 0.100 to 100 ng/mL for vismodegib, was fitted to a 1/x(2) weighted linear regression model. The lower limit of quantitation (LLOQ, 0.100 ng/mL) was sufficient to quantify unbound concentrations of vismodegib after dialysis. The intra-assay precision of the LC-MS/MS assay, based on the four analytical QC levels (LLOQ, low, medium and high), was within 7.7% CV and inter-assay precision was within 5.5% CV. The assay accuracy, expressed as %Bias, was within ±4.0% of the nominal concentration values. Extraction recovery of vismodegib was between 77.9 and 84.0%. The assay provides a means for accurate assessment of unbound vismodegib plasma concentrations in clinical studies.  相似文献   

2.
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method for the determination of paclitaxel (Taxol) and its two major metabolites in human plasma has been developed. Samples were prepared after liquid-liquid extraction and analyzed on a C(18) column interfaced with a Q-Trap tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of acetonitrile-water (0.05% formic acid) (65:35) at the flow rate of 0.25 mL/min. The analytes and internal standard docetaxel were both detected by use of multiple reaction monitoring mode. The method was linear in the concentration range of 0.5-500.0 ng/mL for paclitaxel, 6α-hydroxypaclitaxel and p-3'-hydroxypaclitaxel, respectively. The lower limit of quantification (LLOQ) was 0.5 ng/mL for paclitaxel, 6α-hydroxypaclitaxel and p-3'-hydroxypaclitaxel, respectively. The intra- and inter-day relative standard deviation across three validation runs over the entire concentration range was less than 8.18%. The accuracy determined at three concentrations was within ±10.8% in terms of relative error. The total run time was 7.0 min. This assay offers advantages in terms of expediency, and suitability for the analysis of paclitaxel and its metabolites in various biological fluids.  相似文献   

3.
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantification of chloroquine, an antimalarial drug, in plasma using its structural analogue, piperazine bis chloroquinoline as internal standard (IS). The method is based on simple protein precipitation with methanol followed by a rapid isocratic elution with 10 mM ammonium acetate buffer/methanol (25/75, v/v, pH 4.6) on Chromolith SpeedROD RP-18e reversed phase chromatographic column and subsequent analysis by mass spectrometry in the multiple reaction monitoring mode (MRM). The precursor to product ion transitions of m/z 320.3-->247.2 and m/z 409.1-->205.2 were used to measure the analyte and the IS, respectively. The assay exhibited a linear dynamic range of 2.0-489.1 ng/mL for chloroquine in dog plasma. The limit of detection (LOD) and lower limit of quantification (LLOQ) were 0.4 and 2.0 ng/mL, respectively in 0.05 mL plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range of 2.0-489.1 ng/mL. A run time of 2.0 min for a sample made it possible to achieve a throughput of more than 400 plasma samples analyzed per day. The validated method was successfully used to analyze samples of dog plasma during non-clinical study of chloroquine.  相似文献   

4.
A selective, sensitive and rapid liquid chromatography-tandem mass spectrometry method for the determination of levonorgestrel in plasma was developed. An Applied Biosystems API 3000 triple quadrupole mass spectrometer set to multiple reaction monitoring (MRM) mode, using atmospheric pressure photospray ionisation (APPI) in the positive mode. Using 17-alpha-methyltestosterone as internal standard (IS), liquid-liquid extraction was followed by reversed phase liquid chromatography using a phenyl-hexyl column and tandem mass spectrometric detection. The mean recovery for levonorgestrel and 17-alpha-methyltestosterone was 99.5 and 62.9%, respectively. The method was validated from 0.265 to 130 ng levonorgestrel/ml plasma with the lower limit of quantification (LLOQ) set at 0.265 ng/ml. This assay method makes use of the increased sensitivity and selectivity of tandem mass spectrometric (MS/MS) detection, allowing for a rapid (extraction and chromatography) and selective method for the determination of levonorgestrel in human plasma. The assay method was used in a pharmacokinetic study to quantify levonorgestrel in human plasma samples generated after administrating a single oral dose of 1.5 mg levonorgestrel to healthy female volunteers for up to five half lives. The total chromatographic runtime of this method was 5.0 min per sample, allowing for analysis of a large number of samples per batch.  相似文献   

5.
A liquid chromatography-tandem mass spectrometry assay to quantify total paclitaxel in mouse plasma and tissue homogenates containing paclitaxel, Taxol, or liposome-entrapped paclitaxel-easy to use (LEP-ETU) was developed and validated. Docetaxel was used as the internal standard (IS). Liquid-liquid extraction with tert-butyl methyl ether was used for plasma sample preparation, and a one-step protein precipitation with acetonitrile containing 0.1% acetic acid was developed for tissue homogenates. Paclitaxel and IS are separated on a 50 x 2.1-mm C18 column and quantified using a triple-quadrupole mass spectrometer operating in positive ion electrospray multiple reaction monitoring mode, with a total run time of 3.5 min. The peak area of the m/z 854.4--> 286.2 transition of paclitaxel is measured versus that of the m/z 808.5--> 527.5 transition of IS to generate the standard curve. In plasma, the linear range is 0.2-500 ng/mL and could be extended by dilution to 100,000 ng/mL with acceptable precision and accuracy (< or = 15%). The lower limit of quantification is 0.5 ng/mL in tissue homogenates (10 ng/g tissue), and the standard curve is linear up to 1000 ng/mL, with precision and accuracy < or = 15%. This assay was used to support a pharmacokinetics and tissue distribution study of LEP-ETU in mice.  相似文献   

6.
An analytical procedure for the determination of phencyclidine in oral fluid has been developed and validated using liquid chromatography with tandem mass spectral detection, following initial screening with enzyme linked immunosorbent assay. The oral fluid samples were collected using the Quantisal device, and any drugs present were quantified using mixed mode solid-phase extraction followed by mass spectrometric detection in positive atmospheric pressure chemical ionization mode. For confirmation, two transitions were monitored and one ratio determined, which had to be within 20% of that of the known calibration standard. The monitoring of the qualifying transition and requirement for its presence within a specific ratio to the primary ion has the potential of limiting the sensitivity of the assay, however, the additional confidence in the final result as well as forensic defensibility were considered to be of greater importance. The limit of quantitation was 5ng/mL; the intra-day precision of the assay (n=5) was 3.04%; inter-day precision 3.35% (n=5) at a concentration of 10ng/mL. The accuracy was determined at four concentrations (5, 10, 20 and 40ng/mL) within the linear range of the assay. The percentage recovery of phencyclidine from the oral fluid collection pad was 81.7% (n=6). The methods were applied to both proficiency specimens and to samples obtained during research studies in the USA.  相似文献   

7.
A new, rapid and sensitive high-performance liquid chromatographic method for the analysis of paclitaxel (Taxol) in human plasma and urine was developed and validated. After addition of an internal standard, paclitaxel was extracted from plasma or urine by a liquid–liquid extraction using diethyl ether. Extraction efficiency averaged 90%. Chromatography was performed isocratically on a reversed-phase column monitored at 227 nm. Retention times were 7.7 and 6.7 min for paclitaxel and docetaxel, respectively, and the assay was linear in the range 25–1000 ng/ml. The limits of quantification for paclitaxel were 25 and 40 ng/ml in plasma and urine, respectively. The assay was shown to be suitable for pharmacokinetic studies of children involved in a phase I clinical trial.  相似文献   

8.
A combined assay for the determination of paclitaxel, docetaxel and ritonavir in human plasma is described. The drugs were extracted from 200 μL human plasma using liquid-liquid extraction with tertiar-butylmethylether, followed by high performance liquid chromatography analysis using 10 mM ammonium hydroxide pH 10:methanol (3:7, v/v) as mobile phase. Chromatographic separation was obtained using a Zorbax Extend C(18) column. Labelled analogues of the analytes are used as internal standards. For detection, positive ionization electrospray tandem mass spectrometry was used. Method development including optimisation of the mass transitions and response, mobile phase optimisation and column selection are discussed. The method was validated according to FDA guidelines and the principles of Good Laboratory Practice (GLP). The validated range was 0.5-500 ng/mL for paclitaxel and docetaxel and 2-2000 ng/mL for ritonavir. For quantification, quadratic calibration curves were used (r(2)>0.99). The total runtime of the method is 9 min and the assay combines analytes with differences in ionisation and desired concentration range. Inter-assay accuracy and precision were tested at four concentration levels and were within 10% and less than 10%, respectively, for all analytes. Carry-over was less than 6% and endogenous interferences or interferences between analytes and internal standards were less than 20% of the response at the lower limit of quantification level. The matrix factor and recovery were determined at low, mid and high concentration levels. The matrix factor was around 1 for all analytes and total recovery between 77.5 and 104%. Stability was investigated in stock solutions, human plasma, dry extracts, final extracts and during 3 freeze/thaw cycles. The described method was successfully applied in clinical studies with oral administration of docetaxel or paclitaxel in combination with ritonavir.  相似文献   

9.
Paclitaxel is pharmaceutically formulated in a mixture of Cremophor EL and ethanol (1:1, v/v). The unbound fraction of the anticancer drug paclitaxel in plasma is dependent on both plasma protein binding and entrapment in Cremophor EL micelles. We have developed a simple and reproducible method for the quantification of the unbound paclitaxel fraction in human plasma. Human plasma was spiked with [3H]paclitaxel and [14C]glucose (unbound reference) and incubated at 37 degrees C for 30 min. Plasma ultrafiltrate was prepared by a micropartition system (MPS-1) and collected in a sample cup containing 100 microl of plasma to prevent the loss of paclitaxel due to adsorption. The radionuclides were separated after combustion of the biological samples using a sample oxidizer and the radioactivity was determined by liquid scintillation counting. The unbound fraction of paclitaxel was calculated by dividing the ratios of 3H and 14C in plasma ultrafiltrate and in plasma. The method was thoroughly validated using human plasma spiked with pharmacologically relevant concentrations of paclitaxel (10-1000 ng/ml) and Cremophor EL (0.25-2.0%). The method was precise, with a within-day precision ranging from 3.9 to 11.0% and a between-day precision ranging from 5.8 to 13.1%. In patient plasma with low serum albumin values containing 1% of Cremophor EL, the unbound fraction appeared to be significantly higher than that in plasma with normal albumin values. The determination of the unbound fraction of paclitaxel proved to be stable during a 10-week storage at -20 degrees C. Furthermore, the assay was applicable in patient samples. This assay can be used to determine the unbound fraction of paclitaxel in plasma. Moreover, its design should allow the determination of the unbound concentrations of other hydrophobic drugs.  相似文献   

10.
A sensitive, specific and rapid liquid chromatographic/tandem mass spectrometric (LC/MS/MS) assay for the determination of allylestrenol in human plasma was established. Plasma samples were extracted by tert-butyl ether and separated by LC/MS/MS using a Phenomenex Curosil-PFP column (250 mm x 4.6 mm ID, dp 5 microm) with a mobile phase of methanol-water (95:5, v/v). The analytes were monitored with atmospheric pressure chemical ionization (APCI) by selected reaction monitoring (SRM) mode. The linear calibration curves covered a concentration range of 0.04-20.0 ng/mL with lower limit of quantification (LLOQ) at 0.04 ng/mL. The mean extraction recovery of allylestrenol was greater than 81.8%. The intra- and inter-day precisions were less than 1.3% and 3.1% respectively, determined from quality control (QC) samples of three representative concentrations. The method has been successfully applied to determining the plasma concentration of allylestrenol and a clinical pharmacokinetics study in healthy Chinese female volunteers.  相似文献   

11.
A sensitive and high throughput off-line μElution 96-well solid-phase extraction (SPE) followed by strong cation exchange (SCX) liquid chromatography with tandem mass spectrometry (LC/MS/MS) quantification for determination of cefepime has been developed and validated in mouse plasma. Using the chemical analog, ceftazidime as an internal standard (IS), the linear range of the method for the determination of cefepime in mouse plasma was 4–2048 ng/mL with the lower limit of quantitation level (LLOQ) of 4 ng/mL. The inter- and intra-assay precision and accuracy of the method were below 9.05% and ranged from 95.6 to 113%, respectively, determined by quality control (QC) samples at five concentration levels including LLOQ. After μElution SPE, 71.1% of cefepime was recovered. The application of the validated assay for the determination of cefepime in mouse pharmacokinetics (PK) samples after intravenous (IV) and subcutaneous (SC) doses was demonstrated.  相似文献   

12.
A rapid and sensitive method for the simultaneous determination of paracetamol and guaifenesin in human plasma was developed and validated, using high-performance liquid chromatographic separation with tandem mass spectrometric detection. After extracted from plasma samples by diethyl ether-dichloromethane (3:2, v/v), the analytes and internal standard osalmide were chromatographed on a C18 column. Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI). The method was linear in the concentration range of 0.05-20.0 microg/ml for paracetamol and 5.0-2000.0 ng/ml for guaifenesin. The intra- and inter-day precision was within 14% for both paracetamol and guaifenesin. The assay accuracy was within +/-2.4% for the analytes. This is the first assay method described for the simultaneous determination of paracetamol and guaifenesin in plasma using one chromatographic run. The method was successfully employed in a pharmacokinetic study after an oral administration of a multicomponent formulation, containing 650 mg paracetamol, 200 mg guaifenesin, 60 mg pseudoephedrine and 20 mg dextrorphan.  相似文献   

13.
PM01218 is a novel marine-derived alkaloid and has shown potent growth inhibitory activity against several human cancer cell lines. A rapid and sensitive high performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) method was developed and validated to quantify PM01218 in mouse and rat plasma. The lower limit of quantitation (LLOQ) was 0.05 ng/mL. The calibration curve was linear from 0.05 to 100 ng/mL (R(2)>0.999). The assay was specifically based on the multiple reaction monitoring (MRM) transitions at m/z 278.4-->184.2, no endogenous material interfaced with the analysis of PM01218 and its internal standard from blank mouse and rat plasma. The mean intra- and inter-day assay accuracy remained below 15 and 8%, respectively, for all calibration standards and QC samples. The intra- and inter-day assay precision was less than 12.8 and 8.5% for all QC levels, respectively. The utility of the assay was demonstrated by pharmacokinetics studies of i.v. (bolus) PM01218 on SD rats.  相似文献   

14.
Cromolyn sodium is a safe compound with potent anti-allergic properties when used locally or topically. Clinical data from systemic exposure is not available because of the poor GI absorption when given orally. In order to evaluate a new approach to enhance the absorption and bioavailability of cromolyn sodium, a sensitive assay was needed to support an oral-dose study in humans. This paper describes a liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method for the analysis of cromolyn sodium in human plasma. The method consists of a two-step extraction with subsequent analysis using a high-performance liquid chromatography electrospray tandem mass spectrometer system. The compounds were eluted isocratically on a C(18) column followed by a backflush. The total run time is 6 min. The standard curve of cromolyn sodium was over the range of 0.313 to 750 ng/mL with a lower limit of quantitation (LLOQ) of 0.313 ng/mL when 0.5 mL of plasma was used for analysis. The percent coefficient of variation (C.V.) for accuracy and precision (inter-assay and intra-assay) was less than 15% over the validated concentration range and the coefficients of determination, r(2), were >0.991577. The method is simple, sensitive, and selective, and has been successfully utilized for oral cromolyn sodium clinical studies.  相似文献   

15.
Echinacea purpurea is one of the most popular herbal medicines and is known for its immunostimulatory effects. Alkylamides are the main lipophilic components of E. purpurea that contribute to its pharmacological actions. For quantification in human plasma of one of these alkylamides, undeca-2-ene-8,10-diynoic acid isobutylamide, a sensitive LC-MS/MS assay has been developed and validated. Plasma samples were pretreated using liquid-liquid extraction with a mixture of diethyl ether and n-hexane (50:50, v/v). Dried extracts were reconstituted in 50 μL of acetonitrile-water (50:50, v/v) after which 15 μL of sample was injected into the HPLC system. HPLC was performed using a Polaris 3 C18-A column (50 mm×2 mm ID) and isocratic elution with acetonitrile-water (50:50, v/v) containing 0.1% formic acid at a flow rate of 0.3 mL/min. Subsequently, electrospray ionization in the positive ion mode followed by tandem mass spectrometry was performed for detection. The total run time was 3 min. The assay was validated over a concentration range from 0.05 to 50 ng/mL for undeca-2-ene-8,10-diynoic acid isobutylamide, with 0.05 ng/mL being the lower limit of quantification using 1.0 mL plasma samples. Inter-assay inaccuracy (±12.7%), within-day and between-day precisions (CV≤8.23%) were acceptable. Further, undeca-2-ene-8,10-diynoic acid isobutylamide was found to be chemically stable under relevant conditions. Finally, the applicability of this assay has been successfully demonstrated in a pharmacokinetic experiment in which a human volunteer ingested a commercial extract of E. purpurea.  相似文献   

16.
To support pharmacokinetic studies, a selective and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of a novel KDR kinase inhibitor (1) and its active metabolite (2) in human plasma. The method is fully automated using a Packard MultiPROBE II system and a TomTec Quadra 96 liquid handling workstation to perform sample preparation and solid-phase extraction (SPE). Following the extraction on a mixed-mode SPE using Oasis MCX 96-well plate, the analytes were separated on a Aquasil C18 column (50 mm x 2.1 mm, i.d., 3 microm) with a mobile phase consisting of acetonitrile/ammonium acetate buffer (5 mM, pH 5.0) (60/40, v/v). The run time for each injection was 4.5 min with the retention times of approximately 2.0 and 2.7 min for 1 and 2 respectively, at a flow rate of 0.25 mL/min. A tandem mass spectrometric detection was conducted using multiple reaction monitoring (MRM) under the positive ion mode with a turbo ion-spray interface. The linear ranges of the calibration curves were 0.05-400 ng/mL for 1 and 0.1-400 ng/mL for 2 on a PE Sciex API 4000 LC-MS/MS system. The lower limits of quantitation (LLOQ) of the assay were 0.05 and 0.1 ng/mL for 1 and 2 respectively, when 0.4 mL of plasma was processed. Intra-day assay precision (using five standard curves prepared by spiking compounds to five lots of plasma) was less than 4.9% for 1 and less than 9.6% for 2 on each concentration. Assay accuracy was found to be 95.1-104.6% of nominal for 1 standards and 93.5-105.6% for 2 standards. QC samples were stable when kept at room temperature for 4 h, at -70 degrees C for 10 days, and after three freeze-thaw cycles. The extraction recoveries were 80%, 83% and 84% for 1 and 2 and I.S. respectively, and no significant matrix effects were observed. The method was successfully applied to plasma samples from clinical studies after oral administration of compound 1.  相似文献   

17.
A new high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) assay for cediranib, a tyrosine kinase inhibitor for VEGFRs, was developed and validated, for the determination of plasma and brain levels of cediranib in small specimen volumes. Tyrphostin (AG1478) was used as internal standard. Mouse plasma and brain homogenate samples were prepared using liquid-liquid extraction. The assay was validated for a 2.5-2500 ng/mL concentration range for plasma, and for 1-2000 ng/mL range for brain homogenate. For these calibration ranges, within-assay variabilities were 1.1-14.3% for plasma and 1.5-9.4% for brain homogenate; between-assay variabilities were 2.4-9.2% for plasma, and 4.9-10.2% for brain homogenate. Overall accuracy ranged from 101.5 to 107.0% for plasma and 96.5 to 100.2% for brain homogenate, for all target concentrations. The developed assay has been successfully applied for a brain distribution study in mice at an oral dose of 5 mg/kg.  相似文献   

18.
A sensitive, specific and rapid liquid chromatographic/tandem mass spectrometric (LC/MS/MS) method was developed and validated for quantification of nalmefene in human plasma. An aliquot of 200 microL plasma sample was simply precipitated by 400 microL methanol. Separation of nalmefene and the internal standard hydromorphone from the interferences was achieved on a C(18) column followed by MS/MS detection. The analytes were monitored in the positive ionization mode with a TurboIonspray source. The method had a total chromatographic run time of 4.5 min and linear calibration curves over the concentration range of 10-5000 pg/mL. The lower limit of quantification (LLOQ) was 10 pg/mL. The intra- and inter-day precision was less than 10.1% determined from QC samples at concentrations of 30, 300 and 4500 pg/mL, and the accuracy was within +/-3.4%. As the method was more sensitive (10 times higher) than those reported previously, we investigated the pharmacokinetics of nalmefene in healthy volunteers after a single intravenous injection of low dose (30 microg) of nalmefene hydrochloride for the first time.  相似文献   

19.
This study describes the enantioselective analysis of unbound and total concentrations of tramadol and its main metabolites O-desmethyltramadol (M1) and N-desmethyltramadol (M2) in human plasma. Sample preparation was preceded by an ultrafiltration step to separate the unbound drug. Both the ultrafiltrate and plasma samples were submitted to liquid/liquid extraction with methyl t-butyl ether. Separation was performed on a Chiralpak(?) AD column and tandem mass spectrometry consisting of an electrospray ionization source, positive ion mode and multiple reaction monitoring was used as the detection system. Linearity was observed in the following ranges: 0.2-600 and 0.5-250 ng/mL for analysis of total and unbound concentrations of the tramadol enantiomers, respectively, and 0.1-300 and 0.25-125 ng/mL for total and unbound concentrations of the M1 and M2 enantiomers, respectively. The lower limits of quantitation were 0.2 and 0.5 ng/mL for analysis of total and unbound concentration of each tramadol enantiomer, respectively, and 0.1 and 0.25 ng/mL for total and unbound concentrations of M1 and M2 enantiomers, respectively. Intra- and interassay reproducibility and inaccuracy did not exceed 15%. Clinical application of the method to patients with neuropathic pain showed plasma accumulation of (+)-tramadol and (+)-M2 after a single oral dose of racemic tramadol. Fractions unbound of tramadol, M1 or M2 were not enantioselective in the patients investigated.  相似文献   

20.
A specific, sensitive and rapid method based on high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was developed for the simultaneous determination of olmesartan (OLM) and hydrochlorothiazide (HCTZ) in human plasma and urine. Solid-phase extraction (SPE) was used to isolate the analytes from biological matrices followed by injection of the extracts onto a C18 column with isocratic elution. Detection was carried out on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring (MRM) mode using negative electrospray ionization (ESI). The method was validated over the concentration range of 1.00–1000 ng/mL and 5.00–5000 ng/mL for OLM in human plasma and urine as well as 0.500–200 ng/mL and 25.0–25,000 ng/mL for HCTZ in human plasma and urine, respectively. Inter- and intra-run precision of OLM and HCTZ were less than 15% and the accuracy was within 85–115% for both plasma and urine. The average extraction recoveries were 96.6% and 92.7% for OLM, and 87.2% and 72.1% for HCTZ in human plasma and urine, respectively. The linearity, recovery, matrix effect and stability were validated for OLM/HCTZ in human plasma and urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号