首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.
物种多样性与生态系统功能:影响机制及有关假说   总被引:59,自引:0,他引:59  
本文主要介绍了有关物种多样性对生态系统功能的影响机制及有关假说,包括冗余种假说、铆钉假说、不确定假说、无效假说、补偿/关键种假说、非线性假说、单调/驼峰模型假说等。尽管这些假说的提出都有一定的理论或实验研究基础,但到目前为止,还没有一种假说被普遍认为反映了两者之间关系的实际情形(如果确实存在这样一种普适机制)。通过分析,我们发现在这些假说之间存在一定的内在联系,它们或者互相包含,或者互相补充,并且都可以归结到冗余种假说有关。  相似文献   

2.
Grazer diversity effects on ecosystem functioning in seagrass beds   总被引:10,自引:3,他引:7  
High plant species richness can enhance primary production, animal diversity, and invasion resistance. Yet theory predicts that plant and herbivore diversity, which often covary in nature, should have countervailing effects on ecosystem properties. Supporting this, we show in a seagrass system that increasing grazer diversity reduced both algal biomass and total community diversity, and facilitated dominance of a grazer‐resistant invertebrate. In parallel with previous plant results, however, grazer diversity enhanced secondary production, a critical determinant of fish yield. Although sampling explained some diversity effects, only the most diverse grazer assemblage maximized multiple ecosystem properties simultaneously, producing a distinct ecosystem state. Importantly, ecosystem responses at high grazer diversity often differed in magnitude and sign from those predicted from summed impacts of individual species. Thus, complex interactions, often opposing plant diversity effects, arose as emergent consequences of changing consumer diversity, advising caution in extrapolating conclusions from plant diversity experiments to food webs.  相似文献   

3.
De Meester  N.  Gingold  R.  Rigaux  A.  Derycke  S.  Moens  T. 《Oecologia》2016,181(2):559-569
Oecologia - Marine ecosystems are experiencing accelerating population and species loss. Some ecosystem functions are decreasing and there is growing interest in the link between biodiversity and...  相似文献   

4.
For migratory species, acquisition and allocation of energy after arrival on the breeding grounds largely determine reproductive decisions. Few studies have investigated underlying physiological mechanisms driving variation in breeding phenology so far. We linked physiological state to individual timing of breeding in pre-laying arctic-nesting female peregrine falcons (Falco peregrinus tundrius). We captured females from two populations 2–20 days before egg-laying to assess plasma concentration of β-hydroxybutyric acid (BUTY) and triglyceride (TRIG), two metabolites known to reflect short-term changes in fasting and fattening rate, respectively. We also assessed baseline corticosterone (CORTb), a hormone that mediates energy allocation, and the scaled mass index (SMI) as an indicator of somatic body reserves. Plasma BUTY was slightly higher during the pre-recruiting period compared to the period of rapid follicular growth, indicating a reduction in catabolism of lipid reserves before investment in follicle development. Conversely, TRIG levels increased in pre-recruiting females, and best-predicted individual variation in pre-laying interval and lay date. A marked increase in CORTb occurred concomitantly with the onset of rapid follicle growth. SMI was highly variable possibly reflecting variation in food availability or individuals at different stages. Results suggest that (1) lower rates of pre-laying fattening and/or lower mobilization rate of lipoproteins to ovarian follicles delayed laying, and (2) an elevation in pre-laying CORTb may result from, or be required to compensate for, the energetic costs of egg production. Results of this study illustrate how variation in the allocation of energy before laying can influence individual fitness-related reproductive decisions.  相似文献   

5.
The consequences of species loss on cascading extinctions in food webs have been the focus of several recent theoretical studies, with differing results. Changes in ecosystem properties consecutive to cascading extinctions have received far less attention even though such dramatic events might strongly alter ecosystem functioning. Here we use various food web models to investigate the effects of species loss and diversity on both secondary extinctions and their associated changes in ecosystem properties. Our analysis shows that diversity has contrasting effects depending on the presence of self-limiting terms at consumer levels and, to a lower extent, on connectance and interspecific competition. Ecosystems that lose a high proportion of species through cascading extinctions exhibit the most important changes in ecosystem properties. Linking studies on cascading extinctions in food webs with studies that investigate the effects of biodiversity on ecosystem functioning appears crucial for a better understanding of the consequences of species extinctions.  相似文献   

6.
《农业工程》2014,34(2):85-91
Functional diversity, which is the value, variation and distribution of traits in a community assembly, is an important component of biodiversity. Functional diversity is generally viewed as a key to understand ecosystem and community functioning. There are three components of functional diversity, i.e. functional richness, evenness and divergence. Functional diversity and species diversity can be either positively or negatively correlated, or uncorrelated, depending on the environmental conditions and disturbance intensity. Ecosystem functioning includes ecosystem processes, ecosystem properties and ecosystem stability. The diversity hypothesis and the mass ratio hypothesis are the two major hypotheses of explaining the effect of functional diversity on ecosystem functioning, diversity hypothesis reflects that organisms and their functional traits in a assemblage effect on ecosystem functioning by the complementarity of using resources, and mass ratio hypothesis emphasises the identify of the dominant species in a assemblage. These two hypotheses do not contradict each other and instead they reflect the two different sides of functional diversity and functional composition. The effect of functional diversity on ecosystem functioning also depends on abiotic factors, perturbation, management actions, etc. Function diversity potentially influences ecosystem service and management by effecting on ecosystem functioning. Ecosystem management groups should include functional diversity in their scheme and not just species richness.  相似文献   

7.
物种多样性与生态系统功能的关系研究进展   总被引:7,自引:0,他引:7  
李禄军  曾德慧 《生态学杂志》2008,27(11):2010-2017
物种的空前丧失促使人们越来越多地开始研究物种多样性与生态系统功能的关系,并探讨其潜在的作用机制.本文根据最新研究进展,归纳了微宇宙实验、"生态箱"实验、Cedar Creek草地多样性实验和欧洲草地实验等代表性实验中关于物种多样性与生产力、稳定性、抗入侵性等生态系统功能的焦点问题,介绍了去除实验在多样性与生态系统功能研究中的应用.在此基础上,提出未来研究所面临的挑战,并对研究趋势进行了展望.主要挑战和趋势有:将小尺度上开展的实验研究扩展到较大的时空尺度上;综合考虑生物因素和非生物因素对多样性变化、生态系统功能的交互作用;营养级之间的相互作用、物种共存机制对物种多样性与生态系统功能关系的影响.  相似文献   

8.
Higher plant diversity reduces nitrate leaching by complementary resource use, while its relation to leaching of other N species is unclear. We determined the effects of plant species richness, functional group richness, and the presence of specific functional groups on ammonium, dissolved organic N (DON), and total dissolved N (TDN) leaching from grassland in the first 4 years after conversion from fertilized arable land to unfertilized grassland. On 62 experimental plots in Jena, Germany, with 1–60 plant species and 1–4 functional groups (legumes, grasses, tall herbs, small herbs), nitrate, ammonium, and TDN concentrations in soil solution (0–0.3 m soil layer) were measured fortnightly during 4 years. DON concentrations were calculated by subtracting inorganic N from TDN. Nitrogen concentrations were multiplied with modeled downward water fluxes to obtain N leaching. DON leaching contributed most to TDN leaching (64 ± SD 4% of TDN). Ammonium leaching was unaffected by plant diversity. Increasing species richness decreased DON leaching in the fourth year. We attribute this finding to enhanced use of DON as a C and N source and enhanced mineralization of DON by soil microorganisms. An increase of species richness decreased TDN leaching likely driven by the complementary use of nitrate by diverse mixtures. Legumes increased DON and TDN leaching likely because of their N\(_{2}\)-fixing ability and higher litter production. Grasses decreased TDN leaching because of more exhaustive use of nitrate and water. Our results demonstrate that increasing plant species richness decreases leaching of DON and TDN.  相似文献   

9.
季节性调控资源添加对半干旱草原物种多样性与生态系统功能的影响在资源富集的条件下,物种丰富度、群落地上生产力以及群落稳定性的季节变化通常被忽视。本研究致力于探究在干旱区草原,资源添加如何在生长季的不同月份影响物种丰富度、群落地上生产力及其稳定性。我们在内蒙古草原设置了为期3年的资源添加(氮添加-N、水添加-W以及水、氮共同添加-NW)实验,利用季节性取样的方法,去检验资源添加(水、 氮)对物种丰富度、群落地上生产力及其稳定性的影响,并通过构建结构方程模型分析资源添加调控不同月份与整个生长季群落稳定性的内在机制及其相对重要性。研究结果表明,资源添加在整体上未改变5与6月的群落地上生产力,而氮与水氮共同添加显著提高了7与8月的群落地上生产力。资源添加在整体上未改变物种丰富度、物种异步性与群落稳定性。氮添加与水氮共同添加提高了7与8月的群落地上生产力,主要源于其增加了多年生丛生禾草的地上生产力。结构方程模型分析表明:在生长季前期与整个生长季,物种异步性是决定群落稳定性的主要机制;在生长季后期,多年生丛生禾草的稳定性是驱动群落稳定性的主要因子。我们的研究证明:在半干旱草原,季节与资源的有效性可以交互影响群落地上生产力及其稳定性。这些发现对于半干旱草原的季节性可持续管理具有重要意义,以期减轻土地利用与全球变化带来的影响。  相似文献   

10.
Most research that demonstrates enhancement and stabilization of ecosystem functioning due to biodiversity is based on biodiversity manipulations within one trophic level and measuring changes in ecosystem functions provided by that same trophic level. However, it is less understood whether and how modifications of biodiversity at one trophic level propagate vertically to affect those functions supplied by connected trophic levels or by the whole ecosystem. Moreover, most experimental designs in biodiversity–ecosystem functioning research assume random species loss, which may be of little relevance to non‐randomly assembled communities. Here, we used data from a published ecotoxicological experiment in which an insecticide gradient was applied as an environmental filter to shape consumer biodiversity. We tested how non‐random consumer diversity loss affected gross primary production (an ecosystem function provided by producers) and respiration (an ecosystem function provided by the ecosystem as whole) in species‐rich multitrophic freshwater communities (total of 128 macroinvertebrate and 59 zooplankton species across treatments). The insecticide decreased and destabilized macroinvertebrate and, to a lesser extent, zooplankton diversity. However, these effects on biodiversity neither affected nor destabilized any of the two studied ecosystem functions. The main reason for this result was that species susceptible to environmental filtering were different from those most strongly contributing to ecosystem functioning. The insecticide negatively affected the most abundant species, whereas much less abundant species had the strongest effects on ecosystem functioning. The latter finding may be explained by differences in body size and feeding guild membership. Our results indicate that biodiversity modifications within one trophic level induced by non‐random species loss do not necessarily translate into changes in ecosystem functioning supported by other trophic levels or by the whole community in the case of limited overlap between sensitivity and functionality.  相似文献   

11.
12.
One challenge in merging community and ecosystem ecology is to integrate the complexity of natural multitrophic communities into concepts of ecosystem functioning. Here, we combine food‐web and allometry theories to demonstrate that primary production, as measured by the total nutrient uptake of the multitrophic community, is determined by vertical diversity (i.e. food web's maximum trophic level) and structure (i.e. distributions of species and their abundances and metabolic rates across trophic levels). In natural ecosystems, the community size distribution determines all these vertical patterns and thus the total nutrient uptake. Our model suggests a vertical diversity hypothesis (VDH) for ecosystem functioning in complex food webs. It predicts that, under a given nutrient supply, the total nutrient uptake increases exponentially with the maximum trophic level in the food web and it increases with its maximum body size according to a power law. The VDH highlights the effect of top–down regulation on plant nutrient uptake, which complements traditional paradigms that emphasised the bottom–up effect of nutrient supply on vertical diversity. We conclude that the VDH contributes to a synthetic framework for understanding the relationship between vertical diversity and ecosystem functioning in food webs and predicting the impacts of global changes on multitrophic ecosystems.  相似文献   

13.
《植物生态学报》2018,42(10):977
全球变化和人类活动导致物种生境的萎缩, 造成很多植物种群数量缩减, 遗传多样性快速丧失。对于物种多样性低的生态系统, 优势种的遗传多样性可能比物种多样性对生态系统功能产生更大的影响。因此, 了解遗传多样性和生态系统功能的关系(GD-EF)及其机制对生物多样性保护、应对环境变化和生态修复具有指导意义。该文综述了植物遗传多样性对生态系统结构(高营养级生物群落结构)和生态系统功能(初级生产力、养分循环和稳定性)的影响及机制、功能多样性对GD-EF的影响、遗传多样性效应和物种多样性效应的比较, 以及GD-EF在生态修复等实际应用的研究进展。最后指出当前研究的不足之处, 以期为后续研究提供参考: 1)还需深入研究GD-EF机制; 2)未评估遗传多样性对生态系统多功能性的影响; 3)不同遗传多样性测度对生态系统功能的影响不明确; 4)缺少长期的和多空间尺度结合的GD-EF实验; 5)遗传多样性效应相对于其他因子的作用不清楚。  相似文献   

14.
全球变化和人类活动导致物种生境的萎缩, 造成很多植物种群数量缩减, 遗传多样性快速丧失。对于物种多样性低的生态系统, 优势种的遗传多样性可能比物种多样性对生态系统功能产生更大的影响。因此, 了解遗传多样性和生态系统功能的关系(GD-EF)及其机制对生物多样性保护、应对环境变化和生态修复具有指导意义。该文综述了植物遗传多样性对生态系统结构(高营养级生物群落结构)和生态系统功能(初级生产力、养分循环和稳定性)的影响及机制、功能多样性对GD-EF的影响、遗传多样性效应和物种多样性效应的比较, 以及GD-EF在生态修复等实际应用的研究进展。最后指出当前研究的不足之处, 以期为后续研究提供参考: 1)还需深入研究GD-EF机制; 2)未评估遗传多样性对生态系统多功能性的影响; 3)不同遗传多样性测度对生态系统功能的影响不明确; 4)缺少长期的和多空间尺度结合的GD-EF实验; 5)遗传多样性效应相对于其他因子的作用不清楚。  相似文献   

15.
Unprecedented rates of species extinctions have prompted extensive research into the consequences of biodiversity losses on ecosystem functioning. While aquatic species are most threatened, research with freshwater and marine model systems has lagged behind progress made in terrestrial environments. This editorial to a special feature summarizes the main outcomes of a conference aimed at setting the stage for exploring the potential of aquatic systems to assess the role of biodiversity in ecosystem functioning. This series of papers proposes fresh approaches to the study of biodiversity effects on ecosystem functioning, outlines a new way of analyzing experimental data, presents a model that considers scale as an important factor determining outcomes, explores the effects of multiple stressors on species richness and ecosystem processes, and develops a food-web perspective that relates ecosystem properties to biodiversity. An insightful synthesis of lessons learned from aquatic systems is premature at present, but the papers clearly demonstrate the role that marine and freshwater systems can play in resolving open questions. The implications go well beyond the biodiversity in, and functioning of, ecosystems shaped by free-flowing or standing water.  相似文献   

16.
Concern is growing about the consequences of biodiversity loss for ecosystem functioning, for the provision of ecosystem services, and for human well being. Experimental evidence for a relationship between biodiversity and ecosystem process rates is compelling, but the issue remains contentious. Here, we present the first rigorous quantitative assessment of this relationship through meta-analysis of experimental work spanning 50 years to June 2004. We analysed 446 measures of biodiversity effects (252 in grasslands), 319 of which involved primary producer manipulations or measurements. Our analyses show that: biodiversity effects are weaker if biodiversity manipulations are less well controlled; effects of biodiversity change on processes are weaker at the ecosystem compared with the community level and are negative at the population level; productivity-related effects decline with increasing number of trophic links between those elements manipulated and those measured; biodiversity effects on stability measures ('insurance' effects) are not stronger than biodiversity effects on performance measures. For those ecosystem services which could be assessed here, there is clear evidence that biodiversity has positive effects on most. Whilst such patterns should be further confirmed, a precautionary approach to biodiversity management would seem prudent in the meantime.  相似文献   

17.
Similar to resource competition, reproductive interference may hamper the coexistence of closely related species. Species that utilize similar signal channels during mate finding may face substantial fitness costs when they come into contact and demographic displacement of the inferior species (sexual exclusion) is a likely outcome of such interactions. The two ground‐hopper species Tetrix ceperoi and Tetrix subulata broadly overlap in their ranges and general habitat requirements, but rarely co‐occur on a local scale. Results from laboratory and field experiments suggest that this mosaic pattern of sympatry might be influenced by reproductive interference. Here, we examine the significance of sexual interactions for these species in the field and test hypotheses on mechanisms of coexistence. Our results show that heterospecific sexual interactions also occur under field conditions, but in contrast to the experiments T. ceperoi was not the inferior species. The number of male mating attempts of both species was strongly correlated with encounter frequencies. Males discriminated between the sexes but not between the species, suggesting an incomplete mate recognition system in both species. The analysis of microhabitat preferences and spatial distribution revealed that habitat partitioning is not a suitable mechanism of coexistence in this system. Instead, the costs of reproductive interference are substantially mitigated by different niche breadths leading to different degrees of aggregation. Despite a considerable niche overlap T. ceperoi displayed a stronger preference for bare ground and occurred more aggregated than T. subulata, which had a broader niche. These differences may reduce the frequencies of heterospecific encounters and interactions in the field. Our results demonstrate that coexistence in the presence of reproductive interference is comparable to resource competition, being strongly influenced by ecological traits of the involved species, such as niche breadth and dispersion pattern.  相似文献   

18.
Abstract. The main question to be dealt with in the papers published in this Special Feature is to which extent plant species richness can be applied as a parameter in restoration projects to qualify the ecosystem's state. Before considering this problem, it should be recognized that this approach illuminates only one side of the coin; the other side is touched by the opposite question, asking which plant species are essential components of an ecosystem. These two approaches towards the relationship between species richness and ecosystem functioning are not mutually exclusive, but should not be confused either. In view of ecosystem functioning certain species may be considered redundant, while in view of evolutionary processes certain ecosystem processes may be considered redundant. Where do the two approaches meet and when should they be separated? This paper touches upon this question by referring to the dual hierarchy of ecological systems.  相似文献   

19.
20.
消费者多样性对食物网结构和生态系统功能的影响   总被引:1,自引:0,他引:1  
前所未有的生物多样性丧失使人们越来越关注生物多样性的生态系统功能.现有的绝大多数研究都是局限在单一营养级别上,主要是植物上,但是今天越来越多的证明表明消费者的多样性对生态系统结构和功能具有深刻影响.综述了消费者多样性对相邻或非相邻营养级的种群密度、物种多样性和生产力等方面影响的最新进展,同时也提出了若干研究展望.总体上.消费者多样性,无论是草食动物还是肉食动物,都倾向于增加该消费者所在营养级的养分和能量利用效率,以及生产力.这可能源于取样效应,或者物种之间的互补作用,类似于植物物种多样性影响初级生产力的机制.草食动物可能降低或者提高植物物种多样性,或者没有显著影响,其具体效应取决于生态系统生产力水平和草食动物的大小.捕食者哌能通过直接抑制草食动物而间接提高植物的多样性和生产力,但这种效应的大小差异很大,甚至效应的方向,都可能随团体内捕食者所占的比例而改变.未来的研究,应该考虑应用较大尺度的实验来检测食物网复杂营养关系对生态系统特性的影响,继续探讨消费者对生态系统功能的影响机制.认为异速生长法则和生态化学计量学在食物网组分关系研究中的应用将有利于增强人们对消费者.生态系统功能关系的理解.另外,全球变暖和转基因植物对食物网中消费者结构和生态系统的功能的影响也将是未来的一个重要研究方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号