首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signals that promote proliferation and migration of smooth muscle cells (SMC) have been implicated in pathologic growth of hollow organs. Members of the platelet-derived growth factor (PDGF) family, potent mitogens and motility factors for SMC, have been shown to signal through cholesterol-enriched lipid rafts. We recently demonstrated that PDGF-stimulated DNA synthesis in urinary tract SMC was dependent on the integrity of lipid rafts. Despite its known ability to rapidly alter discrete proteins within rafts, the effect of PDGF on overall raft protein composition is unknown. In this study, we employed isotope coded affinity tag (ICAT) analysis to evaluate PDGF-induced protein changes in lipid rafts of primary culture human SMC. Following acute (i.e., 15 min) exposure of SMC to PDGF, 23 proteins increased in rafts >20%. In contrast, raft localization of only three proteins increased after 12 h of PDGF treatment. Among the proteins that increased at 15 min were the glycophosphatidylinositol-anchored proteins Thy-1, 5'-nucleotidase, and CD55, the cytoskeletal proteins actin, actinin, tropomyosin-3 and -4, and the endocytosis-related proteins clathrin and beta-adaptin. In addition, eight Rho family members were localized to rafts by ICAT analysis. Collectively, these observations suggest a role for lipid rafts in regulation of PDGF-stimulated changes in the cytoskeleton.  相似文献   

2.
As a central kinase in the phosphatidylinositol 3-kinase pathway, Akt has been the subject of extensive research; yet, spatiotemporal regulation of Akt in different membrane microdomains remains largely unknown. To examine dynamic Akt activity in membrane microdomains in living cells, we developed a specific and sensitive fluorescence resonance energy transfer-based Akt activity reporter, AktAR, through systematic testing of different substrates and fluorescent proteins. Targeted AktAR reported higher Akt activity with faster activation kinetics within lipid rafts compared with nonraft regions of plasma membrane. Disruption of rafts attenuated platelet-derived growth factor (PDGF)-stimulated Akt activity in rafts without affecting that in nonraft regions. However, in insulin-like growth factor-1 (IGF)-1 stimulation, Akt signaling in nonraft regions is dependent on that in raft regions. As a result, cholesterol depletion diminishes Akt activity in both regions. Thus, Akt activities are differentially regulated in different membrane microdomains, and the overall activity of this oncogenic pathway is dependent on raft function. Given the increased abundance of lipid rafts in some cancer cells, the distinct Akt-activating characteristics of PDGF and IGF-1, in terms of both effectiveness and raft dependence, demonstrate the capabilities of different growth factor signaling pathways to transduce differential oncogenic signals across plasma membrane.  相似文献   

3.
CD44 is present in detergent-resistant, cholesterol-rich microdomains, called lipid rafts, in many types of cells. However, the functional significance of CD44 in lipid rafts is still unknown. We have previously demonstrated that osteopontin-mediated engagement of CD44 spliced variant isoforms promotes an extracellular matrix-derived survival signal through integrin activation. By using a series of CD44 mutants and pharmacological inhibitors selectively targeted to various cellular pathways, we show in this study that engagement of CD44 induces lipid raft coalescence to facilitate a CD44-Src-integrin signaling axis in lipid rafts, leading to increased matrix-derived survival. Palmitoylation of the membrane-proximal cysteine residues and carboxyl-terminal linkage to the actin cytoskeleton both contribute to raft targeting of CD44. The enrichment of integrin β1 in lipid rafts is tightly coupled to CD44 ligation-elicited lipid raft reorganization and associated with temporally delayed endocytosis. Through the interaction with the CD44 carboxyl-terminal ankyrin domain, Src is cotranslocated to lipid rafts, where it induces integrin activation via an inside-out mechanism. Collectively, this study demonstrates an important role of the dynamic raft reorganization induced by CD44 clustering in eliciting the matrix-derived survival signal.  相似文献   

4.
Membrane lipid rafts play a key role in immune cell activation by recruiting and excluding specific signaling components of immune cell surface receptors upon the receptor engagement. Despite this, the role of these microdomains in the regulation of osteoclasts as controlled by receptor activator of nuclear factor kappaB (RANK) has yet to be established. In this study, we demonstrate that the raft microdomain expression plays an essential role in osteoclast function and differentiation. Expression of raft component flotillin greatly increased during osteoclast differentiation, whereas engagement of RANK induced the translocation of tumor necrosis factor receptor-associated factor 6 to rafts where Src was constitutively resident. Disruption of rafts blocked TRAF6 translocation and Akt activation by RANK ligand in osteoclasts and further reduced the survival of osteoclasts. Actin ring formation and bone resorption by osteoclasts were also found to require the integrity of rafts. Our observations demonstrate for the first time that RANK-mediated signaling and osteoclast function are critically dependent on the expression and integrity of raft membrane microdomains.  相似文献   

5.
Many human gliomas carry markers characteristic of oligodendrocyte progenitor cells (such as Olig-2, PDGF alpha receptor and NG2 proteoglycan), suggesting these progenitors as the cells of origin for glioma initiation. This review considers the potential roles of the NG2 proteoglycan in glioma progression. NG2 is expressed not only by glioma cells and by oligodendrocyte progenitors, but also by pericytes associated with the tumor microvasculature. The proteoglycan may therefore promote tumor vascularization and recruitment of normal progenitors to the tumor mass, in addition to mediating expansion of the transformed cell population. Along with potentiating growth factor signaling and serving as a cell surface receptor for extracellular matrix components, NG2 also has the ability to mediate activation of β-1 integrins. These molecular interactions allow the proteoglycan to contribute to critical processes such as cell proliferation, cell motility and cell survival.Key words: NG2 proteoglycan, glioma progression, cell motility, cell proliferation, cell survival, tumor vascularization  相似文献   

6.
Many human gliomas carry markers characteristic of oligodendrocyte progenitor cells (such as Olig-2, PDGF alpha receptor, and NG2 proteoglycan), suggesting these progenitors as the cells of origin for glioma initiation. This review considers the potential roles of the NG2 proteoglycan in glioma progression. NG2 is expressed not only by glioma cells and by oligodendrocyte progenitors, but also by pericytes associated with the tumor microvasculature. The proteoglycan may therefore promote tumor vascularization and recruitment of normal progenitors to the tumor mass, in addition to mediating expansion of the transformed cell population. Along with potentiating growth factor signaling and serving as a cell surface receptor for extracellular matrix components, NG2 also has the ability to mediate activation of beta-1 integrins. These molecular interactions allow the proteoglycan to contribute to critical processes such as cell proliferation, cell motility, and cell survival.  相似文献   

7.
G-protein coupled receptors may mediate their effects on neuronal growth and differentiation through activation of extracellular signal-regulated kinases 1/2 (ERK1/2), often elicited by transactivation of growth factor receptor tyrosine kinases. This elaborate signaling process includes inducible formation and trafficking of multiprotein signaling complexes and is facilitated by pre-ordained membrane microdomains, in particular lipid rafts. In this study, we have uncovered novel signaling interactions of cannabinoid receptors with fibroblast growth factor receptors, which depended on lipid rafts and led to ERK1/2 activation in primary neurons derived from chick embryo telencephalon. More specifically, the cannabinoid 1 receptor (CB1R) agonist methanandamide induced tyrosine phosphorylation and transactivation of fibroblast growth factor receptor (FGFR)1 via Src and Fyn, which drove an amplification wave in ERK1/2 activation. Transactivation of FGFR1 was accompanied by the formation of a protein kinase C ε-dependent multiprotein complex that included CB1R, Fyn, Src, and FGFR1. Recruitment of molecules increased with time of exposure to methanandamide, suggesting that in addition to signaling it also served trafficking of receptors. Upon agonist stimulation we also detected a rapid incorporation of CB1R, as well as activated Src and Fyn, and FGFR1 in lipid rafts. Most importantly, lipid raft integrity was a pre-requisite for CB1R-dependent complex formation. Our data provide evidence that lipid rafts may organize CB1 receptor proximal signaling events, namely activation of Src and Fyn, and transactivation of FGFR1 towards activation of ERK1/2 and induction of neuronal differentiation.  相似文献   

8.
Dissecting lipid raft facilitated cell signaling pathways in cancer   总被引:2,自引:0,他引:2  
Cancer is one of the most devastating disorders in our lives. Higher rate of proliferation than death of cells is one of the essential factors for development of cancer. The dynamicity of cell membrane plays some vital roles in cell survival and cell death, including protection, endocytosis, signaling, and increases in mechanical stability during cell division, as well as decrease of shear forces during separation of two cells after division, and cell separation from tissues for cancer metastasis. Within the membrane, there are specialized domains, known as lipid rafts. A raft can coordinate various signaling pathways. Recent data on the proteomics of lipid rafts/caveolae have highlighted the enigmatic role of various signaling proteins in cancer development. Analysis of these data of raft proteome from various tumors, cancer tissues, and cell lines cultured without and with therapeutic agents, as well as from model rafts revealed that there may be two subsets of raft assemblage in cell membrane. One subset of raft is enriched with cholesterol-sphingomyeline-ganglioside-cav-1/Src/EGFR (hereafter, "chol-raft") that is involved in normal cell signaling, and when dysregulated promotes cell transformation and tumor progression; another subset of raft is enriched with ceramide-sphingomyeline-ganglioside-FAS/Ezrin (hereafter, "cer-raft") that generally promotes apoptosis. In view of this, and to focus insight into the cancer cell physiology caused by the lipid rafts mediated signals and their receptors, and the downstream transmitters, either proliferative (for example, EGF and EGFR) or death-inducing (for example, FASL and FAS), and the precise roles of some therapeutic drugs and endogenous acid sphingomylenase in this scenario in in situ transformation of "chol-raft" into "cer-raft" are summarized and discussed in this contribution.  相似文献   

9.
The serine-threonine kinase, Akt1/protein kinase Balpha is an important mediator of growth, survival, and metabolic signaling. Recent studies have implicated cholesterol-rich, lipid raft microdomains in survival signals mediated by Akt1. Here we address the role of lipid raft membranes as a potential site of intersection of androgenic and Akt1 signaling. A subpopulation of androgen receptor (AR) was found to localize to a lipid raft subcellular compartment in LNCaP prostate cancer cells. Endogenous AR interacted with endogenous Akt1 preferentially in lipid raft fractions and androgen substantially enhanced the interaction between the two proteins. The association of AR with Akt1 was inhibited by the anti-androgen, bicalutamide, but was not affected by inhibition of phosphoinositide 3-kinase (PI3K). Androgen promoted endogenous Akt1 activity in lipid raft fractions, in a PI3K-independent manner, within 10 min of treatment. Fusion of a lipid raft targeting sequence to AR enhanced localization of the receptor to rafts, and stimulated Akt1 activity in response to androgen, while reducing the cells' dependence on constitutive signaling through PI3K for cell survival. These findings suggest that signals channeled through AR and Akt1 intersect by a mechanism involving formation within lipid raft membranes of an androgen-responsive, extranuclear AR/Akt1 complex. Our results indicate that cholesterol-rich membrane microdomains play a role in transmitting non-genomic signals involving androgen and the Akt pathway in prostate cancer cells.  相似文献   

10.
Endostatin, the C-terminal fragment of collagen XVIII, is a potent inhibitor of angiogenesis. Observations that endostatin inhibits endothelial cell migration and induces disassembly of the actin cytoskeleton provide putative cellular mechanisms for this effect. To understand the mechanisms of endostatin-induced intracellular signaling, we analyzed the association of recombinant endostatin with endothelial cell lipid rafts and the roles of its heparin- and integrin-binding properties in this interaction. We observed that a fraction of cell surface-bound endostatin partitioned in low density membrane raft fractions together with caveolin-1. Heparinase treatment of cells prevented the recruitment of endostatin to the lipid rafts but did not affect the association of endostatin with the non-raft fraction, whereas preincubation of endostatin with soluble alpha5beta1 integrin prevented the association of endostatin with the endothelial cell membrane. Endostatin treatment induced recruitment of alpha5beta1 integrin into the raft fraction via a heparan sulfate proteoglycan-dependent mechanism. Subsequently, through alpha5beta1 integrin, heparan sulfate, and lipid raft-mediated interactions, endostatin induced Src-dependent activation of p190RhoGAP with concomitant decrease in RhoA activity and disassembly of actin stress fibers and focal adhesions. These observations provide a cell biological mechanism, which plausibly explains the anti-angiogenic mechanisms of endostatin in vivo.  相似文献   

11.
Secreted peptide growth factors are critical extracellular signals that interact to promote the proliferation, differentiation, and survival of progenitor cells in developing tissues. IGF-I signaling through the IGF type I receptor provides a mitogenic signal for numerous cell types, including stem and progenitor cells. We have utilized the O-2A oligodendrocyte progenitor to study the mechanism of IGF-I mitogenic actions since these progenitors respond to IGF-I in vitro, and gene targeting studies in mice have demonstrated that IGF-I is essential for normal oligodendrocyte development in vivo. The goal of this study was to elucidate the mechanism by which IGF-I promotes the proliferation of oligodendrocyte progenitors in the context of other mitogens critical for their proliferation. Results presented here show that IGF-I significantly amplified the actions of FGF-2 and PDGF to promote DNA synthesis in O-2A progenitors. Investigation of cell cycle kinetics revealed that IGF-I had no significant effect on the rate of cell cycle progression. Instead, IGF-I promoted increased recruitment of O-2A progenitors into the S phase of the cell cycle. These studies support a role for IGF-I as a cell cycle progression factor for progenitor cells.  相似文献   

12.
Lipid rafts are related to cell surface receptor function. Integrin is a major surface receptor protein in cell adhesion and migration on the extracellular matrix (ECM). Here, we showed that lipid rafts played a critical role in human melanoma A375 cell spreading and migration on fibronectin; an important component of the ECM that interacts with β1 integrin. We found that the disruption of lipid rafts did not markedly inhibit the expression and activation of β1 integrin. By coimmunoprecipitation and mass spectrometry, we investigated the influence of lipid rafts on the β1 integrin complex and identified nucleolin as a potential lipid-raft-dependent β1-integrin-interacting protein. Upon confirmation of the interaction between β1 integrin and nucleolin, further studies revealed that nucleolin colocalized with β1 integrin in lipid rafts and raft disruption interrupted their association. In addition, knockdown of nucleolin markedly attenuated A375 cell spreading and migration on fibronectin. Taken together, we demonstrated that nucleolin is a critical lipid-raft-dependent β1-integrin-interacting protein in A375 cell spreading and migration on fibronectin.  相似文献   

13.
Cholesterol and prostate cancer   总被引:12,自引:0,他引:12  
Cholesterol is a neutral lipid that accumulates in liquid-ordered, detergent-resistant membrane domains called lipid rafts. Lipid rafts serve as membrane platforms for signal transduction mechanisms that mediate cell growth, survival, and a variety of other processes relevant to cancer. A number of studies, going back many years, demonstrate that cholesterol accumulates in solid tumors and that cholesterol homeostasis breaks down in the prostate with aging and with the transition to the malignant state. This review summarizes the established links between cholesterol and prostate cancer (PCa), with a focus on how accumulation of cholesterol within the lipid raft component of the plasma membrane may stimulate signaling pathways that promote progression to hormone refractory disease. We propose that increases in cholesterol in prostate tumor cell membranes, resulting from increases in circulating levels or from dysregulation of endogenous synthesis, results in the coalescence of raft domains. This would have the effect of sequestering positive regulators of oncogenic signaling within rafts, while maintaining negative regulators in the liquid-disordered membrane fraction. This approach toward examining the function of lipid rafts in prostate cancer cells may provide insight into the role of circulating cholesterol in malignant growth and on the potential relationship between diet and aggressive disease. Large-scale characterization of proteins that localize to cholesterol-rich domains may help unveil signaling networks and pathways that will lead to identification of new biomarkers for disease progression and potentially to novel targets for therapeutic intervention.  相似文献   

14.
Glial cell line-derived neurotrophic factor family ligands act through the receptor tyrosine kinase Ret, which plays important roles during embryonic development for cell differentiation, survival, and migration. Ret signaling is markedly affected by compartmentalization of receptor complexes into membrane subdomains. Ret can propagate biochemical signaling from within concentrates in cholesterol-rich membrane microdomains or lipid rafts, or outside such regions, but the mechanisms for, and consequences of, Ret translocation between these membrane compartments remain largely unclear. Here we investigate the interaction of Shc and Frs2 phosphotyrosine-binding domain-containing adaptor molecules with Ret and their function in redistributing Ret to specialized membrane compartments. We found that engagement of Ret with the Frs2 adaptor results in an enrichment of Ret in lipid rafts and that signal transduction pathways and chemotaxis responses depend on the integrity of such rafts. The competing Shc adaptor did not promote Ret translocation to equivalent domains, and Shc-mediated effects were less affected by disruption of lipid rafts. However, by expressing a chimeric Shc protein that localizes to lipid rafts, we showed that biochemical signaling downstream of Ret resembled that of Ret signaling via Frs2. We have identified a previously unknown mechanism in which phosphotyrosine-binding domain-containing adaptors, by means of relocating Ret receptor complexes to lipid rafts, segregate diverse signaling and cellular functions mediated by Ret. These results reveal the existence of a novel mechanism that could, by subcellular relocation of Ret, work to amplify ligand gradients during chemotaxis.  相似文献   

15.
Recent work to characterize the roles of lipid segregation in IgE receptor signaling has revealed a mechanism by which segregation of liquid ordered regions from disordered regions of the plasma membrane results in protection of the Src family kinase Lyn from inactivating dephosphorylation by a transmembrane tyrosine phosphatase. Antigen-mediated crosslinking of IgE receptors drives their association with the liquid ordered regions, commonly called lipid rafts, and this facilitates receptor phosphorylation by active Lyn in the raft environment. Previous work showed that the membrane skeleton coupled to F-actin regulates stimulated receptor phosphorylation and downstream signaling processes, and more recent work implicates cytoskeletal interactions with ordered lipid rafts in this regulation. These and other results provide an emerging view of the complex role of membrane structure in orchestrating signal transduction mediated by immune and other cell surface receptors.  相似文献   

16.
B and T lymphocyte attenuator (BTLA) is an important negative regulator of T-cell activation. T-cell activation involves partitioning of receptors into discrete membrane compartments known as lipid rafts and the formation of an immunological synapse (IS) between the T cell and antigen-presenting cell (APC). Here we show that after T-cell stimulation, BTLA co-clusters with the CD3zeta and is then involved in IS, as determined by a two-photon microscope. BTLA can interact with the phosphorylated form of T-cell receptor (TCR) within the lipid raft, which is associated with the T-cell signaling complex. Coligation of BTLA with the TCR significantly decreased the amount of phosphorylated TCR-related signal accumulation in the lipid raft during T-cell activation. These results suggest that BTLA functions to regulate T-cell signaling by controlling the phosphorylated form of TCRzeta accumulation in the lipid raft.  相似文献   

17.
Acid-sensing ion channel 3 (ASIC3) is a H(+)-gated cation channel primarily found in sensory neurons, where it may function as a pH sensor in response to metabolic disturbances or painful conditions. We previously found that ASIC3 interacts with the postsynaptic density protein PSD-95 through its COOH terminus, which leads to a decrease in ASIC3 cell surface expression and H(+)-gated current. PSD-95 has been implicated in recruiting proteins to lipid rafts, which are membrane microdomains rich in cholesterol and sphingolipids that organize receptor/signaling complexes. We found ASIC3 and PSD-95 coimmunoprecipitated within detergent-resistant membrane fractions. When cells were exposed to methyl-beta-cyclodextrin to deplete membrane cholesterol and disrupt lipid rafts, PSD-95 localization to lipid raft fractions was abolished and no longer inhibited ASIC3 current. Likewise, mutation of two cysteine residues in PSD-95 that undergo palmitoylation (a lipid modification that targets PSD-95 to lipid rafts) prevented its inhibition of ASIC3 current and cell surface expression. In addition, we found that cell surface ASIC3 is enriched in the lipid raft fraction. These data suggest that PSD-95 and ASIC3 interact within lipid rafts and that this raft interaction is required for PSD-95 to modulate ASIC3.  相似文献   

18.
Yu W  Guo W  Feng L 《FEBS letters》2004,577(1-2):87-92
NogoA, a myelin-associated component, inhibits neurite outgrowth. Nogo66, a portion of NogoA, binds to Nogo66 receptor (NgR) and induces the inhibitory signaling. LINGO-1 and p75 neurotrophin receptor (p75), the low-affinity nerve growth factor receptor, are also required for NogoA signaling. However, signaling mechanisms downstream to Nogo receptor remain poorly understood. Here, we observed that NgR and p75 were colocalized in low-density membrane raft fractions derived from forebrains and cerebella as well as from cerebellar granule cells. NgR interacted with p75 in lipid rafts. In addition, disruption of lipid rafts by beta-methylcyclodextrin, a cholesterol-binding reagent, reduced the Nogo66 signaling. Our results suggest an important role of lipid rafts in facilitating the interaction between NgRs and provide insight into mechanisms underlying the inhibition of neurite outgrowth by NogoA.  相似文献   

19.
Central nervous system development requires precise and localized regulation of neural precursor behaviour. Here we show how the interaction between growth factor and integrin signalling pathways provides a mechanism for such precision in oligodendrocyte progenitor (OP) proliferation. While physiological concentrations of platelet-derived growth factor (PDGF) were not in themselves sufficient to promote OP proliferation, they did so on extracellular matrix (ECM) substrates that bind alpha(v)beta3 integrin. Upon PDGF-AA exposure and alpha(v)beta3 engagement, a physical co-association between both receptors was demonstrated, confirming the interaction between these signalling pathways. Furthermore, we found that PDGFalphaR stimulated a protein kinase C-dependent activation of integrin alpha(v)beta3, which in turn induced OP proliferation via a phosphatidylinositol 3-kinase-dependent signalling pathway. These studies establish a mechanism by which OP proliferation is dependent on the availability of both an ECM ligand and a mitogenic growth factor. Growth factor- mediated integrin activation is the critical integrative step in proliferation signalling, and ensures that the response of neural precursor cells to long-range cues can be regulated by their cellular neighbours, allowing precise control of cell behaviour during development.  相似文献   

20.
Although much progress has been made in elucidating the biochemical properties of lipid rafts, there has been less success in identifying these structures within living cell membranes, which has led to some concern regarding their existence. One difficulty in analyzing lipid rafts using optical microscopy is their small size. We now test the existence of lipid rafts in polarized neutrophils, which redistribute lipid raft markers into comparatively large lamellipodia. Optical microspectrophotometry of Laurdan-labeled neutrophils revealed a large blue shift at lamellipodia relative to cell bodies. This blue shift disappeared after exposure to methyl-beta-cyclodextrin (m beta CD), which disrupts lipid rafts. The Ca(2+) channel transient receptor potential-like channel-1, a lipid raft marker, traffics to lamellipodia, but redistributes uniformly about cells after exposure to m beta CD. This is accompanied by disruption of Ca(2+) waves normally initiated at lamellipodia. Thus, m beta CD-sensitive lipid-ordered domains are present at and participate in signaling from the lamellipodia of living neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号