首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Fifty-six percent of 93 strains ofBradyrhizobium japonicum andBradyrhizobium sp. (various hosts) from diverse geographical areas were found to produce a chlorosis-inducing toxin. Toxin production was common among bradyrhizobia originating from the USA, Africa, Central America, and South America. Toxin produced by West African strains was compared with rhizobitoxine by cation exchange chromatography, paper chromatography, and soybean (Glycine max (L.) Merr.) bioassay. The comparison suggested that the chlorosis-inducing toxin produced by West African bradyrhizobia is rhizobitoxine. Purified toxin from a West AfricanBradyrhizobium sp. (Vigna) strain inhibited the growth ofBacillus subtilis on minimal medium. The growth inhibition was reduced by addition of yeast-extract or casamino acids but not by any of 21 individual amino acids, including methionine. The same toxin did not inhibit the growth of 14 Bradyrhizobium strains, including eight strains that did not produce toxin. Mixed inoculum experiments revealed that a toxin-producing West African strain could not assist toxin non-producingB. japonicum strains in nodulating non-nodulating (rj1 rj1) soybeans.  相似文献   

2.

Background and aims

Bradyrhizobium japonicum and Bradyrhizobium elkanii dominated soybean nodules in temperate and subtropical regions in Nepal, respectively, in our previous study. The aims of this study were to reveal the effects of temperature on the nodulation dominancy of B. japonicum and B. elkanii and to clarify the relationship between the effects of temperature and the climate-dependent distribution of Bradyrhizobium species.

Methods

A laboratory competition experiment was conducted between B. japonicum and B. elkanii strains isolated from the same temperate location in Nepal. A mixture of each strain was inoculated into sterilized vermiculite with or without soybean seeds, and inoculated samples were incubated at 33/27 (day/night) and 23/17 °C. Relative populations in the non-rhizosphere, rhizosphere, and nodules were determined by competitive PCR using specific primers for each strain at 0, 1, 2, and 4 weeks after inoculation.

Results

Both separately inoculated B. japonicum and B. elkanii strains formed nodules at both temperatures. Under competitive conditions, B. japonicum strains dominated at low temperature; however, at high temperature, both strains achieved co-nodulation in 1 week, with B. elkanii dominating after 2 weeks. The relative populations of both strains were similar in the non-rhizosphere and rhizosphere at low temperature, but B. elkanii strains dominated in these regions at high temperature.

Conclusions

The domination of B. japonicum strains in nodules at the low temperature appeared to be due to preferential infection, while the domination of B. elkanii strains at high temperature appeared to be due to the higher population of B. elkanii in the non-rhizosphere and rhizosphere, in addition to its domination in nodules after co-nodulation. The effects of temperature on the competition between B. japonicum and B. elkanii strains were remarkable and corresponded with the distribution of bradyrhizobial species in Nepal.
  相似文献   

3.
Brazil has succeeded in sustaining production of soybean [Glycine max (L.) Merrill] by relying mainly on symbiotic N2 fixation, thanks to the selection and use in inoculants of very effective strains of Bradyrhizobium japonicum and Bradyrhizobium elkanii. It is desirable that rhizobial strains used in inoculants have stable genetic and physiological traits, but experience confirms that rhizobial strains nodulating soybean often lose competitiveness in the field. In this study, soybean cultivar BR 16 was single-inoculated with four B. japonicum strains (CIAT 88, CIAT 89, CIAT 104 and CIAT 105) under aseptic conditions. Forty colonies were isolated from nodules produced by each strain. The progenitor strains, the isolates and four other commercially recommended strains were applied separately to the same cultivar under controlled greenhouse conditions. We observed significant variability in nodulation, shoot dry weight, shoot total N, nodule efficiency (total N mass over nodule mass) and BOX-PCR fingerprinting profiles between variant and progenitor strains. Some variant strains resulted in significantly larger responses in terms of shoot total N, dry weight and nodule efficiency, when compared to their progenitor strain. These results highlight the need for intermittent evaluation of stock bacterial cultures to guarantee effective symbiosis after inoculation. Most importantly, it indicates that it is possible to improve symbiotic effectiveness by screening rhizobial strains for higher N2 fixation capacity within the natural variability that can be found within each progenitor strain.  相似文献   

4.
We have reported that a leguminous bacterial strain, Bradyrhizobium sp. strain 17-4, isolated from river sediment, phylogenetically very close to Bradyrhizobium elkanii, degraded methoxychlor through O-demethylation and oxidative dechlorination. In the present investigation, we found that B. elkanii (USDA94), a standard species deposited in the Culture Collection, degraded methoxychlor. Furthermore, Bradyrhizobium sp. strain 4-1, also very close to B. elkanii, isolated from Japanese paddy field soil, degraded methoxychlor. These B. elkanii and closely related strains degraded methoxychlor through almost identical metabolic pathways, and cleaved the phenyl ring and mineralized. In contrast, another representative Bradyrhizobium species, B. japonicum (USDA110), did not degrade methoxychlor at all. Based on these findings, B. elkanii and closely related strains are likely to play an important role not only in providing the readily biodegradable substrates but also in completely degrading (mineralizing) methoxychlor by themselves in the soil and surface water environment.  相似文献   

5.
A total of 215 rhizobial strains were isolated and analyzed with 16S rRNA gene, 16S–23S intergenic spacer, housekeeping genes atpD, recA, and glnII, and symbiotic genes nifH and nodC to understand the genetic diversity of soybean rhizobia in Hebei province, China. All the strains except one were symbiotic bacteria classified into nine genospecies in the genera of Bradyrhizobium and Sinorhizobium. Surveys on the distribution of these rhizobia in different regions showed that Bradyrhizobium japonicum and Bradyrhizobium elkanii strains were found only in neutral to slightly alkaline soils whereas Bradyrhizobium yuanmingense, Bradyrhizobium liaoningense-related strains and strains of five Sinorhizobium genospecies were found in alkaline–saline soils. Correspondence and canonical correspondence analyses on the relationship of rhizobial distribution and their soil characteristics reveal that high soil pH, electrical conductivity, and potassium content favor distribution of the B. yuanmingense and the five Sinorhizobium species but inhibit B. japonicum and B. elkanii. High contents of available phosphorus and organic matters benefit Sinorhizobium fredii and B. liaoningense-related strains and inhibit the others groups mentioned above. The symbiotic gene (nifH and nodC) lineages among B. elkanii, B. japonicum, B. yuanmingense, and Sinorhizobium spp. were observed in the strains, signifying that vertical gene transfer was the main mechanism to maintain these genes in the soybean rhizobia. However, lateral transfer of symbiotic genes commonly in Sinorhizobium spp. and rarely in Bradyrhizobium spp. was also detected. These results showed the genetic diversity, the biogeography, and the soil determinant factors of soybean rhizobia in Hebei province of China.  相似文献   

6.
Soybean-nodulating bradyrhizobia are genetically diverse and are classified into different species. In this study, the genetic diversity of native soybean bradyrhizobia isolated from different topographical regions along the southern slopes of the Himalayan Mountains in Nepal was explored. Soil samples were collected from three different topographical regions with contrasting climates. A local soybean cultivar, Cobb, was used as a trap plant to isolate bradyrhizobia. A total of 24 isolates selected on the basis of their colony morphology were genetically characterized. For each isolate, the full nucleotide sequence of the 16S rRNA gene and ITS region, and partial sequences of the nifD and nodD1 genes were determined. Two lineages were evident in the conserved gene phylogeny; one representing Bradyrhizobium elkanii (71% of isolates), and the other representing Bradyrhizobium japonicum (21%) and Bradyrhizobium yuanmingense (8%). Phylogenetic analyses revealed three novel lineages in the Bradyrhizobium elkanii clade, indicating high levels of genetic diversity among Bradyrhizobium isolates in Nepal. B. japonicum and B. yuanmingense strains were distributed in areas from 2420 to 2660 m above sea level (asl), which were mountain regions with a temperate climate. The B. elkanii clade was distributed in two regions; hill regions ranging from 1512 to 1935 m asl, and mountain regions ranging from 2420 to 2660 m asl. Ten multi-locus genotypes were detected; seven among B. elkanii, two among B. japonicum, and one among B. yuanmingense-related isolates. The results indicated that there was higher species-level diversity of Bradyrhizobium in the temperate region than in the sub-tropical region along the southern slopes of the Himalayan Mountains in Nepal.  相似文献   

7.
The importance of horizontal gene transfer (HGT) in the evolution and speciation of bacteria has been emphasized; however, most studies have focused on genes clustered in pathogenesis and very few on symbiosis islands. Both soybean (Glycine max [L.] Merrill) and compatible Bradyrhizobium japonicum and Bradyrhizobium elkanii strains are exotic to Brazil and have been massively introduced in the country since the early 1960s, occupying today about 45% of the cropped land. For the past 10 years, our group has obtained several isolates showing high diversity in morphological, physiological, genetic, and symbiotic properties in relation to the putative parental inoculant strains. In this study, parental strains and putative natural variants isolated from field-grown soybean nodules were genetically characterized in relation to conserved genes (by repetitive extragenic palindromic PCR using REP and BOX A1R primers, PCR-restriction fragment length polymorphism, and sequencing of the 16SrRNA genes), nodulation, and N2-fixation genes (PCR-RFLP and sequencing of nodY-nodA, nodC, and nifH genes). Both genetic variability due to adaptation to the stressful environmental conditions of the Brazilian Cerrados and HGT events were confirmed. One strain (S 127) was identified as an indigenous B. elkanii strain that acquired a nodC gene from the inoculant B. japonicum. Another one (CPAC 402) was identified as an indigenous Sinorhizobium (Ensifer) fredii strain that received the whole symbiotic island from the B. japonicum inoculant strain and maintained an extra copy of the original nifH gene. The results highlight the strategies that bacteria may commonly use to obtain ecological advantages, such as the acquisition of genes to establish effective symbioses with an exotic host legume.  相似文献   

8.
The ecological examination of members of the family Rhizobiaceae has been hampered by the lack of a selective medium for isolation of root nodule bacteria from soil. A novel non-antibiotic-containing medium has been developed which allows selective isolation of Bradyrhizobium japonicum and B. elkanii strains from soil and inoculants. The medium, BJSM, is based on the resistance of B.japonicum and B. elkanii strains to more than 40 μg of the metals ions Zn2+ and Co2+ per ml. BJSM does not allow growth of Rhizobium sp. strains. We used BJSM to isolate bacteria from a Hubbard soil and from several commercially prepared soybean inoculants. Ninety-eight percent of the isolates obtained from Hubbard soil nodulated Glycine max cv. Kasota, and between 55 and 95% of the isolates from the commercial inoculants had the ability to nodulate soybeans. Numbers of bradyrhizobia obtained by using BJSM, strain-specific fluorescent antibodies, and the most-probable-number plant infection assay indicated that the three techniques were comparable in quantifying B. japonicum strains in soils and inoculants, although most-probable-number counts were generally 0.5 order of magnitude greater than those obtained by using BJSM. Results of our studies indicate that BJSM is useful for direct isolation and quantification of B. japonicum and B. elkanii from natural soils and inoculants. This medium may prove to be an important tool for autecological and enumeration studies of diverse populations of bradyrhizobia and as a quality control method for soybean inoculants.  相似文献   

9.
We obtained nine bacterial isolates from root or collar nodules of the non-stem-nodulated Aeschynomene species A. elaphroxylon, A. uniflora, or A. schimperi and 69 root or stem nodule isolates from the stem-nodulated Aeschynomene species A. afraspera, A. ciliata, A. indica, A. nilotica, A. sensitiva, and A. tambacoundensis from various places in Senegal. These isolates, together with 45 previous isolates from various Aeschynomene species, were studied for host-specific nodulation within the genus Aeschynomene, also revisiting cross-inoculation groups described previously by D. Alazard (Appl. Environ. Microbiol. 50:732–734, 1985). The whole collection of Aeschynomene nodule isolates was screened for synthesis of photosynthetic pigments by spectrometry, high-pressure liquid chromatography, and thin-layer chromatography analyses. The presence of puf genes in photosynthetic Aeschynomene isolates was evidenced both by Southern hybridization with a Rhodobacter capsulatus photosynthetic gene probe and by DNA amplification with primers defined from photosynthetic genes. In addition, amplified 16S ribosomal DNA restriction analysis was performed on 45 Aeschynomene isolates, including strain BTAi1, and 19 reference strains from Bradyrhizobium japonicum, Bradyrhizobium elkanii, and other Bradyrhizobium sp. strains of uncertain taxonomic positions. The 16S rRNA gene sequence of the photosynthetic strain ORS278 (LMG 12187) was determined and compared to sequences from databases. Our main conclusion is that photosynthetic Aeschynomene nodule isolates share the ability to nodulate particular stem-nodulated species and form a separate subbranch on the Bradyrhizobium rRNA lineage, distinct from B. japonicum and B. elkanii.  相似文献   

10.
The polymerase chain reaction with arbitrary primers (RAPD) discriminated between two separately maintained cultures of Bradyrhizobium japonicum USDA 110 differing in symbiotic performance under drought conditions. Since strain 110 is used in inoculum production, the use of RAPD to monitor inoculum cultures could help to preserve their genetic composition and prevent the loss of important symbiotic properties. The use of RAPD could also be extended to other B. japonicum strains currently used in inoculum production. Received: 19 May 1997 / Accepted: 27 June 1997  相似文献   

11.
We investigated the relationship between the genetic diversity of indigenous soybean-nodulating bradyrhizobia and their geographical distribution in the United States using nine soil isolates from eight states. The bradyrhizobia were inoculated on three soybean Rj genotypes (non-Rj, Rj2Rj3, and Rj4). We analyzed their genetic diversity and community structure by means of restriction fragment length polymorphisms of PCR amplicons to target the 16S-23S rRNA gene internal transcribed spacer region, using 11 USDA Bradyrhizobium strains as reference strains. We also performed diversity analysis, multidimensional scaling analysis based on the Bray-Curtis index, and polar ordination analysis to describe the structure and geographical distribution of the soybean-nodulating bradyrhizobial community. The major clusters were Bradyrhizobium japonicum Bj123, in the northern United States, and Bradyrhizobium elkanii, in the middle to southern regions. Dominance of bradyrhizobia in a community was generally larger for the cluster belonging to B. elkanii than for the cluster belonging to B. japonicum. The indigenous American soybean-nodulating bradyrhizobial community structure was strongly correlated with latitude. Our results suggest that this community varies geographically.  相似文献   

12.
Two hundred and fifty strains, all of them representatives of native Bradyrhizobium sp., isolated from soils cultivated with soybean have been characterized by their denitrification activity. In addition, the denitrification potential of those soils was also measured by evaluating the most-probable-number (MPN) of denitrifying bacteria and the denitrification enzyme assay (DEA). Of the 250 isolates tested, 73 were scored as probable denitrifiers by a preliminary screening method. Only 41 were considered denitrifiers because they produced gas bubbles in Durham tubes, cultures reached an absorbance of more than 0.1 and NO3− and NO2− were not present. Ten of these 41 were selected to confirm denitrification and to study denitrification genes. According to N2O production and cell protein concentration with NO3−, the isolates could be differentiated in three categories of denitrifiers. The presence of the napA, nirK, norC and nosZ genes was detected by production of a diagnostic PCR product using specific primers. RFLP from the 16S-23S rDNA spacer region (IGS) revealed that denitrifiers strains could be characterized as Bradyrhizobium japonicum and strains which were non-respiratory denitrifiers as B. elkanii.  相似文献   

13.
The fatty acid composition of ER, Golgi and peribacteroid membrane (PBM) from root nodules formed on Glycine max after infection with different strains of Bradyrhizobium japonicum has been analysed by gas chromatography. In each plant-microsymbiont combination the fatty acid composition (FAC) of the PBM is distinct from ER and Golgi. The similarity between ER and PBM fatty acid composition is significantly stronger than between Golgi and PBM. In addition the fatty acid composition of all membrane systems in nodules is affected by the microsymbiont strain. A comparison of four strains of Bradyrhizobium japonicum grown in agar surface culture and isolated as the symbiotic bacteroids reveals a decrease in oleic acid during bacteroid differentiation.  相似文献   

14.
Kucey  R. M. N.  Snitwongse  P.  Chaiwanakupt  P.  Wadisirisuk  P.  Siripaibool  C.  Arayangkool  T.  Boonkerd  N.  Rennie  R. J. 《Plant and Soil》1988,108(1):33-41
Controlled environment and field studies were conducted to determine relationships between various measurements of N2 fixation using soybeans and to use these measures to evaluate a number ofBradyrhizobium japonicum strains for effectiveness in N2 fixation in Thai soils.15N dilution measurements of N2 fixation showed levels of fixation ranging from 32 to 161 kg N ha−1 depending on bacterial strain, host cultivar and location. Midseason measures of N2 fixation were correlated with each other, but not related measures taken at maturity. Ranking ofB. japonicum strains based on performance under controlled conditions in N-free media were highly correlated with rankings based on soybean seed yields and N2 fixation under field conditions. This study showed that inoculation of soybeans with effectiveB. japonicum strains can result in significant increases in yield and uptake of N through fixation. The most effective strains tested for use in Thai conditions were those isolated from Thai soils; however, effective strains from other locations were also of benefit.  相似文献   

15.
The plasticity of rhizobial genomes is far greater than previously thought, with complex genomic recombination events that may be accelerated by the often stressful environmental conditions of the tropics. This study aimed at evaluating changes in soybean rhizobia due to adaptation to inhospitable environmental conditions (high temperatures, drought, and acid soils) in the Brazilian Cerrados. Both the host plant and combinations of four strains of soybean Bradyrhizobium were introduced in an uncropped soil devoid of rhizobia capable of nodulating soybean. After the third year, seeds were not reinoculated. Two hundred and sixty-three isolates were obtained from nodules of field-grown soybean after the seventh year, and their morphological, physiological, serological, and symbiotic properties determined, followed by genetic analysis of conserved and symbiotic genes. B. japonicum strain CPAC 15 (same serogroup as USDA 123) was characterized as having high saprophytic capacity and competitiveness and by the seventh year represented up to 70% of the cultivable population, in contrast to the poor survival and competitiveness of B. japonicum strain CPAC 7 (same serogroup as CB 1809). In general, adapted strains had increased mucoidy, and up to 43% of the isolates showed no serological reaction. High variability, presumably resulting from the adaptation to the harsh environmental conditions, was verified in rep-PCR (polymerase chain reaction) profiles, being lower in strain CPAC 15, intermediate in B. elkanii, and higher in CPAC 7. Restriction fragment length polymorphism (RFLP)-PCR types of the 16S rDNA corresponded to the following: one type for B. elkanii species, two for B. japonicum, associated to CPAC 15 and CPAC 7, and unknown combinations of profiles. However, when nodC sequences and RFLP-PCR of the nifH region data were considered, only two clusters were observed having full congruence with B. japonicum and B. elkanii species. Combining the results, variability was such that even within a genetically more stable group (such as that of CPAC 15), only 6.4% of the isolates showed high similarity to the inoculant strain, whereas none was similar to CPAC 7. The genetic variability in our study seems to result from a variety and combination of events including strain dispersion, genomic recombination, and horizontal gene transfer. Furthermore, the genetic variability appears to be mainly associated with adaptation, saprophytic capacity, and competitiveness, and not with symbiotic effectiveness, as the similarity of symbiotic genes was higher than that of conserved regions of the DNA.  相似文献   

16.
Acacia mangium is a legume tree native to Australasia. Since the eighties, it has been introduced into many tropical countries, especially in a context of industrial plantations. Many field trials have been set up to test the effects of controlled inoculation with selected symbiotic bacteria versus natural colonization with indigenous strains. In the introduction areas, A. mangium trees spontaneously nodulate with local and often ineffective bacteria. When inoculated, the persistence of inoculants and possible genetic recombination with local strains remain to be explored. The aim of this study was to describe the genetic diversity of bacteria spontaneously nodulating A. mangium in Brazil and to evaluate the persistence of selected strains used as inoculants. Three different sites, several hundred kilometers apart, were studied, with inoculated and non-inoculated plots in two of them. Seventy-nine strains were isolated from nodules and sequenced on three housekeeping genes (glnII, dnaK and recA) and one symbiotic gene (nodA). All but one of the strains belonged to the Bradyrhizobium elkanii species. A single case of housekeeping gene transfer was detected among the 79 strains, suggesting an extremely low rate of recombination within B. elkanii, whereas the nodulation gene nodA was found to be frequently transferred. The fate of the inoculant strains varied depending on the site, with a complete disappearance in one case, and persistence in another. We compared our results with the sister species Bradyrhizobium japonicum, both in terms of population genetics and inoculant strain destiny.  相似文献   

17.
Nine different growth media were evaluated to determine the best growth conditions to achieve cultures of a high cell number of fast-growing rhizobia to produce inoculants. We found that Sinorhizobium fredii strains have complex nutritional requirements that were fulfilled by adding to the media 4 g Amaranthus cruentus L. seed meal/l. The survival of fast growing strains is a variable trait, but those strains that survived at high levels even after 6-month storage, hypernodulated soybeans and fixed atmospheric nitrogen at levels as high as those of Bradyrhizobium japonicum.  相似文献   

18.
This study characterized genetically 30 fast-growing rhizobial strains isolated from nodules of Asian and modern soybean genotypes that had been inoculated with soils from disparate regions of Brazil. Analyses by rep-PCR (ERIC and REP) and RAPD indicated a high level of genetic diversity among the strains. The RFLP-PCR and sequencing analysis of the 16S rRNA genes indicated that none of the strains was related to Sinorhizobium (Ensifer) fredii, whereas most were related to Rhizobium tropici (although they were unable to nodulate Phaseolus vulgaris) and to Rhizobium genomic species Q. One strain was related to Rhizobium sp. OR 191, while two others were closely related to Agrobacterium (Rhizobium) spp.; furthermore, symbiotic effectiveness with soybean was maintained in those strains. Five strains were related to Bradyrhizobium japonicum and B. elkanii, with four of them being similar to strains carried in Brazilian inoculants, therefore modifications in physiological properties, as a shorter doubling time might have resulted from adaptation to local conditions. Phospholipid fatty acid analysis (PFLA) was less precise in delineating taxonomic relationships. The strains fit into eight Nod-factor profiles that were related to rhizobial species, but not to N2-fixation capacity or competitiveness. The data obtained highlight the diversity and promiscuity of rhizobia in the tropics, being capable of nodulating exotic legumes and might reflect ecological strategies to survive in N-poor soils; in addition, the diversity could also represent an important source of efficient and competitive rhizobial strains for the tropics. Putative new rhizobial species were detected only in undisturbed soils. Three species (R. tropici, B. japonicum and B. elkanii) were found under the more sustainable management system known as no-till, while the only species isolated from soils under conventional till was R. tropici. Those results emphasize that from the moment that agriculture was introduced into undisturbed soils rhizobial diversity has changed, being drastically reduced when a less sustainable soil management system was adopted.  相似文献   

19.
Growth on culture media results in changes in Rhizobium competitivity:Bradyrhizobium japonicum strain G2, when mixed with the strain GMB 1 in the same ratio, formed 85% of the total nodule numbers when the strains were cultured on the YEM medium, whereas, it formed only 55% of the nodules when they were cultured on the MSY medium.  相似文献   

20.
Summary The aim of this research was to develop methods to use low-cost carbon compounds for rhizobial inoculant production. Five raw starch materials; steamed cassava, sticky rice, fresh corn, dry corn and sorghum were tested for sugar production by an amylase-producing fungus. Streamed cassava produced the highest amount of reducing sugar after fermentation. Bradyrhizobium japonicum USDA110, Azorhizobium caulinodans IRBG23, Rhizobium phaseoli TAL1383, Sinorhizobium fredii HH103, and Mesorhizobium ciceri USDA2429 were tested on minimal medium supplemented with reducing sugar obtained from cassava fermentation. All strains, except B. japonicum USDA110, could grow in medium containing cassava sugar derived from 100 g steamed cassava per litre, and the growth rates for these strains were similar to those in medium containing 0.5 (w/v) mannitol. The sugar derived from steamed cassava was further used for production of glycerol using yeast. After 1 day of yeast fermentation, the culture containing glycerol and heat-killed yeast cells, was used to formulate media for culturing bradyrhizobia. A formulation medium, FM4, with a glycerol concentration of 0.6 g/l and yeast cells (OD600 = 0.1) supported growth of B. japonicum USDA110 up to 3.61 × 109 c.f.u./ml in 7 days. These results demonstrate that steamed cassava could be used to provide cheap and effective carbon sources for rhizobial inoculant production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号