首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Modulation of proton extrusion and ATP-dependent H+ transport through the plasma membrane in relation to the presence of 14-3-3 proteins in this membrane in response to osmotic shock was studied in tomato ( Lycopersicon esculentum Mill. cv. Pera) cell cultures. In vivo H+ extrusion by cells was activated rapidly and significantly after adding 100 m M NaCl, 100 m M KCl, 50 m M Na2SO4, 1.6% sorbitol or 2 µ M fusicoccin to the medium. The increase in H+ extrusion by cells treated with 100 m M NaCl was correlated with an increase of H+ transport by the plasma membrane H+-ATPase (EC 3.6.1.35), but not with changes in ATP hydrolytic activity of this enzyme, suggesting an increased coupling ratio of the enzyme. Immunoblot experiments showed increased amounts of 14-3-3 proteins in plasma membrane fractions isolated from tomato cells treated with 100 m M NaCl as compared to control cells without changing the amount of plasma membrane H+-ATPase. Together, these data indicate that in tomato cells an osmotic shock could enhance coupling between ATP hydrolysis and proton transport at the plasma membrane through the formation of a membrane 14-3-3/H+-ATPase complex.  相似文献   

3.
Red beet ( Beta vulgaris L., cv. Detroit Dark Red) plasma membrane ATPase solubilized from a deoxycholate-extracted plasma membrane fraction with Zwittergent 3–14 was reconstituted into liposomes. Detergent removal and reconstitution was carried out by column chromatography on Sephadex G-200 followed by centrifugation at 100 000 g for I h. Prior to reconstitution, optimal activity in the solubilized preparation was observed when dormant red beet tissue was used in the extraction/solubilization procedure. Following reconstitution into liposomes, ATP-dependent proton transport could be demonstrated by measuring the quenching of acridine orange fluorescence. Proton transport and ATPase activity in the reconstituted enzyme preparation were inhibited by orthovandate but stimulated by KNO3. This stimulation most likely results from a reduction in the membrane potential generated during electrogenic proton transport by the reconstituted ATPase. The ATPase activity of the reconstituted ATPase was further characterized and found to have a pH optimum of 6.5 in the presence of both Mg2+ and K+. The activity was specific for ATP, insensitive to ouabain and azide but inhibited by N;N-dicyclohexylcarbodiimide and diethylstilbestrol. Stimulation of ATP hydrolytic activity occurred in the sequence: K+ Rb+ Na+ Cs+ Li+ and the kinetics of K+ stimulation of ATPase activity followed non-Michaelis-Menten kinetics as observed for both the membrane-bound and solubilized forms of the enzyme. Reconstitution of the plasma membrane ATPase from red beet allowed a substantial purification of the enzyme and resulted in the enrichment of a 100 kDa polypeptide representing the ATPase catalytic subunit.  相似文献   

4.
Syringostatin is a newly discovered phytotoxin produced by a phytopathogenic bacterium Pseudomonas syringae pv. syringae lilac isolate. The effects of syringostatin and the similar phytotoxins, syringomycin and syringotoxin, on H-ATPase activity were investigated using cultured mung bean ( Vigna radiata L. cv. Ryokuto) cells or plasma membrane vesicles isolated from mung bean hypocotyls. 31P-NMR analysis of cultured cells treated with syringostatin revealed that the cytoplasmic pH was decreased. When plasma membrane was prepared by a two-step method (Dextran gradient followed by a sucrose gradient). syringostatin, syringomycin and syringotoxin inhibited the H+-ATPase activity in a dose-dependent manner. In contrast, these toxins stimulated H+-ATPase activity when plasma membrane was prepared by a one-step method (sucrose gradient). While these toxins inhibited the H+-ATPase activity of inside-out plasma membrane vesicles, the H+-ATPase activity of right-side-out vesicles was stimulated. The detergent. Triton X-100, abolished this stimulatory effect of the toxins on the H+-ATPase of right-side-out vesicles and of one-step purified plasma membrane. The toxins also inhibited the activity of the plasma membrane H+-ATPase solubilized with deoxycholate and Zwittergent 3–14. Taken together, these results indicate that these toxins exert their effects partly by a detergent-like action on the plasma membrane and partly by inhibition of the enzyme.  相似文献   

5.
Transport across the plasma membrane is driven by an electrochemical gradient of H+ ions generated by the plasma membrane proton pump (H+-ATPase). Random mutants of Arabidopsis H+-ATPase AHA1 were isolated by phenotypic selection of growth of transformed yeast cells in the absence of endogenous yeast H+-ATPase (PMA1). A Trp-874-Leu substitution as well as a Trp-874 to Lys-935 deletion in the hydrophilic C-terminal domain of AHA1 conferred growth of yeast cells devoid of PMA1. A Trp-874-Phe substitution in AHA1 was produced by site-directed mutagenesis. The modified enzymes hydrolyzed ATP at 200–500% of wild-type level, had a sixfold increase in affinity for ATP (from 1.2 to 0.2 mM; pH 7.0), and had the acidic pH optimum shifted towards neutral pH. AHA1 did not contribute significantly to H+ extrusion by transformed yeast cells. The different species of aha1, however, displayed marked differences in initial rates of net H+ extrusion and in their ability to sustain an electrochemical H+ gradient. These results provide evidence that Trp-874 plays an important role in auto-inhibition of the plant H+-ATPase and may be involved in controlling the degree of coupling between ATP hydrolysis and H+ pumping. Finally, these results demonstrate the usefulness of yeast as a generalized screening tool for isolating regulatory mutants of plants transporters.  相似文献   

6.
Abstract: The present study addresses the possibility that there are different cocaine-related and mazindol-related binding domains on the dopamine transporter (DAT) that show differential sensitivity to cations. The effects of Zn2+, Mg2+, Hg2+, Li+, K+, and Na+ were assessed on the binding of [3H]mazindol and [3H]WIN 35,428 to the human (h) DAT expressed in C6 glioma cells under identical conditions for intact cell and membrane assays. The latter were performed at both 0 and 21°C. Zn2+ (30–100 µ M ) stimulated binding of both radioligands to membranes, with a relatively smaller effect for [3H]mazindol; Mg2+ (0.1–100 µ M ) had no effect; Hg2+ at ∼3 µ M stimulated binding to membranes, with a relatively smaller effect for [3H]mazindol than [3H]WIN 35,428 at 0°C, and at 30–100 µ M inhibited both intact cell and membrane binding; Li+ and K+ substitution (30–100 m M ) inhibited binding to membranes more severely than to intact cells; and Na+ substitution was strongly stimulatory. With only a few exceptions, the patterns of ion effects were remarkably similar for both radioligands at both 0 and 21°C, suggesting the involvement of common binding domains on the hDAT impacted similarly by cations. Therefore, if there are different binding domains for WIN 35,428 and mazindol, these are not affected differentially by the cations studied in the present experiments, except for the stimulatory effect of Zn2+ at 0 and 21°C and Hg2+ at 0°C.  相似文献   

7.
The electrophysiological characteristics of the unicellular green alga Micrasterias torreyi Bail. are studied here for the first time using microelectrode techniques. The resting potential of the plasma membrane varied between –39.5 and –42.2 mV for different developmental stages of the dividing cell and was –41.7 mV ( se = 3.2, n = 9) in the interphase cells. The resting potential of the chloroplast envelope was lower, –53.9 mV ( se = 3.6, n = 15). Supraoptimal K+ (20 m M ) had no clear effects on the plasma membrane but caused a depolarization of 10 mV in the chloroplast. Additional external Ca2+ (10 m M ) depolarized the membrane potential quite strongly (by 23 mV). Low external pH did not affect the resting potential of the cell. There is a marked difference in the resting potential values between non-vacuolated cells (about –40 mV), to which Micrasterias belongs, and vacuolated plant cells (–100 to –250 mV). This indicates the participation of the tonoplast in the transport of ions and charged molecules in vacuolated cells. Na+ and Cl, which play an important role in ion metabolism in most plant cells, are not needed by Micrasterias .  相似文献   

8.
Abstract: The effects of synthetic β-amyloid (Aβ1–42) on cell viability and cellular Ca2+ homeostasis have been studied in the human neuron-like NT2N cell, which differentiates from a teratocarcinoma cell line, NTera2/C1.D1, by retinoic acid treatment. NT2N viability was measured using morphological criteria and fluorescent live/dead staining and quantified using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide metabolism. Aβ1–42 dose-dependently caused NT2N cell death when it was present in the cell culture for 14 days but had no effect on viability when it was present for 4 days. The lowest effective concentration was 4 µ M , and the strongest effect was produced by 40 µ M . Control NT2N cells produced spontaneous cytosolic Ca2+ oscillations under basal conditions. These oscillations were inhibited dose-dependently (0.4–40 µ M ) by Aβ1–42 that was present in the cell culture for 1 or 4 days. Ca2+ wave frequency was decreased from 0.21 ± 0.02 to 0.05 ± 0.02/min, amplitude from 88 ± 8 to 13 ± 4 n M , and average Ca2+ level from 130 ± 8 to 58 ± 3 n M . The Ca2+ responses to 30 m M K+ and 100 µ M glutamate were not different between control and Aβ-treated cells. Thus, the results do not support the hypothesis that cytosolic early Ca2+ accumulation mediates Aβ-induced NT2N cell death.  相似文献   

9.
Dark O2 consumption by the green alga Selenastrum minutum was sensitive to inhibition by the cytochrome pathway respiration inhibitor cyanide in the absence of an alternative oxidase inhibitor, consistent with previous work that suggested that this alga lacks alternative oxidase capacity. In contrast, addition of low concentrations of the cytochrome pathway inhibitor azide (50–750 μ M ) resulted in a stimulation of dark O2 consumption, while higher concentrations of azide (1–2 m M ) partially inhibited O2 consumption. Measurements of changes in cellular levels of pyruvate, malate and pyridine nucleotides upon cyanide addition were consistent with the absence of alternative oxidase capacity, and suggested that cyanide inhibition of O2 consumption was not due to nonspecific effects of cyanide. Addition of salicylhydroxamic acid (SHAM) also resulted in an increase in the rate of O2 consumption. Both azide- and SHAM-stimulated O2 consumption were sensitive to inhibition by 50 m M ascorbate or by cyanide. However, the ubiquinone analogs chloroquine and quinacrine specifically inhibited azide-stimulated O2 consumption, with only minor effects on SHAM-stimulated O2 consumption. These results suggest that azide-stimulated O2 consumption was not mediated by the previously characterized SHAM-stimulated oxidase, and are consistent with the possibility that azide-stimulated O2 consumption is mediated by a plasma membrane redox system.  相似文献   

10.
The goal of this study was to test the hypothesis that the plasma membrane-bound ATPase activity is influenced by the redox poise of the cytoplasm. Purified plasma membrane vesicles from leaves of Elodea canadensis Michx. and E. nuttallii (Planch.) St. John were isolated using an aqueous polymer two-phase batch procedure. The distribution of marker enzyme activities confirmed the plasma membrane origin of the vesicles. The vesicles exhibited NADH-ferricyanide reductase activity, indicating the presence of a redox chain in the plasma membrane. The K+, Mg2+-ATPase activity associated with these vesicles was inhibited by the sulfhydryl reagents N-ethylmaleimide and glutathione (GSSG). Furthermore the activity was inhibited by NAD+. This inhibition by NAD+ was relieved by increasing the NADH/NAD+ ratio. The possibility that the ATPase activity is regulated by the cytoplasmic NAD(P)H/ NAD(P)+ ratio is discussed, as well as the role of a plasma membrane-bound redox chain.  相似文献   

11.
12.
Summary Cultured carrot cells (Daucus carota L.) reduced nitrate to nitrite at a slow rate (0.4 moles/g dry wt · h) without any additions to the reaction medium. This rate was doubled or tripled in presence of 100 M NADH. Ethanol and other alcohols stimulated the basal rate 8–10-fold. Isolated carrot plasma membranes also reduced nitrate to nitrite at a rate of 80 nmoles/mg protein · h. This plasma membrane-bound nitrate reductase activity was estimated to be 1.7% of the total activity. Nitrate reduction by carrot cells was inhibited 56% by sodium tungstate, 57% by potassium cyanide, and 87% by gold chloride. It was stimulated by plasma membrane electron transport inhibitors (retinoic acid and chloroquine) and ATPase inhibitors (diethylstilbestrol). From differential effects of some stimulators or inhibitors in the presence or absence of NADH, it can be implied that the nitrate reductase activity of cultured carrot cells was due to a transmembrane enzyme exhibiting an exogenous nitrate reductase activity when NADH was added.Abbreviation DMSO dimethyl sulfoxide - SHAM salicyl hydroxamic acid  相似文献   

13.
Abstract In contrast to the phorbol ester oxidative response, which only develops during dimethyl-sulphoxide (DMSO)-induced differentiation of the human leukemic myeloblast HL-60 cell-line, the endotoxin response was observed in undifferentiated and differentiated cells. The Ca2+ response to endotoxin, detected in both differentiated and undifferentiated HL-60 cells, consisted of a transient 10–50 nM increase in intracellular Ca2+. A very slow, irreversible increase in intracellular Ca2+ was detected at high 1–100 μg/ml endotoxin concentrations, and this effect, and the inositol phosphate response, correlated with the surfactant activities of various endotoxins and Lipid A. Arachidonic acid and sodium arachidonate 1–50 μM stimulated a large 200–500 nM and transient Ca2+ response in undifferentiated HL-60 cells, which was significantly greater than that elicited by 1–50 μM eicosapentaenoic acid, and was not observed at similar concentrations of arachidonic acid methyl ester or myristic acid. These concentrations (1–50 μM) of arachidonic acid were observed to have surfactant activities on the plasma membrane. At lower arachidonic acid concentrations a marked potentiation of both Ca2+ and oxidative responses to the chemotactic peptide fMet-Leu-Phe was detected. It is possible that the arachidonic acid released during phospholipase A2 activation of neutrophils may be involved in cellular cross-talk and, at higher concentrations, in directly activating Ca2+ and superoxide production. It is also possible that previously reported effects of endotoxin at high concentrations are an vitro artefact of surfactant properties of endotoxin.  相似文献   

14.
Abstract: Some reports have suggested that dantrolene interacts directly with the membrane bilayer. We investigated effects of dantrolene on changes in membrane properties induced by compound 48/80 (C48/80), a membrane stimulator. The addition of C48/80 for 1 min elicited a rapid, dose-dependent Ca2+ influx, which was reduced to 14% by the absence of external Ca2+. Dantrolene inhibited the C48/80-induced increase in Ca2+ permeability of plasma membranes in a concentration-dependent manner (0.33–10 µ M , IC50 value was 5 µ M ). We next examined C48/80-induced changes in structural and dynamic membrane properties by electron spin resonance (ESR). The ratio h 0/ h −1 was determined to evaluate membrane fluidity. C48/80 increased the membrane fluidity in a concentration-dependent manner (0.1–0.56 mg/ml). Dantrolene (10 µ M ) itself did not change the membrane fluidity, but it significantly reduced the C48/80-induced increase in membrane fluidity (0.56 mg/ml). Moreover, the C48/80-induced increase in fluidity was dependent on extracellular Ca2+. We conclude that dantrolene protects neuroblastoma cell plasma membrane from C48/80-induced membrane perturbation, which causes Ca2+ influx and an increase in membrane fluidity. These findings strongly suggest that dantrolene directly stabilizes the neuronal plasma membrane.  相似文献   

15.
The effect of aluminum on dimorphic fungi Yarrowia lipolytica was investigated. High aluminum (0.5–1.0 mM AlK(SO4)2) inhibits yeast–hypha transition. Both vanadate-sensitive H+ transport and ATPase activities were increased in total membranes isolated from aluminum-treated cells, indicating that a plasma membrane H+ pump was stimulated by aluminum. Furthermore, Al-treated cells showed a stronger H+ efflux in solid medium. The present results suggest that alterations in the plasma membrane H+ transport might underline a pH signaling required for yeast/hyphal development. The data point to the cell surface pH as a determinant of morphogenesis of Y. lipolytica and the plasma membrane H+-ATPase as a key factor of this process.  相似文献   

16.
The possible role of redox-associated protons in growth of plant cells   总被引:8,自引:0,他引:8  
The protons excreted by plant cells may arise by two different mechanisms: (1) by the action of the plasma membrane H+-ATPase and (2) by plasma membrane redox reactions. The exact proportion from each source is not known, but the plasma membrane H+-ATPase is, by far, the major contributor to proton efflux. There is still some question of whether the redox-associated protons produced by NADH oxidation on the inner side of the plasma membrane traverse the membrane in a 1 : 1 relationship with electrons generated in the redox reactions. Membrane depolarization observed in the presence of ferricyanide reduction by plasma membranes of whole cells or tissues or the lag period between ferricyanide reduction and medium acidification argue that only scalar protons may be involved. The other major argument against tight coupling between protons and electrons involves the concept of strong charge compensation. When ferricyanide is reduced to ferrocyanide on the outside of cells or tissues, an extra negative charge arises, which is compensated for by the release of H+ or K+, so that the total ratio of increased H+ plus K+ equals the electrons transferred by transmembrane electron transport. These are strong arguments against a tight coupling between electrons and protons excreted by the plasma membrane. On the other hand, there is no question that inhibitor studies provide evidence for two mechanisms of proton generation by plasma membranes. When the H+-ATPase activity is totally inhibited, the addition of ferricyanide induces a burst of extra proton excretion, orvice versa, when plasma membrane redox reactions are inhibited, the H+-ATPase can function normally. Since plasma membrane redox reactions and associated H+ excretion are related to growth, it is possible that in plants the ATPase-generated protons have a different function from redox-associated protons. The H+-ATPase-generated protons have been considered for many years to be necessary for cell wall expansion, allowing elongation to take place. A special function of the redox-generated protons may be in initiating proliferative cell growth, based on the presence of a hormone-stimulated NADH oxidase in membranes of soybean hypocotyls and stimulation of root growth by low concentrations of oxidants. Here we propose that this NADH oxidase and the redox protons released by its action control growth. The mechanism for this may be the evolution of protons into a special membrane domain, from which a signal to initiate cell proliferation may originate, independent of the action of the H+-ATPase-generated protons. It is also possible that both expansion and proliferative growth are controlled by redox-generated protons.  相似文献   

17.
The regulation of the H+-ATPase of plasma membrane is a crucial point in the integration of transport processes at this membrane. In this work the regulation of H+-ATPase activity induced by changes in turgor pressure was investigated and compared with the stimulating effect of fusicoccin (FC). The exposure of cultured cells of Arabidopsis thaliana L. (ecotype Landsberg 310–14-2) to media containing mannitol (0. 15 or 0. 3 M ) or polyethylene glycol 6000 (PEG) (15. 6% or 22% w/v) resulted in a decrease in the turgor pressure of the cells and in a strong stimulation of H+ extrusion in the incubation medium. The osmotica-induced H+ extrusion was (1) inhibited by the inhibitor of plasma membrane H+-ATPase, erythrosin B (EB), (2) dependent on the external K+ concentration, (3) associated with a net K+ influx, and (4) lead to an increase of cellular malate content. These results show that the reduction of external osmotic potential stimulates the activity of plasma membrane H+-ATPase
The effect of mannitol was only partially inhibited by treatments with cycloheximide (CH) and cordycepin, which block protein and mRNA synthesis, respectively. All the effects of osmotica were qualitatively and quantitatively similar to those induced by 5 μ M FC. However, when FC and mannitol (or PEG) were fed together, their effects on H+ extrusion appeared synergistic, irrespective of whether FC was present at suboptimal or optimal concentrations. This behaviour suggests that the modes of action of FC and of the osmotica on H+-ATPase activity differ at least in some step(s)  相似文献   

18.
Most of the plasma membrane vesicles formed upon homogenization of plant tissue have a right-side-out (cytoplasmic side-in) orientation. Subsequent purification of plasma membrane vesicles using aqueous two-phase partitioning leads to a further enrichment in right-side-out vesicles resulting in preparations with 80–90% of the vesicles in this orientation. Thus, to be able to assay, e.g. the ion-pumping activities of the H+-ATPase and the Ca2+-ATPase, which expose their active sites towards the cytoplasm, the vesicles have to be inverted. This is very efficiently achieved by including 0.05% of the detergent Brij 58 (C16E20) in the assay medium, which produces 100% sealed, inside-out (cytoplasmic side-out) vesicles from preparations of 80–90% right-side-out vesicles. This was shown by assaying ATP-dependent H+ pumping using the ΔpH probe acridine orange and dissipating the H+ gradient with nigericin, and by assaying ATP-dependent Ca2+ transport using 45CA2+ and dissipating the Ca2+ gradient with the ionophore A23187. The presence of intact vesicles was confirmed by electronmicroscopy. The detergent Brij 58 is a polyoxyethylene acyl ether and a survey among some other members of this series revealed that those with a head group of relatively large size (E20–23) showed this 'non-detergent behavior', whereas those with smaller head groups (E8–10) behaved as normal detergents and permeabilized the membranes. Thus, a very convenient system for studies on ion-pumping activities and other vectorial properties of the plasma membrane is obtained by simply including the detergent Brij 58 in the assay medium.  相似文献   

19.
Abstract: Upon addition of the cardiac glycoside ouabain to cultured cerebellar granule cells, an immediate increase in intracellular free sodium is evoked mediated by two pathways, a voltage-sensitive channel blocked by tetrodotoxin and a channel sensitive to flunarizine. Ouabain induces a steady plasma membrane depolarization in low Ca2+ medium; whereas in the presence of Ca2+, a distinct discontinuity is observed always preceded by a large increase in intracellular free Ca2+ ([Ca2+]c). The plateau component of the increase can be inhibited additively by the L-type Ca2+ channel antagonist nifedipine, the spider toxin Aga-Gl, and the NMDA receptor antagonist MK-801. Single-cell imaging reveals that the [Ca2+]c increase occurs asynchronously in the cell population and is not dependent on a critical level of extracellular glutamate or synaptic transmission between the cells. A prolonged release of glutamate is also observed that is predominantly Ca2+ dependent for the first 6–10 min after the evoked increase in [Ca2+]c. This release is four times as large as that observed with 50 m M KCl and is predominantly exocytotic because release was inhibited by tetanus toxin, the V-type ATPase inhibitor bafilomycin, and Aga-Gl. It is proposed, therefore, that ouabain induces a period of membrane excitability culminating in a sustained exocytosis above that observed upon permanent depolarization with KCl.  相似文献   

20.
Abstract Intracellular acidification has been considered one of a number of mechanisms underlying the inhibition of growth and fermentation by ethanol in yeast. However, most of the studies on the effect of ethanol on yeast intracellular pH (pHi) were carried out by using unadapted cells to which ethanol was added. In this paper we show that the pHi of exponential cells of Saccharomyces cerevisiae IGC 3507 III grown in a medium with glucose and inhibitory concentrations of ethanol only decreased to values below those in unstressed cells (6.9) for concentrations equal to or above 7% (v/v). Only at these supracritical levels (7–10% (v/v)) was pH homeostasis in ethanol-adapted yeast affected. This is consistent with the significant increase of plasma membrane permeability and decrease of plasma membrane H+-ATPase in comparison with the corresponding values in unstressed cells. These deleterious effects were only observed with those high concentrations of toxin. These results indicate that intracellular acidification does not account for inhibition of yeast growth in the presence of ethanol. In fact, growth was inhibited by ethanol concentrations (3–6% (v/v)) that did not lead to the decrease of pHi. Furthermore, even for supracritical concentrations, close to the maximal that allowed growth (10% (v/v)), the dedrease of pHi was not important reaching, at the most, values of 6.5–6.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号