首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collections of algae, mainly planktonic, were made from 41 saline lakes in southern Saskatchewan ranging in salinity from 3.2 to 428 g l-1. Algae in 7 phyla, 8 classes, 42 families, 91 genera and 212 species and varieties were identified. Fourteen species were restricted to hypersaline (50 g l-1) waters and eleven of these were diatoms. In general, species diversity was inversely related to lake salinity. Algae that were important community constituents over a broad spectrum of salinities were the green algae Ctenocladus circinnatus, Dunaliella salina and Rhizoclonium hieroglyphicum, the blue-green Lyngbya Birgei, Microcystis aeruginosa, Oscillatoria tenuis, O. Utermoehli and Nodularia spumigena and the diatoms Melosira granulata, Stephanodiscus niagarae and Chaetoceros Elmorei. In general green algae were dominant when lake salinity exceeded 100 g l-1 although diatoms played important roles in most of these highly saline lakes except for Patience Lake.  相似文献   

2.
The Pretoria Salt Pan, South Africa, a small (0.076 km2), shallow (Zmax = 2.85 m), hypersaline, maar lake, lies within a clearly-defined crater and is fed by a perennial, slightly saline (3 g l-1) artesian spring. The lake has two distinct solar-heated peaks in its temperature profile, each of these peaks located in a highly turbid (>80 JTU) layer below a steep chemocline. The upper thermal peak, located at a depth of 10 cm, was transient, with a distinct diel pattern of diurnal heating and nocturnal cooling. The lower thermal peak, located below a steep chemocline and centred at approximately 60 cm, was stable and showed a seasonal pattern of winter heating (maximum: 38.5°C) and summer cooling (minimum: 27.4°C). The unusual bathymetry of the lake, combined with the sheltering effect of the crater rim and steep salinity gradient between the surface (30–80 g l-1) and bottom water (280–310 g l-1) prevented windmixing of surface waters beyond a depth of approximately 50 cm. During a 28 month study all water deeper than 55 cm remained anaerobic, and the lake appeared to be meromictic.  相似文献   

3.
This study relates to the ecology of Dictyosphaerium pulchellum Wood in Delamere Lake in Cheshire, UK. Dictyosphaerium pulchellum is a cosmopolitan, green colonial phytoplankton species that occasionally forms dense, monospecific populations in lakes. Delamere Lake is a small, shallow, acid lake (mean pH, 4.5) with very high phytoplankton biomass (annual mean chlorophyll a, 290 μg l−1) and devoid of any significant cladoceran population, the efficient grazers of phytoplankton. A predominantly unicellular form of D. pulchellum was the dominant species in Lake Delamere, and it comprised on average ca. 80% (maximum >99%) of the lake phytoplankton biovolume. Laboratory and lake experiments were conducted on this species showed that its pH tolerance varied between 2.4 and 10.7, and its optimum tolerance range between 3.3 and 8.5 depending on other environmental variables. Low pH was not responsible for the unicellular habit of this alga, but a very high nutrient regime could be an important factor. Bioassays revealed that in Delamere Lake this species was limited by nitrogen, but nitrogen did not hamper high growth in the lake. Dictyosphaerium pulchellum can persist at low light levels, tolerate CO2-deficiency and can grow in polyhumic water with water colour around 300 mg Pt l−1, but probably not in darker waters. The dominance of D. pulchellum in Delamere Lake is apparently due to a combination of several factors: its ability to tolerate both low pH and high turbidity, exploit high nutrient conditions, absence of effective grazing pressure by zooplankton and being a superior competitor.  相似文献   

4.
Lake Timsah is considered as the biggest water body at Ismailia City with a surface area of 14?km2. It is a saline shallow water basin lies approximately mid-way between the south city of Suez and the north city of Port Said at 30o35′46.55“N and 32o19′30.54″E. Because it receives water with high and low salinities, salinity stratification is producing in the Lake Timsah, with values of 14–40‰ for the surface water and over 40‰ for the bottom water. The temperature of the lake water decreased to below 19 °C in the winter and rose to above 29?°C in the summer; the concentration of dissolved oxygen ranged between 6.5 and 12.2?l?1 and the pH fluctuated between 7.9 in its lower value and 8.2 in its higher value. Water transparency was very low as indicated by Secchi disc readings recorded during this study and varied between 0.3 and 2.7?m. The main chemical nutrient (phosphorus) reached its highest levels of 96?µg?l?1 in winter and their lowest values of 24?µg?l?1 during summer. This nutrient concentration is high especially by comparing with those of unpolluted marine waters, but is typical of the more eutrophic coastal waters worldwide. The composition and abundance of phytoplankton with dominancy of diatoms and increased population density (20,986 cell l?1) reflect the eutrophic condition of the lake. The intensive growth of phytoplankton was enriched by high concentration of chlorophyll a with annual values ranged between 6.5 and 56?µg?l?1. The objective of the present work was quantitative assessment of the quality of the water of the Lake Timsah using different approaches. During the present study, three different approaches were applied for the quantitative assessment of Lake Timsah water quality: the trophic state index (TST); trophic level index (TLI) and water quality index (WQI). Application of the trophic state and trophic level indices (TSI & TLI) revealed that the Lake Timsah has trophic indices of 60 and 5.2 for TSI and TLI, respectively. Both indices reflected the eutrophic condition of the lake waters and confirmed that the eutrophication is a major threat in the Lake Timsah. On the other hand, the WQI calculated for the Lake Timsah during the present study with an average of 49 demonstrated that the water of the Lake Timsah is bad and unsuitable for main and/or several uses. Moreover, WQI allows accounting for several water resource uses and can serve a more robust than TSI and/or TLI and can be used effectively as a comprehensive tool for water quality quantification. In conclusion, the three subjective indices used for the assessment process for the lake water are more suitable and effective for needs of the sustainable water resources protection and management of the Lake Timsah.  相似文献   

5.
Assuming that the inshore and offshore waters of Lake Victoria are impacted differently by human activities in its catchment, this study investigated the water quality dynamics of the lake. A total of 29 stations were sampled in 2005–2008 for dissolved oxygen (DO), pH, Secchi transparencies, temperature, turbidity, chlorophyll a, NO3, SRSi, TN and TP. There was a decreasing trend of the measured parameters towards offshore sites, except for Secchi transparency and NO3, which increased towards the offshore waters. DO concentrations (mean ± SD) varied between 6.97 ± 0.57 mg O2 l–1 and 5.80 ± 0.72 mg O2 l–1 in the inshore and offshore waters, respectively. Turbidity values were comparatively higher in the inshore (3.73 ± 2.21 NTU) than the offshore waters (2.19 ± 1.81 NTU). Chlorophyll a concentrations varied between 17.36 ± 6.13 µg l–1 and 8.09 ± 4.38 µg l–1 in the inshore and offshore waters, respectively. Increases of unsustainable human activities in the lake and its catchments, plus increased degradation of wetlands, are among the causes of the observed water quality changes. In order to be fruitful and sustainable, the management of Lake Victoria and its catchment needs to take an ecosystem approach, and to involve all key stakeholders.  相似文献   

6.
Phytoplankton ecology of the Lake of Menteith,Scotland   总被引:1,自引:1,他引:0  
The results discussed in this paper represent the first seasonal ecological study carried out on the phytoplankton of the Lake of Menteith. All measured nutrients reached maximum levels during the winter, with silicate showing particularly high concentrations (up to 85 µg at Si l–1). During the summer period phosphate, nitrate and silicate showed almost complete exhaustion in surface waters. The lake water was consistently alkaline, never falling below pH 7, while the alkalinity ranged from 20 to 24 mg CaCO3 l–1. Generally, the nutrient status of the main inflow had a rapid effect on the water quality of the lake.The region of the lake under investigation showed no thermal stratification at any period of the year, although continuous thermal gradients were recorded in the winter. The continual circulation of the water mass probably prevented oxygen saturation from falling below 77% even following a large phytoplankton bloom and subsequent decomposition.From an examination of net phytoplankton samples the Lake of Menteith could be described as blue-green or blue-green/diatom in nature. From the quantitative study, large pulses of Melosira, Asterionella and Fragilaria were recorded in the spring. The disappearance of the species appears to be related to silicate limitation. The summer growth of Asterionella may have been promoted by a nitrogen source other than nitrate and nitrite, both of which were reduced to critical levels. This alternative source of combined nitrogen may have been contributed by nitrogen-fixing algae in the lake. Three species of Anabaena were recorded, all of which produced large populations during the year.Department of Botany, The University of GlasgowPresent Address: Department of Biology, College of Science, University of Sulaimaniyah, Sulaimaniyah, Iraq  相似文献   

7.
The geographic distribution, history, and ionic composition of habitats of Artemia franciscana are reviewed with emphasis on habitats with extreme values for ionic concentrations or ionic ratios: a) high-chloride waters (sea water salterns and Zuni and Great Salt Lakes); b) high-sulfate lakes in Saskatchewan (Chaplin and Little Manitou) and on the Okanogan plateau of Washington (Penley Lake complex); and c) high-carbonate habitats in Nevada (Fallon), in California (Mono Lake) and in the Nebraska sandhills (Jesse and Antioch).First-instar nauplii from populations representative of each of these three habitat clusters were tested for tolerance of potassium (0–5 g K l-1), magnesium (0–1.3 g Mg l-1), and calcium (0\2–0.6 g Ca l-1). Viabilities were recorded until survivors reached adulthood in pairs of simple defined synthetic culture media which differed in only one parameter. Eight populations showed four levels of tolerance of high potassium. Of four populations tested, all had high viability and fertility in media lacking potassium (above the level in the yeast diet). Artemia from sea water salterns or from Zuni, Chaplin, or Great Salt Lakes could not tolerate low levels of calcium (<20 mg l-1). This accounts for their inability to tolerate hypersaline high-carbonate waters. Mono and Fallon nauplii had high viability and fertility in media with low levels of calcium (0–10 mg l-1) but lacking magnesium. They could not survive for seven days, however, in low-calcium (< 10 mg l-1) media that contained moderate amounts of magnesium (1.3 g l-1), indicating that magnesium interferes with utilization of low levels of calcium.For each of the three cations, the range of concentrations encountered by each population in the habitat is narrower than the range affording high viability in laboratory media. As expected, the midpoints of the two ranges are sometimes similar. In many cases, however, the narrower range of ionic concentrations reported for lake water is at the end of the range affording high viability in the laboratory.  相似文献   

8.
Possible causes of deaths of Oreochromis niloticus in Lake Chivero were examined in relation to changes in limnological conditions monitored over a 25‐month period. The fish deaths coincided with the collapse of an algal bloom that had developed and builtup in the lake for 8 months. Chlorophyll a and dissolved oxygen increased to average concentrations of 42.4 μg l?1 and 10.9 mg l?1 respectively prior to the collapse of the bloom. Dissolved oxygen decreased when the bloom started to die off and coincided with the fish deaths when the average surface dissolved oxygen concentration in the lake was 3.9 mg l?1 and was at a depth of 5 m <2 mg l?1. Mortality probably resulted from depressed oxygen levels caused by the high oxygen demand from the massive algal die‐off and released algal toxins. This is the first time that die‐off of algae has been linked to fish‐kills in Lake Chivero as occurs in other hypereutrophic systems.  相似文献   

9.
Spanish salt lakes: Their chemistry and biota   总被引:9,自引:9,他引:0  
F. A. Comin  M. Alonso 《Hydrobiologia》1988,158(1):237-245
A large number of small saline lakes are distributed throughout Spain. Four main lake districts occur from sea level to 1000 m.a.s.l. Most lakes are temporary because of the arid conditions in the Spanish endorheic areas. Many lakes are situated in Tertiary depressions in NE. and S. Spain. Lake basins were formed in karstic areas by hydrologic and aeolian erosion. Saline lakes in NE. Spain occupy areas isolated between river basins. The major ions encountered in these lakes are usually sodium-chloride and magnesium-sulphate; sodium carbonate or sodium-sulphate rich waters also occur.The biota of Spanish salt lakes is related to that of a larger biogeographical region which includes the Mediterranean countries. The main types of salt lakes in Spain include: (1) temporarily mineralized but not highly saline lakes, salinity is less than 7 g l-1. Chara canescens, C. aspera, Zanichellia palustris, Daphnia atkinsoni, Mixodiaptomus incrassatus and Arctodiaptomus wierzejskii are the most characteristic organisms. (2) Temporary salt lakes, salinity fluctuates between 7 and 300 g l-1. Chara galioides, Lamprothamnion papulosum, Daphnia mediterranea, Arctodiaptomus salinus and Cletocamptus retrogressus are the most common species. (3) Permanent salt lakes, Ruppia maritima, Najas marina and Artemia salina are the characteristic organisms.  相似文献   

10.
The Salton Sea is a shallow (mean depth = 8 m; maximum depth = 15 m), saline (41–45 g l–1), intermittently mixing, 57 km long, 980 km2 lake located in the arid southwestern United States. The Sea is a wind driven system, with predominant winds paralleling the long axis of the lake, being strongest in spring and weakest in summer and fall. The Sea mixed daily or nearly daily between September and January. During this cooling period, moderate to high levels of dissolved oxygen (3–11 mg l–1) were found throughout the water column. Mean water column temperature ranged from a minimum of 13–14 °C in early January to a maximum of 30–34 °C in July–September. During most of this warming period, the Sea was thermally stratified but subject to periodic wind driven mixing events. Winds were stronger in spring 1998 than in 1997 or 1999, causing more rapid heating of the lake that year and also delaying onset of anoxic conditions in bottom waters. During summer months, mid-lake surface waters were sometimes supersatured with oxygen, and bottom waters were hypoxic or anoxic with sulfide concentrations > 5 mg l–1. Oxic conditions (> 1 mg O2 l–1) often extended a few meters deeper nearshore than they did well offshore as a consequence of greater mixing nearshore. Mixing events in late summer deoxygenated the entire water column for a period of days. Consumption of oxygen by sulfide oxidation likely was the principal mechanism for these deoxygenation events. Sulfide concentrations in surface waters were 0.5–1 mg l–1 approximately 3 days after one mixing event in mid-August 1999. These mixing events were associated with population crashes of phytoplankters and zooplankters and with large fish kills. In the southern basin, freshwater inflows tended to move out over the surface of the Sea mixing with saline lake water as a function of wind conditions. Salinity gradients often contributed more to water column stability than did thermal gradients in the southeasternmost portion of the lake.  相似文献   

11.
We investigated the diversity of nitrogenase genes in the alkaline, moderately hypersaline Mono Lake, California to determine (1) whether nitrogen-fixing (diazotrophic) populations were similar to those in other aquatic environments and (2) if there was a pattern of distribution of phylotypes that reflected redox conditions, as well as (3) to identify populations that could be important in N dynamics in this nitrogen-limited lake. Mono Lake has been meromictic for almost a decade and has steep gradients in oxygen and reduced compounds that provide a wide range of aerobic and anaerobic habitats. We amplified a fragment of the nitrogenase gene (nifH) from planktonic DNA samples collected at three depths representing oxygenated surface waters, the oxycline, and anoxic, ammonium-rich deep waters. Forty-three percent of the 90 sequences grouped in nifH Cluster I. The majority of clones (57%) grouped in Cluster III, which contains many known anaerobic bacteria. Cluster I and Cluster III sequences were retrieved at every depth indicating little vertical zonation in sequence types related to the prominent gradients in oxygen and ammonia. One group in Cluster I was found most often at every depth and accounted for 29% of all the clones. These sequences formed a subcluster that contained other environmental clones, but no cultivated representatives. No significant nitrogen fixation was detected by the 15N2 method after 48 h of incubation of surface, oxycline, or deep waters, suggesting that pelagic diazotrophs were contributing little to nitrogen fluxes in the lake. The failure to measure any significant nitrogen fixation, despite the detection of diverse and novel nitrogenase genes throughout the water column, raises interesting questions about the ecological controls on diazotrophy in Mono Lake and the distribution of functional genes in the environment.  相似文献   

12.
Walker Lake is a monomictic, nitrogen-limited, terminal lake located in western Nevada. It is one of only eight large (Area>100 km2, Z { mean}>15 m) saline lakes of moderate salinity (3–20 g l–1) worldwide, and one of the few to support an endemic trout fishery (Oncorhynchus clarki henshawi). As a result of anthropogenic desiccation, between 1882 and 1996 the lake's volume has dropped from 11.1 to 2.7 km3 and salinity has increased from 2.6 to 12–13 g l–1. This study, conducted between 1992 and 1998, examined the effects of desiccation on the limnology of the lake. Increases in salinity over the past two decades caused the extinction of two zooplankton species, Ceriodaphnia quadrangula and Acanthocyclops vernalis. Recent increases in salinity have not negatively affected the lake's dominant phytoplankton species, the filamentous blue-green algae Nodularia spumigena. In 1994 high salinity levels (14–15 g l–1) caused a decrease in tui chub minnow populations, the main source of food for Lahontan cutthroat trout, and a subsequent decrease in the health of stocked trout. Lake shrinkage has resulted in hypolimnetic anoxia and hypolimnetic accumulation of ammonia (800–2000 g-N l–1) and sulfide (15 mg l–1) to levels toxic to trout. Internal loading of ammonia via hypolimnetic entrainment during summer wind mixing (170 Mg-N during a single event), vertical diffusion (225–500 Mg-N year–1), and fall destratification (540–740 Mg-N year–1) exceeds external nitrogen loading (<25 Mg-N year–1). Increasing salinity in combination with factors related to hypolimnetic anoxia have stressed trout populations and caused a decline in trout size and longevity. If desiccation continues unabated, the lake will be too saline (>15–16 g l–1) to support trout and chub fisheries in 20 years, and in 50–60 years the lake will reach hydrologic equilibrium at a volume of 1.0 km3 and a salinity of 34 g l–1.  相似文献   

13.
Variations of the pufM gene [encoding the M subunit of the photosynthetic reaction center in aerobic anoxygenic phototrophic (AAnP) bacteria] diversity in response to environmental changes were investigated in waters of six aqueous regimes (including Daotang River and five saline/hypersaline lakes on the Tibetan Plateau) representing a full salinity gradient from freshwater to NaCl-saturation. AAnP bacterial community structures responded to salinity change: Gamma-like AAnP community was predominant in freshwater Daotang River (0.01% salinity). AAnP community structure shifted from Loktanella-like sequences of the Alphaproteobacteria in saline Qinghai Lake to Roseobacter-like sequences in hypersaline lakes (Gahai, Xiaochaidan and Charhan). In addition to salinity, other environmental variables (e.g. N and P availability, TOC and/or DOC, and HCO? 3/CO2? 3 ions) were also important in affecting the pufM gene diversity in hypersaline lakes. These data have important implications for our understanding of the response of AAnP bacterial community to environmental variables in high-altitude aquatic ecosystems.  相似文献   

14.
Saline lakes of the Paroo,inland New South Wales,Australia   总被引:11,自引:11,他引:0  
B. V. Timms 《Hydrobiologia》1993,267(1-3):269-289
Twenty-five lakes from fresh to crystallizing brine in the semi-desert of northwestern New South Wales, Australia, were studied regularly for 27 months. The lakes are small, shallow and ephemeral. Chemically waters are mainly of the NaCl type. Seventy-four species of invertebrate occur in saline waters (>3 g l–1) with crustaceans such as Parartemia minuta, Apocyclops dengizicus, Daphniopsis queenslandensis, Diacypris spp. and Reticypris spp. dominant, particularly at higher salinities. The insects Tanytarsus barbitarsis and Berosus munitipennis are also important in meso- and hypersaline lakes. They are joined in hypo- and mesosaline waters by many others, including more beetles, odonatans, trichopterans, pyralids, notonectids, and corixids. Species richness declines with increasing salinity. There is a prominent inland faunal component mainly of crustaceans, including P. minuta, D. queenslandensis, R. walbu, Trigonocypris globulosa and Moina baylyi.  相似文献   

15.
Lake Urmia (or Ormiyeh) is one of the largest hypersaline lakes in the world and the habitat of a unique bisexual Artemia species (A. urmiana). Despite this, and several other values of the lake, little literature on it has been published. The present paper is an attempt to provide a brief review on various aspects of the lake. Urmia Lake, located in northwestern Iran, is an oligotrophic lake of thalassohaline origin with a total surface area between 4750 and 6100 km2 and a maximum depth of 16 m at an altitude of 1250 m. The lake is divided into north and south parts separated by a causeway in which a 1500-m gap provides little exchange of water between the two parts. Due to drought and increased demands for agricultural water in the lake's basin, the salinity of the lake has risen to more than 300 g/L during recent years, and large areas of the lake bed have been desiccated. Therefore, management and conservation of this incomparable ecosystem should be considered to improve the current condition by fisheries research institutes.  相似文献   

16.
Lake Logipi is a saline soda and alkaline lake which marks the northern termination of the Suguta River drainage system. It also receives waters from streams, possible seepage from Lake Turkana, and hot springs. Present hydrochemistry and sedimentology is controlled by numerous factors including seasonal variations, composition of incoming waters, water depth and, above all, bacterial activity. Given the scarcity of Ca2+ and Mg2+ in the lake waters, bacterial activity seems to intensify the alkalinization of the waters which inhibits the deposition of organic matter and leads to the genesis of a poorly organic, zeolitic mud that reaches 1.5 m in tickness in the deepest part of the lake. This black layer may be overlaid with thin crusts of trona and halite which prograde over the basin from its southern bank when the lake is drying out and which are dissolved in the lake waters during the rainy season.  相似文献   

17.
A large ultra-oligotrophic Antarctic freshwater lake, Crooked Lake, was investigated between January 1993 and November 1993. The water column supported a small phytoplankton community limited by temperature, nutrient availability and, seasonally, by low photosynthetically active radiation. Chlorophyll a concentrations were consistently low (<1 g l−1) and showed no obvious seasonal patterns. Production rates were low, ranging from non-detectable to 0.56 g C l−1 h−1, with highest rates generally occurring towards the end of the austral winter and in spring. The pattern of carbon fixation indicated that the phytoplankton was adapted to low light levels. Chlorophyll a specific photosynthetic rates (assimilation numbers) ranged from non-detectable to 1.27 gC (g chlorophyll a)−1 h−1. Partitioning of photosynthetic products revealed carbon incorporation principally into storage products such as lipids at high light fluxes with increasing protein synthesis at depth. With little allochthonous input the data suggest that lake dynamics in this Antarctic system are driven by phytoplankton activity. Received: 21 February 1997 / Accepted: 18 May 1997  相似文献   

18.
La Salada de Chiprana Lake, located in the Ebro River basin, northeastern Spain, is the only permanent and deep water hypersaline ecosystem in all of western Europe. With a total surface of 31 ha and a maximum depth of 5.6 m, it has several basins bounded by elongated sandstone-bodies or ribbons which are paleochannels of Miocene age. Its salinity varied from 30 to 73 g 1–1 during the 1989 hydrological cycle and the most abundant ions were magnesium and sulphate. Depth-time distributions of major physico-chemical variables demonstrated that the lake was stratified in two distinctive layers during most of the year. The chemocline disappeared only in October, with the complete overturn of the water column. In the deep water, three conditions occurred which allowed development of green sulphur bacteria populations: (1) oxygen depletion, (2) presence of hydrogen sulphide and (3) presence of light. Benthic microbial mats covered the sediments of shallow shores of moderate slope.  相似文献   

19.
A number of expeditions to the area of Salar de Atacama, Chile, 68° 15'W, 20° 30'S, have involved studies of the biological and chemical features of Lake Tebenquiche, situated in the interior of the salar. Chemically, Tebenquiche is hypersaline, with practically anoxic waters dominated by sodium and chloride ions but with high concentrations of sulphate also. The lake is surrounded and invaded by macrophytes, dominated by Scirpus olmeyi and Juncus, which provide organic material for the formation of bacterial mats. The fauna of limnetic crustaceans is almost exclusively of Artemia salina. The most important genera of bacteria are: Marinomonas, Halobacterium, Acinetobacter and the sulphur reductors Vibrio and Bacillus. The Cyanobacteria are represented exclusively by Oscillatoria.  相似文献   

20.
Phosphorus (P) dynamics in large shallow lakes are greatly influenced by physical processes such as wind-driven sediment resuspension, at times scales from hours to years. Results from long-term (30 year) research on Lake Okeechobee, Florida (area 1,730 km2, mean depth 2.7 m) illustrate key features of these P dynamics. Variations in wind velocity result in changes in water column transparency, suspended solids, and total P (TP). In summer there are diurnal changes in TP associated with afternoon winds, and in winter, when strong winds occur for multiple days, monthly average TP remains high compared to summer. The magnitude of daily and seasonal TP changes can exceed 100 μg l−1. Hurricanes and tropical storms also cause extreme changes in TP that are superimposed on seasonal dynamics. When a hurricane passed 80 km south of the lake in October 1999, mean pelagic TP increased from 88 to 222 μg l−1. During large resuspension events, light attenuation is substantially increased, and this influences the biomass and spatial extent of submerged plants, as well as water column TP. In Lake Okeechobee, TP concentrations typically are ∼20 μg l−1 when submerged plants are dense, and soluble reactive P concentrations are reduced below detection, perhaps by the periphyton and plant uptake and by precipitation with calcium at high pH. In contrast, TP exceeds 50 μg l−1 when submerged plants and periphyton are absent due to prolonged deep water, and phytoplankton biomass and algal bloom frequency both are increased. In Lake Okeechobee and other large shallow lakes, complex models that explicitly consider wind-wave energy, hydrodynamics, and sediment resuspension, transport, and key biological processes are needed to accurately predict how lake water TP will respond to different management options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号