首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 3T3-TNR9 cell line is a variant of Swiss 3T3 cells which does not respond mitogenically to tumor promoters, but does respond mitogenically to epidermal growth factor, fibroblast growth factor, and serum. To elucidate differences between tumor promoters and polypeptide mitogens in the pathway(s) of mitogenesis which might be responsible for the nonresponsiveness of the 3T3-TNR9 cells, we have examined in these cells the early protein phosphorylation events known to be associated with mitogenesis in the parental 3T3 cells. We find that the 3T3-TNR9 cells display levels of tetradecanoyl phorbol acetate binding and of a calcium- and phospholipid-dependent protein kinase activity which are at least the equal of those seen in the parental 3T3 cells, implicating some postreceptor event in the nonmitogenic phenotype. In addition, we find that phosphorylation of the epidermal growth factor receptor and of 80-kDa and 22-kDa proteins, as well as the tyrosine phosphorylation of a 42-kDa protein, all proceed normally in the nonmitogenic variant, even though these phosphorylations must depend on the activation of different kinases. Thus, all these early phosphorylation reactions are intact in the 3T3-TNR9 cells. Although these phosphorylations may be necessary, they clearly are insufficient to trigger mitogenesis.  相似文献   

2.
Mitogen-activated protein (MAP) kinase is a serine/threonine-specific protein kinase which is activated in response to various mitogenic agonists (e.g., epidermal growth factor, insulin, and the tumor promoter tetradecanoyl phorbol acetate [TPA]) and requires both threonine and tyrosine phosphorylation for activity. This enzyme has recently been shown to be identical or closely related to pp42, a protein which becomes tyrosine phosphorylated in response to mitogenic stimulation. Neither the kinases which regulate MAP kinase/pp42 nor the in vivo substrates for this enzyme are known. Because MAP MAP kinase is activated and phosphorylated in response both to agents which stimulate tyrosine kinase receptors and to agents which stimulate protein kinase C, a serine/threonine kinase, we have examined the regulation and phosphorylation of this enzyme in 3T3-TNR9 cells, a variant cell line partially defective in protein kinase C-mediated signalling. In this communication, we show that in the 3T3-TNR9 variant cell line, TPA does not cause the characteristically rapid phosphorylation of pp42 or the activation and phosphorylation of MAP kinase. This defective response is not due to the absence of the MAP kinase/pp42 protein itself because both tyrosine phosphorylation of MAP kinase/pp42 and its enzymatic activation could be induced by platelet-derived growth factor in the 3T3-TNR9 cells. Thus, the defect in these variant cells apparently resides in some aspect of the regulation of MAP kinase phosphorylation. Since the 3T3-TNR9 cells are also defective with respect to the TPA-induced increase in ribosomal protein S6 kinase, these in vivo results reinforce the earlier in vitro finding that MAP kinase can regulate S6 kinase activity. These findings suggest a key role for MAP kinase in a kinase cascade cascade involved in the control of cell proliferation.  相似文献   

3.
Barsoum and Varshavsky (Proc. Natl. Acad. Sci. U.S.A. 80:5330-5334, 1983) suggest that polypeptide mitogens and the mitogenic tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulate gene amplification by related pathways. I demonstrated that TPA and the polypeptide mitogen fibroblast growth factor (FGF) both increase the frequency of cadmium-resistant variants of Swiss-Webster 3T3 cells. The molecular basis for this phenomenon is the amplification of the metallothionein gene(s). To further characterize the relationship between mitogenesis and gene amplification, I examined the ability of TPA and FGF to increase the frequency of cadmium-resistant colonies in the 3T3 variant cell line 3T3-TNR9. Unlike 3T3 cells, 3T3-TNR9 cells cannot be stimulated by TPA to divide (E. Butler-Gralla and H. R. Herschman, J. Cell. Physiol. 107:59-68, 1981). TPA does not induce an increase in cadmium-resistant colonies of the TPA-nonproliferative 3T3-TNR9, variant, in contrast to its efficacy on 3T3 cells. FGF, a potent mitogen for 3T3-TNR9 cells as well as 3T3 cells, is equally effective for 3T3-TNR9 and 3T3 cells in inducing cadmium-resistant colonies. These data suggest that the pathways of TPA-induced gene amplification and TPA-stimulated mitogenesis share a common step(s). TPA caused transient inhibition of DNA synthesis in both dividing 3T3 and 3T3-TNR9 cells, suggesting that this latter response to TPA is not sufficient to enhance gene amplification.  相似文献   

4.
The cell line TNR9 (E. Butler-Gralla and H. R. Herschman, J. Cell. Physiol. 107:59-67, 1981) in a Swiss 3T3 cell variant that expresses protein kinase C (PKC) but is mitogenically nonresponsive to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). We have found that PKCs purified from variant and parental cells are identical as judged by kinase activity, protease mapping, and column chromatography. We analyzed cellular levels and subcellular location of PKC in TPA-treated 3T3 and TNR9 cells via immunoprecipitation of [35S]methionine-labeled protein and assay of immune-complex PKC kinase activity. TNR9 cells grew to higher densities than parental 3T3 cells. TNR9 cells at maximal density did not down regulate PKC in response to long-term TPA treatment. We compared the 80-kilodalton (kDa) PKC substrate phosphorylation in 3T3 and TNR9 cells by using two-dimensional gels and found that TNR9 cells treated with TPA for 30 min contained only 10 to 15% as much 32Pi associated with the 80-kDa as did parental cells. The TNR9 80-kDa substrate was present at reduced levels compared with the parental-cell 80-kDa substrate as judged by immunoblot and silver staining. Thus, the loss of mitogenic responsiveness to TPA in TNR9 cells is accompanied by resistance to TPA-mediated down regulation of PKC and reduced phosphosubstrate levels.  相似文献   

5.
We isolated a group of genes that are rapidly and transiently induced in 3T3 cells by tetradecanoyl phorbol acetate (TPA). These genes are called TIS genes (for TPA-inducible sequences). Epidermal growth factor (EGF), fibroblast growth factor (FGF), and TPA activated TIS gene expression with similar induction kinetics. TPA pretreatment to deplete protein kinase C activity did not abolish the subsequent induction of TIS gene expression by epidermal growth factor or fibroblast growth factor; both peptide mitogens can activate TIS genes through a protein kinase C-independent pathway(s). We also analyzed TIS gene expression in three TPA-nonproliferative variants (3T3-TNR2, 3T3-TNR9, and A31T6E12A). The results indicate that (i) modulation of a TPA-responsive sodium-potassium-chloride transport system is not necessary for TIS gene induction either by TPA or by other mitogens and (ii) TIS gene induction is not sufficient to guarantee a proliferative response to mitogenic stimulation.  相似文献   

6.
We examined whether protein kinase D (PKD) overexpression in Swiss 3T3 cells potentiates the proliferative response to either the G protein-coupled receptor agonists bombesin and vasopressin or the biologically active phorbol ester phorbol 12,13-dibutyrate (PDBu). In order to generate Swiss 3T3 cells stably overexpressing PKD, cultures of these cells were infected with retrovirus encoding murine PKD and green fluorescent protein (GFP) expressed as two separate proteins translated from the same mRNA. GFP was used as a marker for selection of PKD-positive cells. PKD overexpressed in Swiss 3T3 cells was dramatically activated by cell treatment with bombesin or PDBu as judged by in vitro kinase autophosphorylation assays and exogenous substrate phosphorylation. Concomitantly, these stimuli induced PKD phosphorylation at Ser(744), Ser(748), and Ser(916). PKD activation and phosphorylation were prevented by exposure of the cells to protein kinase C-specific inhibitors. Addition of bombesin, vasopressin, or PDBu to cultures of Swiss 3T3 cells overexpressing PKD induced a striking increase in DNA synthesis and cell number compared with cultures of Swiss 3T3-GFP cells. In contrast, stimulation of DNA synthesis in response to epidermal growth factor, which acts via protein kinase C/PKD-independent pathways, was not enhanced. Our results demonstrate that overexpression of PKD selectively potentiates mitogenesis induced by bombesin, vasopressin, or PDBu in Swiss 3T3 cells.  相似文献   

7.
The potent tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) can stimulate quiescent, nonproliferating 3T3 cells to reenter the cell cycle and divide. We have previously used a slection technique developed in our laboratory to isolate variant cell lines which no longer divide in response to epidermal growth factor. We have now utilized the same selection procedure to isolate, from 3T3 cells, two variant cell lines, TNR-2 and TNR-9, which retain growth control and divide in response to elevated serum or fibroblast growth factor, but which do not respond to TPA. The variants do not incorporate precursors into DNA in response to TPA, demonstrating that the cells do not enter the S phase of the cell cycle. The TPA nonresponsive variant TNR-2 cannot respond to epidermal growth factor; TNR-9 responds to this mitogen. TNR-2 variant cells, which do not respond to EGF, do not bind 125I-EGF. TPA can modulate 125I-EGF binding to TNR-9 cells in a manner similar to its action on parental 3T3 cells. This TPA-induced alteration of EGF binding indicates that TNR-9 cells still interact with TPA, despite their inability to mount a mitogenic response.  相似文献   

8.
The middle T antigen of polyomavirus transformed primary chicken embryo fibroblasts when expressed from a replication-competent avian retrovirus. This in vitro-constructed retrovirus, SRMT1, is a variant of Rous sarcoma virus that encodes the middle T antigen in place of v-src. Inoculation of SRMT1 into 1-week-old chickens rapidly induced hemangiomas and hemangiosarcomas. As shown with mammalian cells infected with polyomavirus, polyomavirus middle T antigen appears to be associated with p60c-src in chicken cells infected with SRMT1. When lysates of SRMT1-infected cells immunoprecipitated with either a monoclonal antibody against p60src or anti-T serum were assayed in an in vitro kinase reaction, the middle T antigen was heavily phosphorylated. To see whether an excess of p60c-src could alter the extent of phosphorylation of the middle T protein or the process of cell transformation by middle T, cells were doubly infected with SRMT1 and NY501, a virus which overexpresses p60c-src. Doubly infected chicken embryo fibroblasts transformed with the same kinetics and were morphologically indistinguishable from chicken embryo fibroblasts infected with SRMT1 alone. Phosphorylation of the middle T antigen was elevated two- to fivefold relative to cells infected only with SRMT1.  相似文献   

9.
The ability of 12-O-tetradecanoylphorbol-13-acetate (TPA) to stimulate mitogenesis in BALB/c-3T3 cells and in a Na+K+Cl(-)-cotransport-defective variant subclone was investigated. This transport variant had previously been reported to be TPA mitogenically nonresponsive (O'Brien and Prettyman: Journal of Cellular Physiology 130:377-381, 1987) since the addition of TPA to the spent medium of density-arrested cultures stimulated DNA synthesis in the parent but not the variant cell line. We now report that the addition of TPA plus insulin, either directly to the spent medium or together with fresh medium, stimulated DNA synthesis in both the parent and variant cells to approximately the same extent. The parent and transport-deficient cells differed, however, in their sensitivity to the co-mitogenic effects of insulin or insulin-like growth factors.  相似文献   

10.
The src gene of Rous sarcoma virus (v-src) and its cellular homolog, the c-src gene, share extensive sequence homology. The most notable differences between these genes reside in the region encoding the carboxy terminus of the src proteins. We constructed mutations within the 3' end of the v-src gene to determine the significance of this region to the transforming potential of the v-src protein, pp60v-src. The mutants CHdl300 and CHis1511 contain mutations that alter the last 23 amino acids of pp60v-src, whereas the mutant CHis1545-C contains a linker insertion that alters the last 11 amino acids of pp60v-src, and the mutant CHis1545-H contains a linker insertion that results in a 9-amino-acid insertion at position 415. Plasmids bearing each of these mutations were unable to transform chicken cells when introduced into these cells by DNA transfection. In addition, the structurally altered src proteins encoded by the mutants had much-reduced levels of tyrosine protein kinase activity in vivo, as measured by autophosphorylation and phosphorylation of the 34,000-Mr cellular protein, and in vitro, as determined by measuring the level of pp60src autophosphorylation. These data indicate that the carboxy-terminal amino acid sequences play an important role in maintaining the structure of the catalytic domain of pp60v-src. In contrast, the transfection of chicken cells with plasmid DNA containing a chimeric v-c-src gene resulted in morphological cell transformation and the synthesis of an enzymatically active hybrid protein. Therefore, the carboxy-terminal sequence alterations observed in the c-src protein do not alone serve to alter the functional activity of a hybrid v-c-src protein appreciably.  相似文献   

11.
Both nitric oxide and prostaglandins are potent paracrine mediators of intercellular communication. An endotoxin-lipopolysaccharide (LPS) inducible form of nitric oxide synthase (mac-NOS) has recently been cloned from murine macrophages. An inducible prostaglandin synthase (TIS1O/PGS-2), cloned from 3T3 cells, is also induced in LPS-activated macrophage. Because of the wide range of ligands that induce primary response genes in 3T3 cells, the ease of studying chimeric promoter constructs in 3T3 cells, and the importance of both nitric oxide and prostaglandins as paracrine mediators, we examined expression of mac-NOS in 3T3 cells. Tetradecanoyl phorbol-13 acetate (TPA), forskolin, platelet-derived growth factor, fibroblast growth factor, and serum all induce mac-NOS expression in Swiss 3T3 cells. Thus the mac-NOS gene can respond to a far wider range of inducers than previously suspected. mac-NOS is a primary response gene; cycloheximide does not block induction. TPA-induced mac-NOS and TIS10/PGS-2 mRNA accumulation patterns are similar. LPS is a potent inducer of mac-NOS in Swiss 3T3 cells but cannot induce TIS10/PGS-2. In contrast, v-src expression induces TIS10/PGS-2 message, but not iNOS message in a BALB/c 3T3 cell line containing a temperature-sensitive v-src gene. Dexamethasone (DEX) prevents induction of TIS10/PGS-2, but not most other primary response genes. DEX also blocks mac-NOS induction in Swiss 3T3 cells. The inducible TIS10/PGS-2 and mac-NOS genes, responsible for the production of two distinct paracrine agents, appear to share many regulatory features in 3T3 cells. © 1993 Wiley-Liss, Inc.  相似文献   

12.
The potent tumor promoter 12-0-tetradecanoyl phorbol-13-acetate (TPA) is alos an excellent mitogen for 3T3 cells. We have previously isolated two independent variants, 3T3-TNR-2 and 3T3-TNR-9, that are unable to divide in response to TPA (Butler-Gralla and Herschman, 1981). We have now tested tow components of the pleiotypic response, elevation of 2-deoxyglucose uptake and ornithine decarboxylase induction, in these cells. Basal levels of 2-deoxyglucose uptake were nearly tenfold higher in confluent 3T3-TNR-2 and 3T3-TNR-9 cells than in 3T3 cells. In contrast, basal ornithine decarboxylase levels were five- to tenfold lower in the variants. TPA stimulation of 2-deoxyglucose uptake was as great in absolute terms in the variant cell lines as that of 3T3 cells but was only half that observed with serum. TPA was unable to induce any elevation of ornithine decarboxylase in 3T3-TNR-9 cells. treated with TPA, the maximal specific activity in the variant was less than the unstimulated value for 3T3 cells.  相似文献   

13.
Preincubation of Swiss 3T3 cells with the tumor promoter 12-0-tetradecanoyl-phorbol-13-acetate (TPA) at 37 degrees C is observed to cause only a small (approximately 10%) decrease in maximal binding of 125I-platelet-derived growth factor (125I-PDGF), and does not affect the affinity of 125I-PDGF binding to these cells. Under the same conditions, the affinity of the epidermal growth factor receptor is greatly reduced, possibly resulting from phosphorylation by protein kinase C. TPA is also shown to have no effect on the kinetics of internalization or degradation of bound 125I-PDGF. Although TPA has little or no effect on these properties of the PDGF receptor, it was found to act in a synergistic fashion with low, but not high, concentrations of PDGF to increase DNA synthesis by 3T3 cells. Since TPA has previously been shown to activate protein kinase C, these findings suggest that protein kinase C does not regulate the ligand-binding properties of the PDGF receptor, and that the observed synergism between TPA and PDGF in stimulating mitogenesis reflects effects of TPA on other processes in the mitogenic pathway.  相似文献   

14.
Chicken embryo fibroblast (CEF) cultures, synchronized by the addition of serum to stationary cells, were exposed to Schmidt-Ruppin strain of Rous Sarcoma Virus (SR-RSV) and the appearance of pp60v-src protein kinase activity was examined through the cell cycle. In cells infected either at the beginning or at the end of G1, the onset of pp60v-src protein kinase activity was coincidental, closely following mitosis, with a delay between the infection of cells with SR-RSV and the appearance of protein kinase activity of about 20 and 16 h, respectively. In cells infected during the S phase this delay was 16 h, as observed for late G1 cells. These experiments show that the activity of pp60v-src protein kinase, which cannot be detected before the first mitosis following infection does not depend on G1. The aphidicolin prevented protein kinase activity if added before or at the beginning of S phase, but not if added later, which is presumably related to the inhibition of S phase, required for provirus integration. The use of colcemid, which suppresses cell division, did not inhibit but delayed the appearance of protein kinase activity. These results show that the synthesis of an active oncogene product, such as pp60v-src protein kinase, depends on both S phase and mitosis.  相似文献   

15.
A Moloney murine leukemia virus (M-MuLV) recombinant carrying the v-src gene of avian sarcoma virus was generated by the introduction of a cloned portion of v-src from Schmidt-Ruppin A avian sarcoma virus into a molecular clone of M-MuLV provirus at the recombinant DNA level. The v-src sequences (lacking a portion of the 5' end of v-src) were inserted into the p30 region of the M-MulV gag gene so that M-MuLV gag and v-src were in the same reading frame. Transfection of this chimeric clone, pMLV(src), into NIH 3T3 cells which were constitutively producing M-MuLV gag and pol protein resulted in the formation of foci of transformed cells. Infectious and transforming virus could be recovered from the transformed cells. This virus was designated M-MuLV(src). M-MuLV(src)-transformed cells contained two novel proteins of 78 and 90 kilodaltons. The 78-kilodalton protein, p78gag-src, contained both gag and src determinants, exhibited kinase activity in an immune kinase assay, and is probably a fusion of Pr65gag and src. The 90-kilodalton protein, which is of the appropriate size to be the gPr80gag fused to src, contained gag determinants as well as a V8 protease cleavage fragment typical of the carboxy terminus of avian sarcoma virus pp60src. However, it could not be immunoprecipitated with an anti-v-src serum. M-MuLV(src)-transformed cells showed elevated levels of intracellular phosphotyrosine in proteins, although the elevation was intermediate compared with cells transformed with wild-type v-src. M-MuLV and amphotropic murine leukemia virus pseudotypes of M-MuLV(src) were inoculated into newborn NIH Swiss mice. Inoculated mice developed solid tumors at the site of inoculation after 3 to 6 weeks, with most animals dying by 14 weeks. Histopathological analysis indicated that the solid tumors were mesenchymally derived fibrosarcomas that were both invasive and metastatic.  相似文献   

16.
The mechanisms involved in the translocation of exogenously added genetic information through the cellular cytoplasm and into the nucleus are essentially unknown. Several trans-cytoplasmic translocation systems operate within cells to transport information received by the plasma membrane into the nucleus. Protein kinase C may be functionally involved in many of these translocation mechanisms. In order to explore the involvement of protein kinase C activation in the cytoplasmic translocation of DNA, NIH3T3 fibroblasts were transfected using the calcium-phosphate co-precipitation method with a plasmid containing the lacZ gene and treated with tetradecanoylphorbol 12,13-acetate (TPA) or 1,2-dioctanoylglycerol (DiC8). Addition of TPA or DiC8 immediately after glycerol shock resulted in a 5-7-fold increase in the number of cells expressing beta-galactosidase as well as a concomitant increase in the total amount of beta-galactosidase activity in the population during periods of transient and stable expression. TPA added at later times resulted in lesser increases in the efficiency of transfection. In contrast, TPA added at the time of addition of the calcium-phosphate precipitate inhibited transfection. In support of a role for protein kinase C activation in enhancing DNA transfection, the TPA analog 4 alpha-phorbol 12,13-didecanoate, which does not activate protein kinase C, was ineffective at enhancing transfection. Furthermore, treatment of cells with the protein kinase C inhibitor sphingosine blocked the TPA-mediated increase in transient and stable expression. The results suggest that protein kinase C activation enhances transfection of exogenous DNA through an as yet unknown mechanism.  相似文献   

17.
It has previously been shown that an electrophoretic variant form of the Rous sarcoma virus transforming protein, pp60v-src, exists in src-transformed cells. This variant, which was readily observed in vanadate-treated cells, was characterized as possessing extensive amino-terminal domain phosphotyrosine modification. Its appearance was further correlated with increased src-specific protein kinase activity. In this study, we used a src-specific monoclonal antibody (MAb) to resolve immunologic forms of pp60v-src. The MAb was able to distinguish between two populations of typical lower-band pp60v-src and was unreactive with the electrophoretic variant upper-band pp60v-src species. Using serial immunoprecipitations, we resolved four populations of pp60v-src: src protein either immunoreactive or unreactive with the MAb from both untreated and vanadate-treated transformed cells. The pp60v-src in each fraction displayed a distinct phosphoamino acid composition and tryptic phosphopeptide profile. However, analysis of their tyrosyl kinase specific activities showed that the immunologically resolved populations of pp60v-src from a given culture did not differ. Both pp60v-src fractions from vanadate-treated cells exhibited similar kinase specific activities, which were greatly enhanced over those of enzyme preparations from untreated cells. Since the MAb-reactive pp60v-src fraction from vanadate-treated cells lacked the electrophoretic variant upper-band pp60v-src species yet still possessed enhanced enzymatic specific activity, the initially stated correlation between the appearance of the electrophoretic variant src form and increased src kinase activity breaks down. These results suggest that yet to be defined modifications of the src protein may be involved in its functional regulation.  相似文献   

18.
We have previously isolated 3T3 cell variants unable to respond to specific mitogens. In this report we analyze the dominant and/or recessive nature of these variants. Two independently isolated EGF nonproliferative variants are unable to bind EGF. Hybrids between 3T3R5 cells (thymidine kinase deficient, ouabain-resistant) and these variants express EGF receptors; the "EGF receptorless" phenotype of these variants is recessive. Hybrids between these two variants do not bind EGF; they are defective in a common, non-complementing function. A TPA nonproliferative 3T3 variant is also recessive; hybrids with 3T3R5 mount a mitogenic response to TPA. In contrast a fourth variant, which can neither bind labeled EGF nor respond to TPA, is dominant for both characteristics. Hybrids between this latter variant and 3T3R5 can neither bind EGF nor mount a mitogenic response to TPA.  相似文献   

19.
In quiescent cultures of Swiss 3T3 cells, prostaglandin E1 (PGE1) known to elevate cAMP increased rapidly cytoplasmic free Ca2+ concentration ([Ca2+]i) as measured with the fluorescent Ca2+ indicator quin2. The primary source of the PGE1-induced elevation of [Ca2+]i was extracellular. Pretreatment of the cells with various doses of 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent protein kinase C-activating phorbol ester, inhibited the PGE1-induced elevation of [Ca2+]i in a dose-dependent manner. Inversely, TPA enhanced slightly the PGE1-induced increase of cAMP. TPA alone did not affect the basal level of [Ca2+]i or cAMP in the absence of PGE1. The inhibitory action of TPA on the PGE1-induced elevation of [Ca2+]i was mimicked by other protein kinase C-activating agents such as phorbol 12,13-dibutyrate and 1-oleoyl-2-acetylglycerol. 4 alpha-Phorbol 12,13-didecanoate known to be inactive for protein kinase C was ineffective in this capacity. Prolonged treatment of the cells with phorbol 12,13-dibutyrate resulted in the down-regulation and disappearance of protein kinase C. In these protein kinase C-deficient cells, PGE1 still elevated [Ca2+]i to the same extent as that in the control cells, but TPA did not inhibit the PGE1-induced elevation of [Ca2+]i. These results strongly suggest that protein kinase C serves as an inhibitor for PGE1-induced Ca2+ influx in Swiss 3T3 cells.  相似文献   

20.
Down-regulation of protein kinase C induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) was examined in Swiss 3T3, V79, MDBK and C6 cells by Western blotting. Variations in the rate of down-regulation caused by treatment with 100 nM-TPA were observed; TPA treatment for 5 h caused maximal down-regulation in V79 cells, whereas TPA treatment for 10 h or 30 h was needed for maximal down-regulation of protein kinase C in MDBK or Swiss 3T3 cells respectively. The decrease in amount of immunologically detectable protein kinase C was 30% in MDBK cells and 100% in V79 and Swiss 3T3 cells. MDBK and C6 cells could be completely depleted of protein kinase C by treatment with 250 nM-TPA. In C6 cells, after treatment with 500 nM-TPA, an 80% loss of protein kinase C was seen over 10 h. Measurement of the numbers of phorbol-ester-binding sites remaining in each cell line when protein kinase C was maximally down-regulated indicated that in MDBK and Swiss 3T3 cells loss of phorbol-ester-binding sites paralleled loss of protein kinase C, whereas in V79 and C6 cells no such correlation was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号