首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A mitochondrial DNA mutation at nucleotide position 14,484 was found in 14 independent probands with Leber hereditary optic neuropathy and in 0/250 controls. The 14,484 mutation, which changes methionine-64 to valine in a conserved domain of the ND-6 gene, occurred in association with a mitochondrial DNA haplotype that includes the 13,708 secondary mutation in 10/14 probands. An associated mutation at nucleotide position 3,394, which changes conserved tyrosine-30 to histidine in the ND-1 gene, was observed in 5/14 probands positive for the 14,484 mutation, all of whom harbored the same mitochondrial DNA haplotype. Multiple mitochondrial DNA mutations may interact in the pathogenesis of Leber hereditary optic neuropathy and the 13,708 secondary mutation appears to play a central role in this process.  相似文献   

2.
A rare form of Leber hereditary optic neuropathy (LHON) that is associated with hereditary spastic dystonia has been studied in a large Dutch family. Neuropathy and ophthalmological lesions were present together in some family members, whereas only one type of abnormality was found in others. mtDNA mutations previously reported in LHON were not present. Sequence analysis of the protein-coding mitochondrial genes revealed two previously unreported mtDNA mutations. A heteroplasmic A-->G transition at nucleotide position 11696 in the ND4 gene resulted in the substitution of an isoleucine for valine at amino acid position 312. A second mutation, a homoplasmic T-->A transition at nucleotide position 14596 in the ND6 gene, resulted in the substitution of a methionine for the isoleucine at amino acid residue 26. Biochemical analysis of a muscle biopsy revealed a severe complex I deficiency, providing a link between these unique mtDNA mutations and this rare, complex phenotype including Leber optic neuropathy.  相似文献   

3.
Pathogenetic mutations in mtDNA are found in the majority of patients with Leber hereditary optic neuropathy (LHON), and molecular genetic techniques to detect them are important for the diagnosis. A false-positive molecular genetic error has adverse consequences for the diagnosis of this maternally inherited disease. We found a number of mtDNA polymorphisms that occur adjacent to known LHON-associated mutations and that confound their molecular genetic detection. These transition mutations occur at mtDNA nt 11779 (SfaNI site loss, 11778 mutation), nt 3459 (BsaHI site loss, 3460 mutation), nt 15258 (AccI site loss, 15257 mutation), nt 14485 (mismatch primer Sau3AI site loss, 14484 mutation), and nt 13707 (BstNI site loss, 13708 mutation). Molecular genetic detection of the most common pathogenetic mtDNA mutations in LHON, using a single restriction enzyme, may be confounded by adjacent polymorphisms that occur with a false-positive rate of 2%-7%.  相似文献   

4.
Summary Mitochondrial (mt) DNA from a Southern Italian family with Leber hereditary optic neuropathy was analyzed for the presence of the reported mutation at position 11778 of the ND4 subunit gene. The point mutation was found in mt DNA extracted from peripheral blood in all members of the family with the exclusion of the father, and was present in a homoplasmic fashion, despite the phenotypic heterogeneity of disease presentation among family members.  相似文献   

5.
收集了3个具有典型临床特征的中国汉族Leber遗传性视神经病变(Leber's hereditary optic neuropathy, LHON)家系。通过对先证者和家系其他成员进行眼科临床(如视力损害程度和发病年龄)检查, 发现这些家系成员中视力损害的外显率很低, 经mtDNA测序分析, 在tRNAGlu 上发现了A14693G同质性突变位点, 多态性位点分别属于东亚单体型Y1b、Y1和Y1, 没有发现其他高度保守和有功能意义的突变位点。A14693G突变位于线粒体tRNAGlu高度保守区(通用位点为54位), 可能导致tRNA空间结构和稳定性发生改变, 继而影响tRNA的代谢, 导致线粒体蛋白合成功能受损和ATP障碍, 最终导致视力损害。所以, tRNAGlu A14693G突变可能是与视神经病变相关的致病性线粒体突变位点。  相似文献   

6.
The mitochondrial complex I genes were sequenced in seven Leber hereditary optic neuroretinopathy (LHON) families without the ND4/11778 and ND1/3460 mutations. Four replacement mutations restricted only to LHON families were found, one in the ND1 gene at nt 4025, and three in the ND5 gene at nt 12811, 13637, and 13967. The mutations did not change evolutionarily conserved amino acids suggesting that they are not primary LHON mutations in these families. They may be considered as secondary LHON mutations serving as exacerbating factors in an appropriate genetic background. A complex III mutation, cyt b/15257, has been suggested to be one of the primary mutations causing LHON. Its presence was determined for 23 Finnish LHON families, and it was detected in two families harboring the ND4/11778 mutation. Similarly, complex IV mutation COI/7444 was screened in Finnish LHON families, and it was found in one family carrying the ND1/3460 mutation.  相似文献   

7.
The results of clinical, genealogical and molecular investigation of eighteen families with Leber hereditary optic neuropathy (LHON), identified on the territory of Siberia during the period from 1997 to 2005, are presented. Comprehensive analysis of mitochondrial genome variations in probands and their matrilineal relatives revealed the presence of relatively frequent (G11778A, G3460A, and T14484C), as well as rare and new mutations with the established or presumptive pathological effect (T10663C, G363A, C4640T, and A14619G). The G11778A mutation was detected in nine pedigrees (50%), mostly in the families of ethnic Russians. In eight of these families G11778A was found in preferred association with the coding-region substitutions, typical of western Eurasian mtDNA lineage (haplogroup) TJ. On the contrary, the G3460A mutation was detected in the three families belonging to the indigenous Siberian populations (Tuvinians, Altaians, and Buryats). It was associated with clearly different haplotypes of eastern Eurasian haplogroups, C3, D5, and D8. Unexpectedly, the G3460A de novo mutation was found in a large Tuvinian pedigree. At the same time, in eleven out of fourteen families of Caucasoid origin pathogenic mutations in the ND genes were associated with the T4216C and C1542A coding-region mutations, marking the root motif of haplogoup TJ. It is suggested that phylogenetically ancient mutations could have provided their carriers with the adaptive advantages upon the development of Central and Northern Europe at the end of the last glaciation (10 000 to 9 000 years ago), thereby, contributing to the preservation of weekly pathogenic LHON mutations, appearing at specific genetic background.  相似文献   

8.
A mutation in the mitochondrial DNA at nt 11,778 has recently been found in Leber hereditary optic neuroretinopathy (LHON), a maternally inherited ocular disease. The mutation is located in the ND4 gene encoding subunit 4 of the respiratory chain enzyme NADH dehydrogenase. The mutation was subsequently not found in 9 of the 20 known Finnish families with LHON, implying that there are at least two different mutations associated with the disease. Using direct sequencing of PCR-amplified mtDNA, we have now sequenced the entire ND4 region in the families without the nt 11,778 mutation to find the other mutations. No new mutations in the ND4 region were found, suggesting that the putative mtDNA mutation in these families may be in the coding regions for other subunits of NADH dehydrogenase enzyme. The sequence of ND4 gene as found to be highly homogeneous.  相似文献   

9.
For identifying mutation(s) that are potentially pathogenic it is essential to determine the entire mitochondrial DNA (mtDNA) sequences from patients suffering from a particular mitochondrial disease, such as Leber hereditary optic neuropathy (LHON). However, such sequencing efforts can, in the worst case, be riddled with errors by imposing phantom mutations or misreporting variant nucleotides, and moreover, by inadvertently regarding some mutations as novel and pathogenic, which are actually known to define minor haplogroups. Under such circumstances it remains unclear whether the disease-associated mutations would have been determined adequately. Here, we re-analyse four problematic LHON studies and propose guidelines by which some of the pitfalls could be avoided.  相似文献   

10.
Leber hereditary optic neuropathy (LHON) is an inherited form of bilateral optic atrophy in which the primary etiological event is a mutation in the mitochondrial genome. The optic neuropathy involves a loss of central vision due to degeneration of the retinal ganglion cells and optic nerve axons that subserve central vision. The primary mitochondrial mutation is necessary—but not sufficient—for development of the optic neuropathy, and secondary genetic and/or epigenetic risk factors must also be present although they are poorly defined at the present time. There is broad agreement that mutations at nucleotides 3460, 11778, and 14484 are primary LHON mutations, but there may also be other rare primary mutations. It appears that the three primary LHON mutations are associated with respiratory chain dysfunction, but the derangements may be relatively subtle. There is also debate on whether there are mitochondrial mutations that have a secondary etiological or pathogenic role in LHON. The specific pattern of the optic neuropathy may arise from a chokepoint in the optic nerve in the region of the nerve head and lamina cribosa, and which may be more severe in those LHON family members who become visually affected. It is hypothesized that the respiratory chain dysfunction leads to axoplasmic stasis and swelling, thereby blocking ganglion cell function and causing loss of vision. In some LHON patients, this loss of function is reversible in a substantial number of ganglion cells, but in others, a cell death pathway (probably apoptotic) is activated with subsequent extensive degeneration of the retinal ganglion cell layer and optic nerve.  相似文献   

11.
Leber's hereditary optic neuropathy (LHON) is a maternally inherited disorder characterized by central vision loss in young adults. The majority of LHON cases around the world are associated with mutations in the mitochondrial genome at nucleotide positions (np) 3460, 11,778, and 14,484. Usually, these three mutations are screened in suspected LHON patients. The result is important not only in respect to the diagnosis but also as different LHON mutations lead to variations in expression, severity, and recovery of the disease. There are, however, a significant number of patients without any of these primary mutations. In these situations, genetic counselling of a patient and his family can be difficult. We sequenced the complete mitochondrial DNA (mtDNA) in 14 LHON patients with the typical clinical features but without a primary mtDNA mutation to evaluate the potential of extensive mutation screening for clinical purposes. Our results suggest to include the mutation at np 15,257 in a routine screening as well as the ND6 gene, a hot spot for LHON mutations. Screening for the secondary LHON mutations at np 4216 and np 13,708 may also help in making the diagnosis of LHON as these seem to modify the expression of LHON mutations. Although they do not allow to prove the clinical diagnosis, their presence increases the probability of LHON. Sequencing the complete mitochondrial genome can reveal novel and known rare disease causing mutations. However, considering the effort it adds little value for routine screening.  相似文献   

12.
The results of clinical, genealogical and molecular investigation of eighteen families with Leber’s hereditary optic neuropathy (LHON), identified on the territory of Siberia during the period from 1997 to 2005, are presented. Comprehensive analysis of mitochondrial genome variations in probands and their matrilineal relatives revealed the presence of relatively frequent (G11778A, G3460A, and T14484C), as well as rare and new mutations with the established or presumptive pathological effect (T10663C, G3535A, C4640A, and A14619G). The G11778A mutation was detected in nine pedigrees (50%), mostly in the families of ethnic Russians. In eight of these families G11778A was found in preferred association with the coding-region substitutions, typical of western Eurasian mtDNA lineage (haplogroup) TJ. On the contrary, the G3460A mutation was detected in the three families belonging to the indigenous Siberian populations (Tuvinians, Altaians, and Buryats). It was associated with clearly different haplotypes of eastern Eurasian haplogroups, C3, D5, and D8. Unexpectedly, the G3460A de novo mutation was found in a large Tuvinian pedigree. At the same time, in eleven out of fourteen families of Caucasoid origin pathogenic mutations in the ND genes were associated with the T4216C and C15445A coding-region mutations, marking the root motif of haplogoup TJ. It is suggested that phylogenetically ancient mutations could have provided their carriers with the adaptive advantages upon the development of Central and Northern Europe at the end of the last glaciation (10 000 to 9000 years ago), thereby, contributing to the preservation of weekly pathogenic LHON mutations, appearing at specific genetic background.  相似文献   

13.
Ethambutol (EMB), widely used in the treatment of tuberculosis, has been reported to cause Leber’s hereditary optic neuropathy in patients carrying mitochondrial DNA mutations. We study the effect of EMB on mitochondrial metabolism in fibroblasts from controls and from a man carrying an OPA1 mutation, in whom the drug induced the development of autosomal dominant optic atrophy (ADOA). EMB produced a mitochondrial coupling defect together with a 25% reduction in complex IV activity. EMB induced the formation of vacuoles associated with decreased mitochondrial membrane potential and increased fragmentation of the mitochondrial network. Mitochondrial genetic variations may therefore be predisposing factors in EMB-induced ocular injury.  相似文献   

14.
Leber hereditary optic neuropathy (LHON) is a type of blindness caused by mtDNA mutations. Three LHON mtDNA mutations at nucleotide positions 3460, 11778, and 14484 are specific for LHON and account for 90% of worldwide cases and are thus designated as "primary" LHON mutations. Fifteen other "secondary" LHON mtDNA mutations have been identified, but their pathogenicity is unclear. mtDNA haplotype and phylogenetic analysis of the primary LHON mutations in North American Caucasian patients and controls has shown that, unlike the 3460 and 11778 mutations, which are distributed throughout the European-derived (Caucasian) mtDNA phylogeny, patients containing the 14484 mutation tended to be associated with European mtDNA haplotype J. To investigate this apparent clustering, we performed chi2-based statistical analyses to compare the distribution of LHON patients on the Caucasian phylogenetic tree. Our results indicate that, unlike the 3460 and 11778 mutations, the 14484 mutation was not distributed on the phylogeny in proportion to the frequencies of the major Caucasian mtDNA haplogroups found in North America. The 14484 mutation was next shown to occur on the haplogroup J background more frequently that expected, consistent with the observation that approximately 75% of worldwide 14484-positive LHON patients occur in association with haplogroup J. The 11778 mutation also exhibited a moderate clustering on haplogroup J. These observations were supported by statistical analysis using all available mutation frequencies reported in the literature. This paper thus illustrates the potential importance of genetic background in certain mtDNA-based diseases, speculates on a pathogenic role for a subset of LHON secondary mutations and their interaction with primary mutations, and provides support for a polygenic model for LHON expression in some cases.  相似文献   

15.
The Tas2 and Vic2 Australian families are affected with a variant of Leber hereditary optic neuropathy (LHON). The risk of developing the optic neuropathy shows strict maternal inheritance, and the ophthalmological changes in affected family members are characteristic of LHON. However, in contrast to the common form of the disease, members of these two families show a high frequency of vision recovery. To ascertain the mitochondrial genetic etiology of the LHON in these families, both (a) the the nucleotide sequences of the seven mitochondrial genes encoding subunits of respiratory-chain complex I and (b) the mitochondrial cytochrome b gene were determined for representatives of both families. Neither family carries any of the previously identified primary mitochondrial LHON mutations: ND4/11778, ND1/3460, or ND1/4160. Instead, both LHON families carry multiple nucleotide changes in the mitochondrial complex I genes, which produce conservative amino acid changes. From the available sequence data, it is inferred that the Vic2 and Tas2 LHON families are phylogenetically related to each other and to a cluster of LHON families in which mutations in the mitochondrial cytochrome b gene have been hypothesized to play a primary etiological role. However, sequencing analysis establishes that the Vic2 and Tas2 LHON families do not carry these cytochrome b mutations. There are two hypotheses to account for the unusual mitochondrial genetic etiology of the LHON in the Tas2 and Vic2 LHON families. One possibility is that there is a primary LHON mutation within the mitochondrial genome but that it is at a site that was not included in the sequencing analyses. Alternatively, the disease in these families may result from the cumulative effects of multiple secondary LHON mutations that have less severe phenotypic consequences.  相似文献   

16.
The predominance of the T14484C mutation in French Canadians with Leber hereditary optic neuropathy is due to a founder effect. By use of genealogical reconstructions of maternal lineages, a woman married in Quebec City in 1669 is identified as the shared female ancestor for 11 of 13 affected individuals, who were previously not known to be related. These individuals carry identical mitochondrial haplogroups. The current geographic distribution of French Canadian cases overlaps with that of the founder's female descendants in 1800. This is the first example of genealogical reconstruction to identify the introduction of a mitochondrial mutation by a woman in a founder population.  相似文献   

17.
While many patients with hereditary optic neuropathies are caused by mitochondrial DNA (mtDNA) mutations of Leber’s hereditary optic neuropathy (LHON), a significant proportion of them does not have mtDNA mutation and is caused by mutations in genes of the nuclear genome. In this study, we investigated whether the OPA1 gene, which is a pathogenic gene for autosomal dominant optic atrophy (ADOA), is frequently mutated in these patients. We sequenced all 29 exons of the OPA1 gene in 105 Han Chinese patients with suspected LHON. mtDNA copy number was quantified in blood samples from patients with and without OPA1 mutation and compared to healthy controls. In silico program-affiliated prediction, evolutionary conservation analysis, and in vitro cellular assays were performed to show the potential pathogenicity of the mutations. We identified nine OPA1 mutations in eight patients; six of them are located in exons and three are located in splicing sites. Mutation c.1172T?>?G has not been reported before. When we combined our data with 193 reported Han Chinese patients with optic neuropathy and compared to the available data of 4327 East Asians by the Exome Aggregation Consortium (ExAC), we found a significant enrichment of potentially pathogenic OPA1 mutations in Chinese patients. Cellular assays for OPA1 mutants c.869G?>?A and c.2708_2711del showed abnormalities in OPA1 isoforms, mitochondrial morphology, and cellular reactive oxygen species (ROS) level. Our results indicated that screening OPA1 mutation is needed for clinical diagnosis of patients with suspected optic neuropathy.  相似文献   

18.
Complex I (CI) deficiency is a frequent cause of mitochondrial disorders and, in most cases, is due to mutations in CI subunit genes encoded by mitochondrial DNA (mtDNA). In this study, we establish the pathogenic role of the heteroplasmic mtDNA m.3890G>A/MT-ND1 (p.R195Q) mutation, which affects an extremely conserved amino acid position in ND1 subunit of CI. This mutation was found in a young-adult male with optic atrophy resembling Leber's hereditary optic neuropathy (LHON) and bilateral brainstem lesions. The only previously reported case with this mutation was a girl with fatal infantile Leigh syndrome with bilateral brainstem lesions. Transfer of the mutant mtDNA in the cybrid cell system resulted in a marked reduction of CI activity and CI-dependent ATP synthesis in the presence of a normally assembled enzyme.These findings establish the pathogenicity of the m.3890G>A/MT-ND1 mutation and remark the link between CI mutations affecting the mtDNA-encoded ND subunits and LHON-like optic atrophy, which may be complicated by bilateral and symmetric lesions affecting the central nervous system. Peculiar to this mutation is the distribution of the brainstem lesions, with sparing of the striatum in both patients.  相似文献   

19.
Hereditary optic neuropathies comprise a group of clinically and genetically heterogeneous disorders, which can be divided into 2 subgroups: isolated hereditary optic atrophies and optic neuropathies as part of complex disorders. In the first group of isolated hereditary optic neuropathies, optic nerve dysfunction is typically the only manifestation of the disease. This group comprises autosomal dominant, autosomal recessive and X-linked recessive optic atrophy, and the mitochondrial inherited Leber’s hereditary optic neuropathy (LHON). In the second group of complex disorders, various neurologic and other systemic abnormalities are regularly observed. The most frequent cause in this group are mitochondrial DNA (mtDNA) mutations, inherited peripheral neuropathies, Charcot–Marie–Tooth disorders (CMT2A2, CMTX5), hereditary sensory neuropathy type 3 (HSAN3), Friedreich ataxia, leukodystrophies, sphingolipidoses, ceroid-lipofuscinoses, and neurodegeneration with brain iron accumulation (NBIA). In the present article, the clinical phenotypes and underlying genetic predispositions are described.  相似文献   

20.
Leber hereditary optic neuropathy (LHON) is associated with mutations of mtDNA, but two features of LHON pedigrees are not explicable solely on the basis of mitochondrial inheritance. There is a large excess of affected males, and not all males at risk develop the disease. These observations could be explained by the existence of an X-linked visual loss susceptibility gene. This hypothesis was supported by linkage studies in Finland, placing the susceptibility locus at DXS7, with a maximum lod score of 2.48 at a recombination fraction of 0. Linkage studies in 1 Italian and 12 British families with LHON, analyzed either together or separately depending on the associated mtDNA mutation, have excluded the presence of such a locus from an interval of about 30 cM around DXS7 in these kindreds, with a total lod score of -26.51 at a recombination fraction of 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号