首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yuge S  Takei Y 《Zoological science》2007,24(12):1222-1230
Since the gene expression of guanylin peptides and their receptors, guanylyl cyclase Cs, is enhanced in the intestine of seawater (SW)-adapted eels compared with fresh water (FW)-adapted fish, the guanylin family may play an important role in SW adaptation in eels. The present study analyzed the effect of three homologous guanylin peptides, guanylin, uroguanylin and renoguanylin, on ion movement through the eel intestine, and examined the target of guanylin action using Ussing chambers. The middle and posterior parts of the intestine, where water and ion absorption occurs actively in SW eels, exhibited serosa-negative transepithelial potential, while the anterior intestine was serosa-positive. Mucosal application of each guanylin in the middle or posterior intestine reduced the short-circuit current (Isc) dose dependently and reversed it at high doses, and reduced electric tissue resistance. The effects were greater in the middle intestine than in the posterior intestine. All three guanylins showed similar potency in the middle segment, but guanylin was more potent in the posterior segment. 8-bromo cGMP mimicked the effect of guanylins. The intestinal response to guanylin was smaller in FW eels. The mucosal presence of NPPB utilized as a CFTR blocker, but not of other inhibitors of the channels/transporters localized on the luminal surface in SW fish intestine, inhibited the guanylin-induced decrease in Isc. In eels, therefore, the guanylin family may be involved in osmoregulation by the intestine by binding to the receptors and activating CFTR-like channels on the mucosal side through cGMP production, perhaps resulting in Cl(-) and HCO3(-) secretion into the lumen.  相似文献   

2.
1. Electrical parameters and transepithelial glucose and galactose transport were determined in vitro across anterior and posterior intestine of the culture fish Sparus aurata. 2. Electrical potential difference (PD) and short-circuit current (Isc) were serosa-positive in anterior intestine, while they were serosa-negative or near zero in posterior intestine. 3. Tissue conductance (Gt) was higher in posterior than in anterior intestine. In both parts it was decreased when the Na ion was omitted in mucosal and serosal reservoirs. 4. Addition of glucose or galactose to the mucosal side of intestine caused an increase in PD and Isc in posterior intestine but did not significantly change PD and Isc in anterior intestine. 5. Isotopic flux of glucose and galactose measurements in short-circuit conditions showed a net active glucose and galactose absorption in posterior intestine, while in anterior intestine active transport of glucose or galactose was not observed. 6. The net transport of glucose and galactose in posterior intestine was decreased to zero in the absence of Na in mucosal and serosal reservoirs or in the presence of ouabain (1 mM) in serosal solution.  相似文献   

3.
The two forms of monoamine oxidase, monoamine oxidase A and monoamine oxidase B, have been associated with imidazoline-binding sites (type 2). Imidazoline ligands saturate the imidazoline-binding sites at nanomolar concentrations, but inhibit monoamine oxidase activity only at micromolar concentrations, suggesting two different binding sites [Ozaita A, Olmos G, Boronat MA, Lizcano JM, Unzeta M & García-Sevilla JA (1997) Br J Pharmacol121, 901-912]. When purified human monoamine oxidase A was used to examine the interaction with the active site, inhibition by guanabenz, 2-(2-benzofuranyl)-2-imidazoline and idazoxan was competitive with kynuramine as substrate, giving K(i) values of 3 microM, 26 microM and 125 microM, respectively. Titration of monoamine oxidase A with imidazoline ligands induced spectral changes that were used to measure the binding affinities for guanabenz (19.3 +/- 3.9 microM) and 2-(2-benzofuranyl)-2-imidazoline (49 +/- 8 microM). Only one type of binding site was detected. Agmatine, a putative endogenous ligand for some imidazoline sites, reduced monoamine oxidase A under anaerobic conditions, indicating that it binds close to the flavin in the active site. Flexible docking studies revealed multiple orientations within the large active site, including orientations close to the flavin that would allow oxidation of agmatine.  相似文献   

4.
Simultaneous measurements of the transmural potential difference (PD) and the short-circuit current intensity (Isc) in the posterior intestine of the fish Blennius parvicornis were made in normal Ringer and in solutions of different ionic composition. The ouabain effects on these two parameters were also tested in normal Ringer solution. The absence of K+ from the Ringer solution on both the mucosal and serosal sides has no apparent effect on the PD and Isc within the first 15 min, but it makes them null after 30 min. When Na+ is substituted in both compartments, using Tris as substitute, a serosal negativity increase is initially observed, but it gradually decreases to zero after 30 min of experimentation. Similarly the PD and Isc drop to zero in the absence of Cl- (sulfate as substitute). Ouabain diminishes the serosa negative potential difference to zero after 30 min presenting a lineal relation to the Isc. A likely transport mechanism for Cl- dependent on the Na+ - K+ pump, is discussed.  相似文献   

5.
The functional heterogeneity of different segments of the rat large intestine was investigated by means of transepithelial potential difference (PD), short-circuit current (Isc) and transepithelial resistance (Rt) measurements in control rats and after deoxycorticosterone acetate (DOCA) pretreatment. Rt and PD were low in caecum and proximal colon but higher in the distal colon and rectum. Isc was highest in the distal colon, lower in the caecum, proximal colon, and rectum. None of the electrical properties was sensitive to amiloride in control conditions. DOCA increased PD and Isc in the caecum, distal colon and rectum but had no effect in the proximal colon. The increase of the Isc after DOCA in the distal colon and rectum was reached by induction of the amiloride-sensitive Isc associated with reduction of the amiloride-insensitive Isc. The effect of DOCA could be completely prevented by concurrent spironolactone treatment. The results suggest that the epithelia of the proximal parts of the large intestine are "leaky" whereas those of the distal colon and rectum are relatively "tight". It is concluded that there is a marked quantitative and qualitative segmental heterogeneity along the rat large intestine.  相似文献   

6.
K A Hubel  K S Renquist 《Life sciences》1988,42(18):1781-1788
Ouabain, when added to fluid bathing rabbit ileal mucosa mounted in a flux chamber, transiently increases short circuit current, implying a paradoxical secretory response. To determine the cause of this change, we studied unidirectional fluxes of 36Cl and 23Na and the effects of ion substitution, of reduced Ca concentration, verapamil, tetrodotoxin and atropine. Ouabain 0.1 mM, transiently increased the serosal to mucosal flux of Cl and Na, increased Isc and PD and reduced ion conductance. The Isc response to ouabain was diminished by reducing the bath fluid concentration of Cl, of Ca, and by adding verapamil. Tetrodotoxin both delayed and reduced the maximal Isc response; atropine had no effect. We conclude that ouabain acts by releasing a neurotransmitter of unknown identity and by increasing the serosal to mucosal flux of Cl.  相似文献   

7.
Epidermal growth factor (EGF), present in high concentrations in the milk of various species, is biologically active following oral administration to young animals. Although in vivo studies show gastrointestinal processing of dietary EGF during early postnatal development, the relative importance of luminal and mucosal digestion in such processing is undefined. To characterize the luminal metabolism of dietary EGF in the developing gastrointestinal tract, we incubated human recombinant 125I-EGF in vitro at 37 degrees with luminal fluid from the stomach and various segments of the small intestine of 12 day old suckling and 31 day old weanling rats and analyzed the resulting reaction products. The rate of EGF hydrolysis as determined by generation of acid soluble material was greater in weanling small intestine than in suckling, with maximal hydrolytic capacity observed in the mid-jejunum and ileum. Minimal hydrolysis was observed with stomach fluid from both age groups, and EGF retained its ability to elute as a single species on Sephadex G-25 columns and to bind to monospecific affinity columns and placental membrane receptors. Incubation with suckling small intestinal fluid produced little change in the chromatographic profile on Sephadex G-25, but a reduction in antibody and receptor binding was observed. In contrast, incubation with weanling small intestinal fluid yielded both a more pronounced loss of EGF-like material on G-25 columns and a greater reduction in receptor and antibody binding. We conclude that little luminal EGF degradation occurs in the rat stomach during the suckling and weanling periods, but that in the lumen of the small intestine breakdown increases during postnatal development.  相似文献   

8.
We investigated the effects of endothelin 3 (ET-3) on electrolyte transport in rat small intestine using a voltage clamp technique in Ussing’s chamber. ET-3 diminished potential difference (PD) and short circuit current (Isc). ET-3 did not affect PD or Isc in low Na+ and/or D-glucose-free medium. Phloridzine (an inhibitor of sodium-glucose cotransporter [SGLT1]) pretreatment abolished the effect of ET-3 on Isc. Methylene blue (a soluble guanylate cyclase inhibitor) or N-nitro-L-arginine methyl ester (a NOS inhibitor) pretreatment delayed the effect of ET-3 on PD and Isc. ET-3 enhanced NOS activity on enterocytes and systemic NO production. Then, ET-3 could inhibit SGLT1 with the participation of NO.  相似文献   

9.
10 New experimental devices are described which allow chonic measurements of drinking rate and osmotic gill permeability in the eel. 20 The oesophagus of the seawater (SW) silver eel plays a role in osmoregulation. It decreases the concentration of Cl- and Na+ of the ingested SW without losing water in the serosal to mucosal direction. This allows for immediate water absorption in the intestine and decreases the quantity of ions actively absorbed by the intestine. In the freshwater (FW) silver eel, the oesophagus is impermeable to water, Cl- and Na+. The ionic impermeability exists only in the serosal to mucosal direction. A mucosal to serosal permeability to Cl- and Na+ exists in the FW oesophagus receiving hypertonic drinking water, this promotes seawater adaptation. 30 The osmotic gill permeability, measured in vivo in the silver eel, is very low in FW and decreases slightly in SW. Thus, the silver eel has an osmotic gill permeability preadapted to SW life. The kinetics of FW to SW adaptation are described.  相似文献   

10.
Turtle bladders bathed on both surfaces with identical HCO3-/CO2-rich, Cl--free Na+ media and treated with ouabain and amiloride exhibit a transepithelial potential serosa electronegative to mucosa and a short-circuit current (Isc) which is a measure of the net luminal acidification rate. Addition of calcium ionophore A23187 (10 microM) to the mucosal side of the epithelium rapidly reverses the direction of the potential difference and Isc and decreases tissue resistance. The resulting positive Isc resembles that previously observed in response to isobutylmethylxanthine (IBMX) and cAMP analogs. Reversal of the Isc is enhanced in bladders from severely alkalotic turtles. In contrast, in severely acidotic turtles, ionophore A23187 decreases, but does not reverse, the Isc. The data suggest that, like IBMX and cAMP analogs, the Ca ionophore stimulates an electrogenic alkalinization mechanism, but, unlike the former agents, inhibits the concurrent acidification process as well.  相似文献   

11.
Initiation of adaptive mucosal immunity occurs in organized mucosal lymphoid tissues such as Peyer's patches of the small intestine. Mucosal lymphoid follicles are covered by a specialized follicle-associated epithelium (FAE) that contains M cells, which mediate uptake and transepithelial transport of luminal Ags. FAE cells also produce chemokines that attract Ag-presenting dendritic cells (DCs). TLRs link innate and adaptive immunity, but their possible role in regulating FAE functions is unknown. We show that TLR2 is expressed in both FAE and villus epithelium, but TLR2 activation by peptidoglycan or Pam(3)Cys injected into the intestinal lumen of mice resulted in receptor redistribution in the FAE only. TLR2 activation enhanced transepithelial transport of microparticles by M cells in a dose-dependent manner. Furthermore, TLR2 activation induced the matrix metalloproteinase-dependent migration of subepithelial DCs into the FAE, but not into villus epithelium of wild-type and TLR4-deficient mice. These responses were not observed in TLR2-deficient mice. Thus, the FAE of Peyer's patches responds to TLR2 ligands in a manner that is distinct from the villus epithelium. Intraluminal LPS, a TLR4 ligand, also enhanced microparticle uptake by the FAE and induced DC migration into the FAE, suggesting that other TLRs may modulate FAE functions. We conclude that TLR-mediated signals regulate the gatekeeping functions of the FAE to promote Ag capture by DCs in organized mucosal lymphoid tissues.  相似文献   

12.
We describe the effect of eight different imidazoline/guanidinium compounds on the settlement and metamorphosis of larvae of the barnacle Balanus improvisus. These agents were chosen on the basis of their similar pharmacological classification in vertebrates and their chemical similarity to medetomidine and clonidine, previously described as highly potent settlement inhibitors (nanomolar range). Seven of the tested compounds were found to inhibit settlement in a dose-dependent manner in concentrations ranging from 100 nM to 10 microM without any significant lethal effects. In vertebrate systems these substances have overlapping functions and interact with both alpha-adrenoceptors as well as imidazoline binding sites. Antagonizing experiments using the highly specific alpha(2)-antagonist methoxy-idazoxan or agmatine (the putative endogenous ligand at imidazoline receptors) were performed to discriminate between putative pharmacological mechanisms involved in the inhibition of cyprid settlement. Agmatine was not able to reverse the effect of any of the tested compounds. However, methoxy-idazoxan almost completely abolished the settlement inhibition mediated by guanabenz (alpha(2)-agonist, I(2) ligand), moxonidine (alpha(2)-agonist, I(1) ligand) and tetrahydrozoline (alpha-agonist, I(2) ligand). The actions of cirazoline (alpha(1)-agonist, I(2) ligand) BU 224 (I(2) ligand) and metrazoline (I(2) ligand) were not reversed by treatment with methoxy-idazoxan. These results suggest that the settlement inhibition evoked by the I(2) ligands and alpha(2)-agonists used in this study of the neurologically simple but well-organized barnacle larva is mediated through different physiological targets important in the overall settlement process.  相似文献   

13.
The effect of Prostaglandin D2 (PGD2) on ion transport was investigated in the rat colon in vitro. Ion transport across the intestinal mucosa was estimated by transmucosal potential difference (PD) and short circuit current (Isc) in the Ussing chamber. PGD2 added to the serosal reservoir induced a sustained reduction in PD and Isc at the concentration of higher than 10(-7)M, producing the maximal decrease at 10(-5)M. PGD2 at 10(-5)M completely blocked the increase in PD elicited by prostaglandin E1 (PGE1), theophylline, dibutyryl cAMP or serotonin. Adenylate cyclase activity was determined in the colonic mucosal homogenates after addition of PGD2 and PGE1. Treatment with PGD2 or PGE1 caused a significant increase in the enzyme activity. Combined treatment with both prostaglandins induced no more increase than that elicited by PGE1 alone. These results suggest that PGD2 has an anti-secretory effect on the rat colon and it may regulate the ion transport process through other mechanism than the modification of cyclic AMP concentration in mucosal cells.  相似文献   

14.
Eosinophil accumulation is a characteristic feature of the immune response to parasitic worms and allergens. The cell surface carbohydrate-binding receptor Siglec-F is highly expressed on eosinophils and negatively regulates their accumulation during inflammation. Although endogenous ligands for Siglec-F have yet to be biochemically defined, binding studies using glycan arrays have implicated galactose 6-O-sulfate (Gal6S) as a partial recognition determinant for this receptor. Only two sulfotransferases are known to generate Gal6S, namely keratan sulfate galactose 6-O-sulfotransferase (KSGal6ST) and chondroitin 6-O-sulfotransferase 1 (C6ST-1). Here we use mice deficient in both KSGal6ST and C6ST-1 to determine whether these sulfotransferases are required for the generation of endogenous Siglec-F ligands. First, we characterize ligand expression on leukocyte populations and find that ligands are predominantly expressed on cell types also expressing Siglec-F, namely eosinophils, neutrophils, and alveolar macrophages. We also detect Siglec-F ligand activity in bronchoalveolar lavage fluid fractions containing polymeric secreted mucins, including MUC5B. Consistent with these observations, ligands in the lung increase dramatically during infection with the parasitic nematode, Nippostrongylus brasiliensis, which is known to induce eosinophil accumulation and mucus production. Surprisingly, Gal6S is undetectable in sialylated glycans from eosinophils and BAL fluid analyzed by mass spectrometry. Furthermore, none of the ligands we describe are diminished in mice lacking KSGal6ST and C6ST-1, indicating that neither of the known galactose 6-O-sulfotransferases is required for ligand synthesis. These results establish that ligands for Siglec-F are present on several cell types that are relevant during allergic lung inflammation and argue against the widely held view that Gal6S is critical for glycan recognition by this receptor.  相似文献   

15.
2-(4,5-Dihydroimidazol-2-yl)benzimidazoles have been identified as selective imidazoline I2/alpha2-adrenoceptor ligands. 4-Methyl (2) and 4-chloro (4) derivatives display I2 affinity at nanomolar concentration (Ki=4.4 and 17.7 nM, respectively) and high I2/alpha2 selectivity ratio=4226 and 5649, respectively. An evidence has been obtained that pKa value influences considerably the I2/alpha2-selectivity ratio of this class of imidazoline I2 receptor ligands.  相似文献   

16.
Summary Both acetylcholine (ACh) and serotonin (5-HT) lowered the serosa-negative transepithelial potential difference (PD) and the short-circuit current (Isc), accompanied by a decrease in NaCl and water absorption across the eel intestine. These inhibitory effects of ACh and 5-HT were blocked by atropine, a muscarinic receptor antagonist, and ICS-205930, a 5-HT3 receptor antagonist, respectively. Even after blocking the ACh receptor with atropine, 5-HT inhibited the PD and Isc, and ACh lowered them after blocking the 5-HT receptor with ICS-205930, indicating that ACh and 5-HT act independently. Similar inhibition in the PD and the Isc was observed after electrical field stimulation (EFS) which is expected to release endogenous regulators. These effects of EFS were reduced by 70% after simultaneous addition of atropine and ICS-205930. Since atropine and ICS-205930 block ACh and 5-HT receptors, respectively, these results suggest that endogenous ACh and 5-HT are released by EFS.Abbreviations ACh acetylcholine - EFS electrical field stimulation - 5-HT serotonin - I sc short-circuit current - PD transepithelial potential difference - R t tissue resistance - TTX tetrodotoxin  相似文献   

17.
Evidence for the participation of conductive and non-conductive (exchange) transmembrane anion pathways in the luminal acidification, alkalinization, and chloride-reabsorptive functions of the turtle bladder is provided from the pattern of Cl- -induced changes in transepithelial electrical parameters of isolated urinary bladders from three groups of donor turtles: control or post-absorptive turtles (those killed 5 days after feeding); acidotic turtles (NH4Cl-loaded); and alkalotic turtles (NaHCO3-loaded). The predominance of each of the three aforementioned transport functions as well as the response to Cl- -addition is altered by the in-vivo electrolyte balance of the turtle. In post-absorptive bladders, which are poised for acidification and Cl- reabsorption, the mucosal and serosal addition of Cl- to Na+-free, (HCO3- + CO2)-containing media increases the negative short-circuiting current (Isc). In acidotic bladders, which are poised for acidification but not Cl- reabsorption, mucosal Cl- addition has no effect on this Isc whereas serosal Cl- addition increases the negative Isc in a manner identical to that observed in the post-absorptive bladders. Alkalotic bladders do not possess an acidification function but instead are poised for Cl- reabsorption and cAMP-dependent electrogenic alkali secretion (positive Isc). In these bladders, serosal Cl- addition is without effect while mucosal Cl- addition produces transient changes in this positive Isc. It is found that these results can be replicated by a model of the turtle bladder in which transmembrane Cl- and HCO3- conductive and exchange paths mediate transepithelial acidification, alkalinization and Cl- reabsorption.  相似文献   

18.
The jejunal mucosal membrane of albino mice was used to study the electrical properties and ion transport. The membrane was bathed in Krebs-Ringer solution with or without glucose.When ethacrynic acid (EA), furosemide, or amiloride was added to the bathing fluid of both sides, a transient increase followed by a decrease of both potential difference (PD) and short circuit current (Isc) were observed. In glucose-containing bathing medium, EA inhibited both net Na and Cl flux and residual flux; however, EA had little effect on both Na and Cl flux in glucose-free bathing medium. Studies using everted intestinal sac technique showed that EA inhibited both glucose and L-tyrosine across the mucosal membrane against concentration gradients. Furosemide and amiloride were less potent than EA in inhibiting the Na and Cl flux when the bathing solution contained glucose. But these two compounds had no effect on glucose and L-tyrosine transport across the intestinal mucosa. Furthermore, they did inhibit Cl flux even in the condition of glucose-free bathing medium. It is postulated that all three diuretics act on the brush-border membrane of the intestine. EA probably inhibits the Na-glucose cotransporting system; furosemide and amiloride inhibit the simple diffusion process of Na entry of Cl exit by decreasing the conductance of the membrane.  相似文献   

19.
The amidated beta-casomorphin morphiceptin Tyr-Pro-Phe-Pro-NH2 is an opioid peptide isolated from bovine milk beta-casein digests whose physiological significance remains unclear. Opiates are known to modify intestinal electrolyte transport by acting on receptors located on the serosal side of the intestine. The aim of the present study was to determine under what conditions morphiceptin can act from the luminal side. When added to the serosal side of untreated rabbit ileum in an Ussing chamber in vitro, 10(-3) M morphiceptin acted through an opiate mechanism to reduce simultaneously short-circuit current (delta Isc = 0.33 +/- 0.07 muEq.hr-1.cm-2) and stimulate net Na and Cl absorption (delta JnetNa = 1.62 +/- 0.11 and delta JnetCl = 2.07 +/- 0.08 muEg.hr-1.cm-2). After mucosal addition under the same conditions, morphiceptin was degraded without any opiate action on electrolyte transport. Pretreatment of the ileum by 10(-3) M diisopropylfluorophosphate, which inhibited brush-border dipeptidylpeptidase IV, prevented mucosal degradation of morphiceptin. Under these conditions, morphiceptin was able, when added mucosally, to cross the epithelium intact (Jm----s = 1.8 +/- 0.16 nmole.hr-1.cm-2) and to stimulate electrolyte absorption by means of an opioid mechanism (delta Isc = 0.22 +/- 0.02 muEq.hr-1.cm-2). These results showed that the action of morphiceptin from the lumen depends on its transfer intact to the serosal side of the intestine where the opiate receptors are located. The limiting step in this transfer is at the brush-border membrane, where dipeptidylpeptidase IV in particular seems to play a major role.  相似文献   

20.
In this study, electrogenic ion transport in the intestine of the Australian common brushtail possum, Trichosurus vulpecula was investigated. In the ileum, a Na(+)-dependent, phloridzin- and amiloride-insensitive short-circuit current ( Isc) was present. Mucosal glucose stimulated a further phloridzin-sensitive, dose-dependent increase in Isc. A Na(+)-dependent, ouabain-sensitive Isc was also present in the caecum and colon. In the proximal and distal colon, amiloride (100 micro mol l(-1), mucosal) inhibited this Isc by 81+/-4% and 65+/-3%, respectively and the Ki for amiloride (approximately 1 micro mol l(-1)) was consistent with the inhibition of a classical epithelial Na(+) channel. In the caecum, 50% of the Isc was inhibited by amiloride (100 micro mol l(-1), mucosal). The amiloride-insensitive Isc in the colon was not due to electrogenic Cl(-) secretion, as serosal bumetanide (100 micro mol l(-1)) had no effect on the Isc. Furthermore, the secretagogues forskolin (10 micro mol l(-1)), carbachol (100 micro mol l(-1)) and dibutyryl-cAMP or dibutyryl-cGMP (100 micro mol l(-1)) did not stimulate electrogenic Cl(-) secretion by the colon. These results indicate that the transport properties of the hindgut of the possum differ significantly from those of eutherian mammals and may be associated with different functions of the hindgut of possums when compared to eutherian mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号