首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) plays a key role in desensitizing the insulin-responsive glucose transport system (GTS), and recent studies have revealed that loss of GFAT activity accompanies desensitization. To gain insights into the mechanisms underlying loss of enzyme activity, we have used primary cultured adipocytes and two well established inhibitors of mRNA synthesis to estimate GFAT turnover. Both actinomycin D and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) caused a rapid and extensive loss in GFAT activity (greater than 70% loss, t1/2 of 45 min) indicating that GFAT has a relatively short half-life. Since induction of insulin resistance requires GFAT, we next examined the ability of mRNA inhibitors to block glucose-induced desensitization. When adipocytes were cultured for 18 h with 20 mM glucose, amino acids, and 25 ng/ml insulin, maximal insulin responsiveness of the GTS was reduced by greater than 70%. Both actinomycin D and DRB rapidly and completely prevented desensitization in a dose-dependent manner (ED50 of 16 nM and 15 microM, respectively). These findings are the predicted functional consequence of diminished GFAT activity. Evidence that actinomycin D acts selectively on GFAT without influencing other steps within the desensitization pathway was obtained using glucosamine, an agent that enters the hexosamine biosynthesis pathway at a point distal to the action of GFAT. Actinomycin D inhibited glucose-induced desensitization but failed to block glucosamine-induced desensitization. From these studies we conclude that 1) glucose-induced desensitization of the GTS can be completely prevented by actinomycin D and DRB, two potent and diverse inhibitors of mRNA synthesis; 2) the functional integrity of the desensitization pathway is maintained by a short-lived protein; and 3) the identity of this short-lived protein is most likely GFAT, the first and rate-limiting enzyme of the hexosamine biosynthesis pathway.  相似文献   

2.
Using the number and concentration of amino acids in Dulbecco's modified Eagle's medium as reference (DMEM = 100%), we found that a maximally effective concentration of insulin (10 ng/ml) stimulated protein synthesis by 125% over basal rate in the presence of 50% amino acids (EC50 = 19%), but by only 48% in amino acid-free buffer. Moreover, time course experiments revealed that amino acid regulation of insulin action was very rapid (t1/2 of 9.5 min) and readily reversible (less than 30 min). This effect was specific in that basal rates of protein synthesis were unaltered by amino acids. A second effect of amino acids was to markedly enhance insulin sensitivity of the protein synthesis system in a dose-dependent manner. Thus, the half-maximally effective concentrations of insulin required to stimulate protein synthesis fell from 0.43 to 0.25 to 0.15 ng/ml in the presence of 0, 50, and 150% amino acids. Neither insulin sensitivity nor maximal insulin responsiveness of the glucose transport system was altered by amino acids, nor did amino acids affect the insulin binding capacity of cells. When we divided the 14 amino acids found in DMEM into two groups, we found that one group of 7 amino acids had little or no effect on insulin sensitivity or responsiveness, whereas the other group was fully active (a 157% increase in insulin responsiveness, ED50 of 0.21 ng/ml versus a 68% increase, ED50 of 0.51 ng/ml, with no amino acids). Isoleucine and serine together increased both insulin sensitivity and responsiveness to 60-70% of that seen with the full complement of amino acids. In conclusion: 1) amino acids modulate insulin action by enhancing maximal insulin responsiveness and insulin sensitivity of the protein synthesis system, and the regulatory site of amino acid action appears to be distal to the common signal pathway, within the insulin action-protein synthesis cascade, and 2) the effects of amino acids are specific, in that basal rates of protein synthesis are unaffected, only certain amino acids influence insulin action, and amino acids fail to alter insulin binding or the insulin-responsive glucose transport system. These studies, together with those in the companion paper, demonstrate that the pleiotropic actions of insulin on enhancing glucose uptake and protein synthesis are mediated through divergent pathways that can be independently regulated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Based on our previous finding that desensitization of the insulin-responsive glucose transport system (GTS) requires three components, glucose, insulin, and glutamine, we postulated that the routing of incoming glucose through the hexosamine biosynthesis pathway plays a key role in the development of insulin resistance in primary cultured adipocytes. Two approaches were used to test this hypothesis. First, we assessed whether glucose-induced desensitization of the GTS could be prevented by glutamine analogs that irreversibly inactivate glutamine-requiring enzymes, such as glutamine:fructose-6-phosphate amidotransferase (GFAT) the first and the rate-limiting enzyme in hexosamine biosynthesis. Both O-diazoacetyl-L-serine (azaserine) and 6-diazo-5-oxonorleucine inhibited desensitization in 18-h treated cells without affecting maximal insulin responsiveness in control cells. Moreover, close agreement was seen between the ability of azaserine to prevent desensitization of the GTS in intact adipocytes (70% inhibition, ED50 = 1.1 microM), its ability to inactivate GFAT in intact adipocytes (64% inhibition, ED50 = 1.0 microM) and its ability to inactivate GFAT activity in a cytosolic adipocyte preparation (ED50 = 1.3 microM). From these results we concluded that a glutamine amidotransferase is involved in the induction of insulin resistance. As a second approach, we determined whether glucosamine, an agent known to preferentially enter the hexosamine pathway at a point distal to enzymatic amidation by GFAT, could induce cellular insulin resistance. When adipocytes were exposed to various concentrations of glucosamine for 5 h, progressive desensitization of the GTS was observed (ED50 = 0.36 mM) that culminated in a 40-50% loss of insulin responsiveness. Moreover, we estimated that glucosamine is at least 40 times more potent than glucose in mediating desensitization, since glucosamine entered adipocytes at only one-quarter of the glucose uptake rate, yet induced desensitization at an extra-cellular dose 10 times lower than glucose. In addition, we found that glucosamine-induced desensitization did not require glutamine and was unaffected by azaserine treatment. Thus, we conclude that glucosamine enters the hexosamine-desensitization pathway at a point distal to GFAT amidation. Overall, these studies indicate that a unique metabolic pathway exists in adipocytes that mediates desensitization of the insulin-responsive GTS, and reveal that an early step in this pathway involves the conversion of fructose 6-phosphate to glucosamine 6-phosphate by the first and rate-limiting enzyme of the hexosamine pathway, glutamine:fructose-6-phosphate amidotransferase.  相似文献   

4.
Treatment of primary cultured adipocytes with 50 ng/ml insulin and 20 mM glucose for 0-6 h resulted in a loss of maximal insulin responsiveness (MIR) which was immediate (no lag period), rapid (t1/2 of 3 h), linear, and extensive (80% of that seen at 24 h), whereas loss of insulin sensitivity from 0-24 h was slow (t1/2 = 8 h), extensive (insulin ED50 of 0.3 and 1.45 ng/ml at 2 and 24 h, respectively), and was preceded by an initial 2-h lag. Recovery of MIR and insulin sensitivity was assessed by inducing desensitization for various times from 2-24 h, removing insulin and glucose, and then measuring MIR and insulin sensitivity over a subsequent 1-6-h period. After 2 h, recovery of MIR in desensitized cells was rapid (251 pmol of glucose/3 min/h), whereas after 24 h, recovery was much slower (35 pmol/3 min/h). In contrast, the opposite trend was seen for recovery of insulin sensitivity: at early times recovery of insulin sensitivity was slow (0.05 ng/ml/h) but was rapid after 24 h (0.12 ng/ml/h). Thus, it appears that MIR and insulin sensitivity can be independently regulated since recovery rates for MIR and insulin sensitivity diverged with the progression of insulin resistance. When the effects of insulin and glucose on recovery were examined, we found that insulin alone was unable to block recovery of MIR or insulin sensitivity. Glucose alone, however, was effective in preventing recovery of insulin sensitivity but not recovery of MIR. In the presence of 20 mM glucose, low doses of insulin (treatment EC50 = 0.22-0.46 ng/ml) effectively prevented recovery of both MIR and insulin sensitivity. De novo protein synthesis apparently is not involved in the development of insulin resistance or the reversal of desensitization since inhibition of protein synthesis by cycloheximide had no effect on the loss of MIR and insulin sensitivity or recovery.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Slowly growing X-ray-induced rat insulinomas and derived cell lines have been used as a model system for glucose-induced insulin release. During perfusions of tumors transplanted under the kidney capsule, the carbohydrates glucose and D-glyceraldehyde increased insulin secretion. These stimuli and the amino acids leucine and alanine also provoked insulin release in freshly isolated tumor cells. Under these conditions, glucose utilization had a Km of 4.6 mM and maximal velocity of 0.9 nmol/min/10(6) cells. A continuous cell line was established from such a preparation. In culture, glucose-induced insulin secretion was no longer detectable while responses to D-glyceraldehyde and amino acids were retained. Glucose metabolism in the cell line showed a decrease in Km to 0.7 mM glucose and an increased maximal velocity of 1.4 nmol/min/10(6) cells. Attempts to revert these alterations were undertaken using glucose-deficient culture medium to diminish glycolytic flux. Basal insulin release was lowered, while the growth pattern of the cells remained unchanged. Another approach involved the use of sodium butyrate which has been demonstrated to promote differentiation in other cell systems. Whereas sodium butyrate markedly increased cellular insulin content, the secretory responses were not improved. These results provide evidence that the loss of glucose-induced insulin secretion is paralleled by alterations in glucose metabolism.  相似文献   

6.
In primary cultured adipocytes, metabolic substrates such as glucose and amino acids have profound effects on modulating insulin's stimulatory actions on glucose uptake and protein synthesis. Insights into how substrates modulate insulin action were recently obtained when we discovered that the routing of incoming glucose through the hexosamine biosynthesis pathway leads to a refractory state over a period of several hours in which the ability of insulin to stimulate glucose uptake is severely impaired--a state known as insulin resistance. Glutamine:fructose-6-phosphate amidotransferase was found to play a central role in the development of insulin resistance as this enzyme catalyzes the first and rate-limiting step in the formation of hexosamine products. Collectively, these results are consistent with the idea that the hexosamine biosynthesis pathway serves as a glucose sensor coupled to a negative feedback system that can limit the extent of glucose uptake in response to hyperglycemic and hyperinsulinemic conditions.  相似文献   

7.
OBJECTIVE: As part of our studies of the metabolic effects of ingested proteins, we are currently investigating the effects of ingestion of individual amino acids. The objective of the present study was to determine whether ingested phenylalanine stimulates insulin and/or glucagon secretion, and if phenylalanine ingested with glucose modifies the insulin, glucagon or glucose response to the ingested glucose. DESIGN: Six healthy subjects were tested on 4 separate occasions. Plasma phenylalanine, glucose, insulin, glucagon, and total alpha amino nitrogen (AAN) (i.e., total amino acids) concentrations were measured at various times during a 2.5 h period after ingestion of 1 mmol phenylalanine/kg lean body mass, 25 g glucose, 1 mmol phenylalanine/kg lean body mass+25 g glucose, or water only, given in random order. RESULTS: Following phenylalanine ingestion, the circulating phenylalanine concentration increased approximately 14 fold and remained elevated for the duration of the experiment. Glucagon and AAN increased, insulin increased modestly, and glucose was unchanged when compared to water ingestion. When glucose was ingested with phenylalanine, the circulating phenylalanine, glucagon, AAN, and insulin area responses were approximately the sum of the responses to phenylalanine alone and glucose alone. However, the plasma glucose area response was decreased 66% when phenylalanine was co-ingested with glucose. CONCLUSION: In summary, phenylalanine in an amount moderately greater than that in a large protein meal stimulates an increase in insulin and glucagon concentration. It markedly attenuates the glucose-induced rise in plasma glucose when ingested with glucose.  相似文献   

8.
In the perfused pancreas from normal SD rats, AD-4610 (0.01-0.1 mM) potentiated biphasic insulin secretion induced by 7.5 mM of glucose. The concentration-response curve of insulin secretion to glucose was shifted leftwards with AD-4610 (0.1 mM) without altering either the threshold concentration of glucose to induce insulin secretion or the maximal insulin response to glucose, indicating increased sensitivity of the pancreatic B-cells to glucose. On the other hand, AD-4610 was 10-fold less effective in altering insulin secretion induced by arginine and glyceraldehyde. The effect of AD-4610 on insulin secretion and glucose metabolism was compared with that of tolbutamide in vivo. AD-4610 (100 mg/kg) potentiated insulin secretion induced by an intravenous glucose load, and also accelerated glucose metabolism without altering basal insulin secretion in normal rats. On the other hand, tolbutamide (20 mg/kg) increased basal insulin secretion, but slightly decreased glucose-induced insulin secretion. In yellow KK mice with hyperglycemia, AD-4610 (10-100 mg/kg) had a dose-dependent hypoglycemic action, but tolbutamide did not. Thus, AD-4610 stimulated insulin secretion in a glucose-dependent fashion and enhanced glucose metabolism in vivo. These results suggest that AD-4610 selectively potentiates glucose-induced insulin secretion by increasing the sensitivity of pancreatic B-cells to glucose and may be useful for treating human NIDDM through a different mechanism than that of tolbutamide.  相似文献   

9.
We have examined the hypothesis that glucosamine (GlcN) can rapidly induce insulin resistance through an allosteric mechanism. When insulin-treated adipocytes were exposed to 2mM GlcN, glucose uptake was rapidly reduced by approximately 60% with a T(1/2) of 2 min. We also observed an increase in intracellular GlcN-6-P (at 5 min) from undetectable levels to approximately 260 nmol/g. Continued GlcN treatment resulted in additional accumulation of GlcN-6-P (>1200 nmol/g at 2h), but caused no further decrease in glucose uptake. Although the acute inhibitory action of GlcN could be completely reversed by removing extracellular GlcN, a slow and progressive decrease in insulin-stimulated glucose transport was observed with longer treatment times (T(1/2) of 45 min, 62% loss by 5h). From these data, we conclude that: (1) GlcN elevates intracellular GlcN-6-P levels within minutes, resulting in desensitization of the glucose transport system through allosteric inhibition of hexokinase; (2) prolonged treatment elevates GlcN-6-P to levels that cannot be effectively lowered by cell washing; and (3) residual levels of GlcN-6-P continue to allosterically inhibit glucose uptake, resulting in a slower rate of desensitization that is temporally similar to glucose-induced desensitization, but mechanistically different.  相似文献   

10.
Contractile properties of rat mesenteric resistance arteries were studied immediately after isolation or after 48-hr incubation in culture medium [Dulbecco's modified Eagle's/Ham's F-12 (1:1) with insulin, transferrin and antibiotics]. Incubation in culture medium depressed active stress generating capacity, increased sensitivity to norepinephrine and ablated endothelium-dependent relaxation. The decrease in stress generation results from the loss of a releasable pool of intracellular Ca2+; the enhanced sensitivity is associated with decreased neuronal amine pump function. Addition of 300 pg/ml 1,25 (OH)2 vitamin D3 to the culture medium afforded nearly complete protection against the loss of stress generating capacity and partially preserved endothelial function. It is concluded that 1,25 (OH)2 vitamin D3 partially prevents phenotypic modulation of the vascular myocyte induced by culture conditions.  相似文献   

11.
Non-insulin dependent diabetes mellitus (NIDDM) is characterized by a specific defect in glucose recognition by the pancreatic islet beta cell. This is in clear distinction to patients with insulin dependent diabetes mellitus (IDDM) who undergo pancreatic islet beta cell death and no longer have the ability to synthesize, store, and release insulin. Defective glucose-induced first phase insulin responses in patients with NIDDM can be partially restored by exogenous insulin treatment and by other pharmacologic therapy. These observations provide strength for the theory of glucose desensitization of the pancreatic beta cell as an important secondary defect in the pathogenesis of abnormal insulin secretion in NIDDM. However, even though defective insulin secretion is an essential part of the pathogenesis of NIDDM, in itself it is not sufficient. A multiplicative effect is required involving interaction between tissue resistance to insulin action and defective insulin secretion whose product is the syndrome of NIDDM.  相似文献   

12.
The insulin-independent and combined effects of fatty acids (FA; linoleic and oleic acids) and insulin in modulating lipid accumulation and adipogenesis in 3T3-L1 cells was investigated using a novel protocol avoiding the effects of a complex hormone 'induction' mixture. 3T3-L1 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) plus serum (control) or in DMEM plus either 0.3 mmol/l linoleic or oleic acids with 0.3 mmol/l FA-free bovine serum albumin in the presence or absence of insulin. Cells were cultured for 4 to 8 days and cell number, lipid accumulation, peroxisome proliferator-activated receptor-gamma (PPAR-γ) and glucose transporter 4 (GLUT-4) protein expression were determined. Cell number appeared to be decreased in comparison with control cultures. In both oleic acid and linoleic acid-treated cells, notably in the absence (and presence) of insulin, oil-red O stain-positive cells showed abundant lipid. The percentage of cells showing lipid accumulation was greater in FA-treated cultures compared with control cells grown in DMEM plus serum (P < 0.001). Treatment with both linoleic and oleic acid-containing media evoked higher levels of PPAR-γ than observed in control cultures (P < 0.05). GLUT-4 protein also increased in response to treatment with both linoleic and oleic acid-containing media (P < 0.001). Lipid accumulation in 3T3-L1 cells occurs in response to either oleic or linoleic acids independently of the presence of insulin. Both PPAR-γ and GLUT-4 protein expression were stimulated. Both proteins are considered markers of adipogenesis, and these observations suggest that these cells had entered the physiological state broadly accepted as differentiated. Furthermore, 3T3-L1 cells can be induced to accumulate lipid in a serum-free medium supplemented with FA, without the use of induction protocols using complex hormone mixtures. We have demonstrated a novel model for the study of lipid accumulation that will improve the understanding of adipogenesis in adipocyte lineage cells.  相似文献   

13.
When embryonic central nervous system neurons are seeded at low densities with Eagle's basal medium supplemented with the serum substitute N1, glucose, and glutamine, neuronal survival for even 24 h requires the additional supply of exogenous pyruvate--and so does the survival of many peripheral nervous system neurons. Pyruvate can be replaced by alpha-ketoglutarate or oxaloacetate, but not by Krebs cycle substrates that are not keto acids. Most other alpha-keto acids tested (though not beta- or gamma-keto acids) also mimic pyruvate. The apparent equivalence to pyruvate of all these compounds includes identical ED50 values (300 microM for embryonic avian fore-brain neurons, 30-40 microM for rat hippocampal neurons), and also identical susceptibilities to the pyruvate-sparing effects of other low-molecular-weight agents present in Dulbecco's modified Eagle's medium or in astroglia conditioned medium. The substitute alpha-keto acids, however--unlike pyruvate, alpha-ketoglutarate, or oxaloacetate--support cell survival only in the presence of alpha-amino acids that transaminate to alpha-ketoglutarate, oxaloacetate, or pyruvate. The alpha-keto acids, therefore, operate as acceptors of amino groups from appropriate donors to generate Krebs cycle-relevant substrates. Consistent with this view, [14C]glutamate did not generate appreciable 14CO2 unless accompanied by a suitable alpha-keto acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Yuan H  Lu Y  Huang X  He Q  Man Y  Zhou Y  Wang S  Li J 《The FEBS journal》2010,277(24):5061-5071
Defects in insulin secretion by pancreatic cells and/or decreased sensitivity of target tissues to insulin action are the key features of type 2 diabetes. It has been shown that excessive generation of reactive oxygen species (ROS) is linked to glucose-induced β-cell dysfunction. However, cellular mechanisms involved in ROS generation in β-cells and the link between ROS and glucose-induced β-cell dysfunction are poorly understood. Here, we demonstrate a key role of NADPH oxidase 2 (NOX2)-derived ROS in the deterioration of β-cell function induced by a high concentration of glucose. Sprague-Dawley rats were fed a high-fat diet for 24 weeks to induce diabetes. Diabetic rats showed increased glucose levels and elevated ROS generation in blood, but decreased insulin content in pancreatic β-cells. In vitro, increased ROS levels in pancreatic NIT-1 cells exposed to high concentrations of glucose (33.3 mmol·L(-1)) were associated with elevated expression of NOX2. Importantly, decreased glucose-induced insulin expression and secretion in NIT-1 cells could be rescued via siRNA-mediated NOX2 reduction. Furthermore, high glucose concentrations led to apoptosis of β-cells by activation of p38MAPK and p53, and dysfunction of β-cells through phosphatase and tensih homolog (PTEN)-dependent Jun N-terminal kinase (JNK) activation and protein kinase B (AKT/PKB) inhibition, which induced the translocation of forkhead box O1 and pancreatic duodenal homeobox-1, followed by reduced insulin expression and secretion. In conclusion, NOX2-derived ROS could play a critical role in high glucose-induced β-cell dysfunction through PTEN-dependent JNK activation and AKT inhibition.  相似文献   

16.
Krebs II ascites cells incubated in Earle's saline (lacking glucose and amino acids) contain ribosomes with proteins S6 and Lgamma phosphorylated, as do ascites cells grown in the peritonea of mice or hamster fibroblasts grown in Eagle's medium. When ascites cells were incubated in Eagle's medium (containing glucose and amino acids) there was extensive glycolysis, producing very acidic conditions, and ribosomal proteins S3 and L14 became phosphorylated whereas Lgamma became dephosphorylated. This altered pattern of phosphorylation could not be produced merely by incubating ascites cells in Earle's saline at a decreased pH, but a rather similar pattern was produced when Earle's saline was supplemented with amino acids (but with glucose still omitted). These results suggest that depriving ascites cells of glucose may induce the synthesis of a protein (or proteins), necessary for alteration of the pattern of phosphorylation of the ribosomal proteins.  相似文献   

17.
Yerba maté (mate) tea, a herbal tea prepared from the leaves of Ilex paraguariensis, is widely consumed in southern Latin America, and is gaining popularity worldwide. We investigated effects of an aqueous extract of mate on metabolic syndrome features in a metabolic syndrome model Tsumura Suzuki obese diabetic (TSOD) mouse. Oral administration of mate (100 mg/kg) for 7 weeks induced significant decreases in body weight, body mass index, and food intake in TSOD. It significantly decreased the hyperglycemia by reducing fasting blood glucose level, and increasing glucose uptake in glucose tolerance test. It also showed significant improvement in insulin sensitivity by increasing glucose uptake in insulin tolerance test, increasing quantitative insulin sensitivity check index, and decreasing homeostasis model assessment of insulin resistance index. The results also showed significant effects of mate on hyperlipidemia by decreasing blood levels of triglycerides, non-esterified fatty acids, and total cholesterol. Moreover, mate significantly improved adiponectin (AD) level, and exhibited significant reduction in white adipose tissue weight, and adiposity index in TSOD. It also showed significant ameliorative effects on TSOD histopathology, by reducing adipocytes proliferation, and improving hepatic steatosis. Furthermore, mate administration induced a dose-dependent delay in gastric emptying. The current data suggest that mate ameliorates metabolic syndrome by mechanisms involving increase of peripheral insulin sensitivity and cellular glucose uptake, and by modulating the level of circulating lipid metabolites and AD. These results indicate that mate can induce protective and ameliorative effects on insulin resistance, diabesity, and dyslipidemia in metabolic syndrome.  相似文献   

18.
Neonatal beta cells are functionally immature as they secrete less insulin than adults and lack of glucose response. The mechanisms that participate in the functional maturation of these cells are not known. Adult rat beta cells synthesize and secrete nerve growth factor (NGF) and express NGF receptors. NGF increases glucose-induced insulin secretion by modulating electrical activity in adult beta cells. In this work, we explored if NGF is involved in the maturation of glucose-induced insulin secretion coupling in rat neonate beta-cells.  相似文献   

19.
We reported previously that glutamine:F-6-P amidotransferase (GFAT) plays an integral role in the development of insulin resistance by directing the flow of incoming glucose into the hexosamine biosynthesis pathway. To determine whether the enzymatic activity of GFAT is altered during desensitization of the glucose transport system, we treated isolated rat adipocytes with various combinations of insulin, glucose, and glutamine. Treatment with insulin or glucose alone (or in combination) failed to reduce cytosolic GFAT activity after 4 h, whereas combined treatment with all three components elicited a progressive loss of GFAT activity that was rapid (t1/2 of 2 h) and extensive (70% loss). A pronounced loss of GFAT activity was also seen in cells exposed to glucosamine, an agent known to directly enter the hexosamine pathway (55% loss at 4 h, ED50 of 360 microM). Moreover, a close correlation was observed between the induction of desensitization and the loss of GFAT activity as a function of glucose, insulin, glutamine, and glucosamine concentrations. When total intracellular hexosamine products were measured, we found that hexosamine formation was unaltered by insulin or glucose (or a combination) but was elevated by greater than 4-fold in the presence of insulin, glucose, and glutamine (t1/2 of 22 min), a condition known to cause both desensitization and loss of GFAT activity. Additional studies indicated that the loss of GFAT activity under desensitizing conditions is not due to allosteric regulation since removal of potential allosteric factors from the cytosol of desensitized cells by G-25 column chromatography failed to restore enzyme activity. Overall, these studies indicate that 1) GFAT is an insulin-regulated enzyme; however, control of enzyme activity is not due to a direct action of insulin, but rather is mediated by insulin-induced enhancement of glucose uptake; 2) the routing of incoming glucose through the hexosamine pathway and the formation of hexosamine products appears to regulate GFAT activity; and 3) the progressive loss of GFAT activity over several hours is probably not due to allosteric regulation.  相似文献   

20.
The present study demonstrates the effect of glucosamine on the functional maturation of cultured B cells of the neonatal rat. When B cells had been maintained at a physiological concentration (5.5 mM) of glucose for 7 days, a drop in the stimulatory effect of 16.7 mM glucose on insulin release and biosynthesis was observed together with a reduced insulin content. By contrast, the sensitivity of glucose-induced insulin release was increased after one week of culture with 5.5 mM glucose and 5 mM glucosamine. And both the insulin content and glucose-induced insulin biosynthesis also remained at the same level as observed at the first day of culture with 5.5 mM glucose alone. In summary, it was suggested that glucosamine-supplemented culture may result in the transition of B cells of neonatal rat from a poor glucose sensitivity to adult-type response of insulin release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号