首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
In the temperate region temperature is the main factor influencing the germination period of plant species. The purpose of this study was to examine effects of constant and fluctuating temperatures on dormancy and germination under laboratory and field conditions in the three wetland species Lycopus europaeus, Mentha aquatica and Stachys palustris. The results should give indications if the temperature-dependent regulation of dormancy and germination is phylogenetically constrained. Tests for germination requirements showed a minimum temperature for germination of 9 °C in Mentha and 12 °C in Lycopus and Stachys, and a maximum temperature of 33 °C for Lycopus and 36 °C for Mentha and Stachys. Fluctuating temperatures promoted germination in all three species but the amplitude required for high germination (>50%) differed: it was 8 °C in Mentha, 10 °C in Stachys and 14 °C in Lycopus (mean temperature 22 °C). The effect of temperatures on the level of dormancy was examined in the laboratory by imbibing seeds at temperatures between 3 °C and 18 °C for periods between 2 and 28 weeks, as well as by a 30-month burial period, followed by germination tests at various temperatures, in light and darkness. In the laboratory only low temperatures (≤12 °C) relieved primary dormancy in seeds of Lycopus, while in Mentha and Stachys also higher temperatures lead to an increase of germination. Dormancy was only induced in Lycopus seeds after prolonged imbibition at 12 °C in the laboratory. Buried seeds of all species exhibited annual dormancy cycles with lower germination in summer and higher germination from autumn to spring. Exhumed seeds, however, showed considerable differences in periods of germination success. Dormancy was relieved when ambient temperatures were below 12 °C. Ambient temperatures that caused an induction of dormancy varied depending on species and test condition, but even low temperatures (8 °C) were effective. At high test temperatures (25 °C) in light, exhumed seeds of all three species showed high germination throughout the year. The three species showed various differences in the effects of temperatures on dormancy and germination. Similarities in dormancy and germination found among the species are in common with other spring-germinating species occurring in wetlands, so it seems that the temperature dependent regulation of dormancy and germination are related to habitat and not to phylogenetic relatedness.  相似文献   

2.
Preservation of algal spores of the green seaweed Ulva fasciata and U. pertusa was enhanced by the addition of ampicillin in f/2 medium at 4°C. The viability of preserved spores was determined by a spore germination assay at various time intervals. The germination rate of U. fasciata remained at 5% to 38% for the first five days, dropping to 1% to 6% on the 10th day of storage with various preservation treatments without ampicillin at 4°C during parameter-selecting experiments. In f/2 medium, 53% of U. fasciata spores were still viable on day 5 and 23% on day 10 at 4°C. By adding 100 μg mL−1 ampicillin to f/2 medium, 90% of the spores were viable at day 40 and 61% after 100 days of storage at 4°C. Spores of U. pertusa had lower preservation rates, with viabilities of 70% at day 40 and 32% at day 100. Algal spore preservation was heavily dependent on the bacterial contamination and subsequent degradation in stock solutions. Handling editor: L. Naselli-Flores  相似文献   

3.
Jie Song  Gu Feng  Fusuo Zhang 《Plant and Soil》2006,279(1-2):201-207
The effects of three salinities (0, 100 and 500 mM NaCl) and four constant temperatures (10, 20, 30 and 35 °C) on seed germination of Halostachys caspica (M. B.) C. A. Mey., Kalidium foliatum (Pall.) Mop. and Halocnemum strobilaceum (Pall.) Bieb. were investigated. After seeds were treated with different concentrations of NaCl at constant temperatures of 10–35 °C for 16 days, ungerminated seeds were transferred to distilled water for 10 days to investigate the total germination; after this time, the ungerminated seeds from the 10 and 20 °C treatments were then moved to 35 °C for another 5 days to determine the final germination. The three plant species in the present experiment are salt-resistant euhalophytes growing in high saline soils in the Zhungur Basin in Xinjiang, a northwest province of China.Compared with germination under control conditions, germination percentages of all three species were not affected by 100 mM NaCl at 10–35 °C, while severely inhibited by 500 mM NaCl; germination percentages were very low at 10 °C up to 100 mM NaCl for all species; the optimum temperature for germination of H. caspica and K. foliatum was 20–30 °C, while 35 °C for H. strobilaceum, up to 100 mM NaCl; seeds did not suffer ion toxicity for all species, as evidenced by the high total germination after ungerminated seeds pretreated with 500 mM NaCl were transferred to distilled water at constant temperatures of 10–35 °C for 10 days, and the high final germination after the ungerminated seeds from the 10 and 20 °C treatments were subsequently moved to 35 °C for another 5 days; Halostachys caspica had greater sensitivity to increasing temperatures from 10 and 20 °C to 35 °C compared with the other two species.  相似文献   

4.
The aim of present investigation was to study the effect of storage conditions on percentage germination of encapsulated and non-encapsulated somatic embryos of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora). Different batches of encapsulated and non-encapsulated embryos were preserved at room temperature, 4°C, in liquid nitrogen as such and by embedding in liquid paraffin. In the encapsulated somatic embryos stored at room temperature in sealed Petri plates, percentage of germination was 24.99%, but 5.55% in non-encapsulated embryos after 3 days of storage. Encapsulated embryos stored in vials containing liquid paraffin at room temperature were germinated at 18.05% after 60 days of storage, while it was 13.88% in non-encapsulated embryos after 45 days of storage. Encapsulated somatic embryos stored at 4°C in sealed Petri plates remained viable for up to 75 days with 6.94% germination, whereas non-encapsulated embryos remained viable for up to 45 days with 24.99% germination. Encapsulated embryos stored at 4°C in vials filled with paraffin germinated at 11.11% after 120 days of storage, but 5.55% in non-encapsulated embryos after 90 days of storage. Encapsulated and non-encapsulated embryos stored in liquid nitrogen showed 58.33 and 51.38% survival, respectively, after 7 months of storage. The plantlets developed from these embryos were transplanted after acclimatization and are growing normal.  相似文献   

5.
The biological function ofLentinula edodes in a myco-heterotrophic orchid,Erythrorchis ochobiensis was examined, using one local variant each from Japan (JPN), Papua New Guinea (PNG) and New Zealand (NZ). All variants induced seed germination: PNG and NZ isolates were effective at 25°C and JPN isolate showed the highest germination rate at 30°C. Germinated seeds developed into plants and formed normal endomycorrhizas. Hence, it is concluded thatL. edodes has a perfect symbiotic potential withE. ochobiensis, though it has not been observed in the root of the orchid in the field.  相似文献   

6.
Temperature requirements for the breaking of seed dormancy and germination inPrimula sieboldii E. Morren and the annual surface-soil temperature regime in one of its natural habitats were investigated in order to clarify the germination responses determining the seedling emergence seasonality of the species. In a grassland nature reserve in an abandoned flood plain of the Arakawa River, natural seedling emergence of the species was shown to be restricted to mid- to late-spring before the closure of seasonal vegetational gaps, when the daily mean soil surface temperature reached about 15°C, accompanied by large daily fluctuations of about 10°C. Mature seeds collected in late June were never able to germinate at any constant temperature in the range of 8–40°C unless they had been previously subjected to moist-chilling treatment. The proportion of seeds which were released from dormancy increased with increasing duration of the moist-chilling treatment at 2°C, 70–85% of seeds becoming germinable at 16–28°C after 12 weeks of pretreatment at 2°C. The thermal time required for the germination of the thus-pretreated seed population was 905–1690 Kh with a base temperature of around 5°C. Fluctuating temperatures between 24°C and 16 or 12°C had a remarkable dormancy-breaking effect, inducing considerably quick germination in most of the seeds previously subjected to 2°C moist-chilling for 8 weeks.  相似文献   

7.
Abstract

Swertia chirayita, a critically endangered medicinal herb, is being over-harvested in the wild. Understanding seed germination is a pre-requisite to ensure species conservation. The germination of seeds collected from six microhabitats was studied at 20°C, 25°C, and 30°C, both under a 14/10 h light/dark photoperiod and in continuous darkness. Two-way ANOVA indicated that microhabitat and temperature significantly affect seed germination, germination rate, germination recovery (GR), and GR rate. Overall, the seeds collected from under canopy showed a significantly (p < 0.05) higher germination than those from open habitats, at 20°C, 25°C, and 30°C (14/10 h light/dark photoperiod). Germination was negligible in continuous darkness but after transfer to a 14/10 h light/dark photoperiod, the seeds from under canopy significantly recovered at 20°C and at 25°C (p < 0.05), and showed the highest germination percentage compared to seeds collected from tree base, stump base, shrubberies, and grassy slope. Similarly, at 30°C, seeds from under canopy recorded the highest GR percentage. In general, seed germination, mean germination rate, seed GR, and GR rate were significantly greater (p < 0.05) at 25°C. Among the microhabitats tested, variation in GR rate was significant (p < 0.05). Seeds were confirmed to be positively photoblastic.  相似文献   

8.
Prosopis chilensis is a plant highly tolerant to heat shock   总被引:1,自引:0,他引:1  
At temperatures between 25 and 35°C, 100% of Prosopis chilensis seeds germinated within 24 h. At higher temperatures, the germination rate was reduced; at 50°C, seeds did not germinate. After germination at 25°C, the optimal temperature for seedling growth was 35°C and the seedlings did not grow at a temperature of 50°C. However, when germination was at 35°C, the optimal temperature for seedling growth was 40°C and some seedlings grew at 50°C, suggesting that thermotolerance was induced during seed germination at 35°C. Further thermotolerance can be induced in seedlings germinated at 35°C, by exposing them to 40°C for 2h. Under these conditions, seedlings exhibited increased growth rate at 45 and 50°C. Fluorography of SDS-polyacrylamide gel electrophoresis of the proteins synthesized and accumulated during 2 h at temperatures of 35, 40, 45 and 50°C in the presence of [35S]methionine revealed the expression of 11 proteins not detectable at 35°C. Most of the proteins present at 35°C also increased in expression. The temperature for maximal expression of these proteins was 45°C.  相似文献   

9.
Seeds of Salicornia bigelovii were germinated at 4.4°C, 15.5°C, and 26.6°C in saline solution containing from 0% to 8.08% sea salt. At 4.4°C, germination was delayed until the 26th day, but the final germination per cent was high in all salinities. At 15.5°C, germination was delayed until the 19th day, and the germination per cent was higher in the higher salinities. At 26.6°C, the germination began within one day and the germination per cent was higher at the lower salinities. With the exception of 26.6°C data, the maximum germination occurred at a sea salt concentration at 4.04 % which is very close to the salinity of the sea.  相似文献   

10.
The genetic diversity of Agave plants is threatened by clonal commercial reproduction and climatic change. Sexual reproduction is uncommon and research on seed germination is scarce. The present study evaluated the seed germination of Agave lechuguilla, Agave striata, Agave americana var. marginata, Agave asperrima, Agave cupreata, Agave duranguesis, Agave angustifolia ssp. tequilana and Agave salmiana at constant temperatures (10, 15, 20, 25, 30, 35 and 40°C). Initial imbibition (after the first 12 h) was significantly variable among species, positively correlated with seed weight (r = 0.6560, P < 0.001) and increased with temperature (from 35% at 10°C to 66% at 40°C). Temperature affected maximum imbibition (83–150%) for A. asperrima, A. lechuguilla, A. salmiana and A. striata; other species averaged 110%. Most germination kinetics best fitted a logistic model, whereas only a few treatments fit a Weibull model. The time to germination onset diminished (P < 0.05) from 125–173 h at 15°C to 68–84 h at 25°C, and then ascended to 84–196 h at 35°C. The mean germination rate and seed germination percentage after 312 h peaked at 25°C (0.50–0.95% seeds/h and 85–99%, respectively) and fell (P < 0.05) to near zero at 10 and 40°C. Temperatures of 10, 35 and 40°C were partially lethal to A. asperrima, A. duranguensis and A. salmiana seeds. The time to germination onset, seed germination percentage after 312 h and mean germination rate are best described by a Gaussian distribution, with its optimum at approximately 25°C. Thus, optimum temperatures are related to the ecological characteristics of each species area.  相似文献   

11.
The effects of temperature (4–20°C), relative humidity (RH, 0–100%), pH (3–7), availability of nutrients (0–5 g/l sucrose) and artificial light (0–494 μmol/m2/s) on macroconidial germination of Fusarium graminearum were studied. Germ tubes emerged between 2 and 6 h after inoculation at 100% RH and 20°C. Incubation in light (205 ± 14 μmol/m/s) retarded the germination for approximately 0.5 h in comparison with incubation in darkness. The times required for 50% of the macroconidia to germinate were 3.5 h at 20°C, 5.4 h at 14°C and 26.3 h at 4°C. No germination was observed after an incubation period of 18 h at 20°C in darkness at RH less than 80%. At RH greater than 80%, germination increased with humidity. Germination was observed when macroconidia were incubated in glucose (5 g/l) or sucrose (concentration range from 2.5 × 10?4 to 5 g/l) whereas no germination was observed when macroconidia were incubated in sterile deionized water up to 22 h. Macroconidia germinated quantitatively within 18 h at pH 3–7. Repeated freezing (?15°C) and thawing (20°C) water agar plates with either germinated or non‐germinated macroconidia for up to five times did not prevent fungal growth after thawing. However, the fungal growth rate of mycelium was negatively related to the number of freezing events the non‐germinated macroconidia experienced. The fungal growth rate of mycelium was not significantly affected by the number of freezing events the germinated spores experienced. Incubation of macroconidia at low humidity (0–53% RH) suppressed germination and decreased the viability of the spores.  相似文献   

12.
13.
Summary The effect of abscisic acid (ABA) was evaluated during the maturation and germination of holm oak (Quercus ilex L.) somatic embryos. The addition of ABA to the culture medium significantly reduced unwanted recurrent embryogenesis in mature somatic embryos without affecting the germination of embryos subjected to stratification at 4°C. Stratification at 4°C for 2 mo. was the most efficient for stimulating somatic embryo germination of holm oak. The addition of 90 and 450 mM sucrose also improved germination, while higher sucrose concentrations were inhibitory.  相似文献   

14.
A germination study was carried out on seeds of Clinopodium sandalioticum (Bacch. & Brullo) Bacch. & Brullo ex Peruzzi & Conti (Lamiaceae), a wild aromatic plant endemic to Sardinia. Seeds were incubated at a range of constant (5–25°C) and an alternating temperatures regime (25/10°C), with 12 hours of irradiance per day. The results achieved at 10°C were also compared with those obtained after a period of cold stratification at 5°C for three months. Final seed germination ranged from ca. 28% (5°C) to ca. 72% (25/10°C). A base temperature for germination (Tb) of ca. 5°C and a thermal constant for 50% germination (S) of 89.3°Cd were identified and an optimal temperature for germination (To) was estimated to be comprised between 20 and 25°C. Cold stratification negatively affected seed viability and germination at 10°C. Although a typical “Mediterranean germination syndrome”, could not be detected for C. sandalioticum seeds, these results were coherent with those previously reported for other Mediterranean Lamiaceae species.  相似文献   

15.
The development of the male reproductive structures of American chestnut (Castanea dentata) is described to advance our understanding of its reproductive behavior. This information has been vital in the development of a strategy to collect pollen grains from male catkins suitable for in vitro germination and transformation experiments. Cutting male catkins into small segments and rolling them over a culture plate resulted in evenly dispersed and large amounts of pollen with minimal unwanted accessory floral parts. To optimize pollen viability, the effect of various storage conditions on in vitro germination was examined. Our results showed that initial storage at 4°C for 2 weeks significantly increased percent germination as compared to freshly collected pollen and those stored directly at −20°C or −80°C. This also means that for long-term storage of American chestnut pollen, the catkins should first be kept at 4°C for a couple of weeks and then at −80°C. The use of pollen grains with high viability is necessary for the transformation of American chestnut pollen. To optimize pollen transformation via particle bombardment, the effects of target distance, target pressure, and pollen developmental stage were examined. Statistical analysis showed that bombardment of ungerminated pollen at 1,100 psi resulted in the highest percent transient GFP expression (4.1%).  相似文献   

16.
Environmental stresses at particularly vulnerable stages during crop development may severely diminish productivity. At temperature of 10 °C or below cultivated tomato germinate slowly if at all. In this study, seven tomato genotypes bred at the Research Institute of Vegetable Crops were evaluated for germination time at 10 °C. Analysis identified that one genotype which has L. chilense in its pedigree, germinated most rapidly while four other genotypes germinated slower. After 21 days, four out of five of the genotypes resulted in seed germination from 81 to 98 %.  相似文献   

17.
Seeds with a water‐impermeable seed coat and a physiologically dormant embryo are classified as having combinational dormancy. Seeds of Sicyos angulatus (burcucumber) have been clearly shown to have a water‐impermeable seed coat (physical dormancy [PY]). The primary aim of the present study was to confirm (or not) that physiological dormancy (PD) is also present in seeds of S. angulatus. The highest germination of scarified fresh (38%) and 3‐month dry‐stored (36%) seeds occurred at 35/20°C. The rate (speed) of germination was faster in scarified dry‐stored seeds than in scarified fresh seeds. Removal of the seed coat, but leaving the membrane surrounding the embryo intact, increased germination of both fresh and dry‐stored seeds to > 85% at 35/20°C. Germination (80–100%) of excised embryos (both seed coat and membrane removed) occurred at 15/6, 25/15 and 35/20°C and reached 95–100% after 4 days of incubation at 25/15 and 35/20°C. Dry storage (after‐ripening) caused an increase in the germination percentage of scarified and of decoated seeds at 25/15°C and in both germination percentage and rate of excised embryos at 15/6°C. Eight weeks of cold stratification resulted in a significant increase in the germination of scarified seeds at 25/15 and 35/20°C and of decoated seeds at 15/6 and 25/15°C. Based on the results of our study and on information reported in the literature, we conclude that seeds of S. angulatus not only have PY, but also non‐deep PD, that is, combinational dormancy (PY + PD).  相似文献   

18.
Aphanomyces frigidophilus sp. nov. was obtained from eggs of Japanese char,Salvelinus leucomaenis, from Tochigi Prefectural Fisheries Experimental Station, Utsunomiya, Japan. Vegetative hyphae were delicate, slightly wavy, moderately branched. Zoosporangia were isodiametric with the vegetative hyphae. Oogonia were abundant, originating on short stalks from lateral sides of hyphae. Oogonia were spherical, subspherical or pyriform, with a single subcentric oospore inside. Outer surfaces of oogonia were roughened with short papillate, crenulate or irregular ornaments. Antheridia and oospore germination were not observed. Zoospore germination and vegetative growth were found from pH 5.0 to 11.0. Zoospore production was highest at 10°C, whereas rapid growth occurred at 20–25°C. Vegetative growth of the fungus declined from the maximal level at 25°C to less than half maximal at 30°C and completely disappeared at 35°C.  相似文献   

19.
Long-term persistence of entomopathogenic fungi as biopesticides is a major requirement for successful industrialization. Corn oil carrier was superior in maintaining germination rates of Isaria fumosorosea SFP-198 conidia during exposure to 50°C for 2 h, when compared with other oils, such as soybean oil, cottonseed oil, paraffin oil, and methyl oleate. The corn oil-based conidial suspension (91.6% germination) was also better in this regard than conidial powder (28.4% germination) after 50°C for 8 h. Long-term storage stabilities of corn oil-based conidial suspension and conidial powder at 4 and 25°C for 24 months were investigated, based on the correlation of germination rate with insecticidal activity against greenhouse whiteflies, Trialeurodes vaporariorum. Viability of conidia in corn oil was more than 98.4% for up to 9 months of storage at 25°C, and followed by 23% at 21 months. However, conidial powder had only 34% viability after 3 months of storage at 25°C, after which its viability rapidly decreased. The two conidial preparations stored at 4°C had better viabilities than those at 25°C, showing the same pattern as above. These results indicate that corn oil-based conidial suspension can be used to improve conidial persistence in long-term storage and be further applied to the formulation of other thermo-susceptible biological control agents.  相似文献   

20.
With regard to adaptation of green ash (Fraxinus pennsylvanica Marshall) to ecological conditions in Croatia, pollen germination and pollen tube length after 2, 4 and 6 hours were examined in vitro at 10, 15, 20 and 25°C during two years 2001 and 2002. Narrow leaved ash (F. angustifolia Vahl) pollen served as a control in 2002. The year, time and temperature, and the interaction between time and temperature were significant for both germination percentage and pollen tube length. Interactions year × temperature and year × time were significant for pollen tube length only. The highest germination percentage (17.86% in 2001 and 19.40% in 2002) of green ash pollen was at 15°C after 6 hours. The pollen tube length was greatest at 20°C (393.46 μm) in 2001 and 25°C (899.50 μm) in 2002 after 6 hours. Narrow leaved ash pollen had the highest germination percentage (19.22%) at 20°C after 6 hours and was significantly reduced at 25°C. The pollen tube length was greatest at 25°C (518.90 μm) after 6 hours. It can be concluded that green ash pollen has satisfactory germination in ecological conditions in Croatia and that the optimum temperature for pollen germination is higher than 20°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号