首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In mammals, nonvisual responses to light have been shown to involve intrinsically photosensitive retinal ganglion cells (ipRGC) that express melanopsin and that are modulated by input from both rods and cones. Recent in vitro evidence suggests that melanopsin possesses dual photosensory and photoisomerase functions, previously thought to be a unique feature of invertebrate rhabdomeric photopigments. In cultured cells that normally do not respond to light, heterologous expression of mammalian melanopsin confers light sensitivity that can be restored by prior stimulation with appropriate wavelengths. Using three different physiological and behavioral assays, we show that this in vitro property translates to in vivo, melanopsin-dependent nonvisual responses. We find that prestimulation with long-wavelength light not only restores but enhances single-unit responses of SCN neurons to 480-nm light, whereas the long-wavelength stimulus alone fails to elicit any response. Recordings in Opn4-/- mice confirm that melanopsin provides the main photosensory input to the SCN, and furthermore, demonstrate that melanopsin is required for response enhancement, because this capacity is abolished in the knockout mouse. The efficiency of the light-enhancement effect depends on wavelength, irradiance, and duration. Prior long-wavelength light exposure also enhances short-wavelength-induced phase shifts of locomotor activity and pupillary constriction, consistent with the expression of a photoisomerase-like function in nonvisual responses to light.  相似文献   

4.
5.
In mammals including man, the most important zeitgeber for endogenous rhythms is the environmental light/dark cycle. Mammals perceive light through the eyes and that perception is relayed to the suprachiasmatic nucleus (SCN) by means of neuronal signals. The SCN, in turn, innervates the pineal gland, resulting in the production and release of melatonin almost exclusively during night-time hours. Thus, besides object recognition, eyes serve as the sensory organ for detecting the presence or absence of light. The way that light entrains the SCN is still a matter of intense research. It has been shown, for example, that the light intensities required for affecting melatonin rhythms are much higher than the intensities needed for object identification. On the other hand, even in rodents who completely lack the "classical" photoreceptors of the retina, their endogenous rhythms still can be synchronized by normal light/dark cycles. These two observations led to the hypothesis that there must be photoreceptors, apart from the known (object-identifying) retinal photoreceptors, which are responsible for the entrainment of internal rhythms. Very recently, a number of reports showed that in fact a completely new type of retinal photoreceptor, located in ganglion cells, may be responsible for entraining the SCN. It contains a photopigment, melanopsin, which shares homologies with rhodopsin, but also is evolutionarily older. Compared to rods or cones, the melanopsin-containing neurons are rare, but evenly distributed within the retina, indicating that they serve as a global, integrating light sensor. These ganglion cells apparently project directly into the SCN. Taken together, these new developments in photo-chronobiology open new areas of research. It will be of special interest, for example, to determine how the photosensitive ganglion cells and their dendrites integrate the environmental light stimuli.  相似文献   

6.
In addition to rods and cones, the mammalian eye contains a third class of photoreceptor, the intrinsically photosensitive retinal ganglion cell (ipRGC). ipRGCs are heterogeneous irradiance-encoding neurons that primarily project to non-visual areas of the brain. Characteristics of ipRGC light responses differ significantly from those of rod and cone responses, including depolarization to light, slow on- and off-latencies, and relatively low light sensitivity. All ipRGCs use melanopsin (Opn4) as their photopigment. Melanopsin resembles invertebrate rhabdomeric photopigments more than vertebrate ciliary pigments and uses a G(q) signaling pathway, in contrast to the G(t) pathway used by rods and cones. ipRGCs can recycle chromophore in the absence of the retinal pigment epithelium and are highly resistant to vitamin A depletion. This suggests that melanopsin employs a bistable sequential photon absorption mechanism typical of rhabdomeric opsins.  相似文献   

7.
The suprachiasmatic nucleus (SCN), the mammalian circadian pacemaker, receives information about ambient light levels through the retinohypothalamic tract. This information resets the molecular clock of SCN neurons, thereby entraining overt animal behavior and physiology to the solar cycle. Progress toward functional characterization of retinal influences on the SCN has been hampered by limitations of established experimental paradigms. To overcome this hurdle, the authors have developed a novel in vitro preparation of the rat retinohypothalamic circuit that maintains functional connectivity between the retinas and the SCN. This method permits whole-cell patch-clamp recordings from visually identified, light-responsive SCN neurons. Using this preparation, the authors have found that in the SCN, light-evoked responses are partly driven by the melanopsin photosensory system of the intrinsically photosensitive retinal ganglion cells and that SCN neurons exhibit light adaptation. The authors have also been able to generate this preparation from mice, demonstrating the feasibility of applying this method to transgenic mice.  相似文献   

8.
Non-image related responses to light, such as the synchronization of circadian rhythms to the day/night cycle, are mediated by classical rod/cone photoreceptors and by a small subset of retinal ganglion cells that are intrinsically photosensitive, expressing the photopigment, melanopsin. This raises the possibility that the melanopsin cells may be serving as a conduit for photic information detected by the rods and/or cones. To test this idea, we developed a specific immunotoxin consisting of an anti-melanopsin antibody conjugated to the ribosome-inactivating protein, saporin. Intravitreal injection of this immunotoxin results in targeted destruction of melanopsin cells. We find that the specific loss of these cells in the adult mouse retina alters the effects of light on circadian rhythms. In particular, the photosensitivity of the circadian system is significantly attenuated. A subset of animals becomes non-responsive to the light/dark cycle, a characteristic previously observed in mice lacking rods, cones, and functional melanopsin cells. Mice lacking melanopsin cells are also unable to show light induced negative masking, a phenomenon known to be mediated by such cells, but both visual cliff and light/dark preference responses are normal. These data suggest that cells containing melanopsin do indeed function as a conduit for rod and/or cone information for certain non-image forming visual responses. Furthermore, we have developed a technique to specifically ablate melanopsin cells in the fully developed adult retina. This approach can be applied to any species subject to the existence of appropriate anti-melanopsin antibodies.  相似文献   

9.
The canonical flow of visual signals proceeds from outer to inner retina (photoreceptors→bipolar cells→ganglion cells). However, melanopsin-expressing ganglion cells are photosensitive and functional sustained light signaling to retinal dopaminergic interneurons persists in the absence of rods and cones. Here we show that the sustained-type light response of retinal dopamine neurons requires melanopsin and that the response is mediated by AMPA-type glutamate receptors, defining a retrograde retinal visual signaling pathway that fully reverses the usual flow of light signals in retinal circuits.  相似文献   

10.
Photoreception in the mammalian retina is not restricted to rods and cones but extends to a subset of retinal ganglion cells expressing the photopigment melanopsin (mRGCs). These mRGCs are known to drive such reflex light responses as circadian photoentrainment and pupillomotor movements. By contrast, until now there has been no direct assessment of their contribution to conventional visual pathways. Here, we address this deficit. Using new reporter lines, we show that mRGC projections are much more extensive than previously thought and extend across the dorsal lateral geniculate nucleus (dLGN), origin of thalamo-cortical projection neurons. We continue to show that this input supports extensive physiological light responses in the dLGN and visual cortex in mice lacking rods+cones (a model of advanced retinal degeneration). Moreover, using chromatic stimuli to isolate melanopsin-derived responses in mice with an intact visual system, we reveal strong melanopsin input to the ~40% of neurons in the LGN that show sustained activation to a light step. We demonstrate that this melanopsin input supports irradiance-dependent increases in the firing rate of these neurons. The implication that melanopsin is required to accurately encode stimulus irradiance is confirmed using melanopsin knockout mice. Our data establish melanopsin-based photoreception as a significant source of sensory input to the thalamo-cortical visual system, providing unique irradiance information and allowing visual responses to be retained even in the absence of rods+cones. These findings identify mRGCs as a potential origin for aspects of visual perception and indicate that they may support vision in people suffering retinal degeneration.  相似文献   

11.
BACKGROUND: Although photoreception is best understood in rods and cones, it is increasingly clear that these are not the only photoreceptive cells of the vertebrate retina. While considerable attention has been paid to the role of melanopsin in the generation of intrinsic light sensitivity in the retinal ganglion cells of mammals, nothing is known about the photoreceptive capacity of the horizontal cells of the fish retina in which both VA opsin and melanopsin are expressed. As yet, there has been little more than speculation as to the physiological function of these opsins within local retinal circuit neurons. RESULTS: VA opsin and melanopsin have been isolated and localized within the well-characterized cyprinid retina of the roach (Rutilus rutilus). Parallel electrophysiological studies identified a novel subtype of horizontal cell (HC-RSD) characterized by a depolarizing response that fits an opsin photopigment with a lambda(max) of 477 nm. The HC-RSD cells mediate responses to light that are characterized by long integration times, well beyond those observed for rods and cones. Significantly, HC-RSD responses persist when the conventional photoreceptor inputs are saturated by background light. CONCLUSIONS: The syncytium of coupled horizontal cells has long been considered to provide a signal of overall retinal irradiance. Our data suggest that this light information is, at least in part, derived from a population of intrinsically photosensitive VA opsin and/or melanopsin horizontal cells.  相似文献   

12.
BACKGROUND: The visual system is now known to be composed of image-forming and non-image-forming pathways. Photoreception for the image-forming pathway begins at the rods and cones, whereas that for the non-image-forming pathway also involves intrinsically photosensitive retinal ganglion cells (ipRGCs), which express the photopigment melanopsin. In the mouse retina, the rod and cone photoreceptors become light responsive from postnatal day 10 (P10); however, the development of photosensitivity of the ipRGCs remains largely unexplored. RESULTS: Here, we provide direct physiological evidence that the ipRGCs are light responsive from birth (P0) and that this photosensitivity requires melanopsin expression. Interestingly, the number of ipRGCs at P0 is over five times that in the adult retina, reflecting an initial overproduction of melanopsin-expressing cells during development. Even at P0, the ipRGCs form functional connections with the suprachiasmatic nucleus, as assessed by light-induced Fos expression. CONCLUSIONS: The findings suggest that the non-image-forming pathway is functional long before the mainstream image-forming pathway during development.  相似文献   

13.
In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP). Like fly rhodopsins, melanopsin acts as a dual-state photosensitive flip-flop in which light drives both phototransduction responses and chromophore photoregeneration that bestows independence from the retinoid cycle required by rods and cones to regenerate photoresponsiveness following bleaching by light. To explore the hypothesis that melanopsin in humans expresses the properties of a bistable photopigment in vivo we used the pupillary light reflex (PLR) as a tool but with methods designed to study invertebrate photoreceptors. We show that the pupil only attains a fully stabilized state of constriction after several minutes of light exposure, a feature that is consistent with typical IRP photoequilibrium spectra. We further demonstrate that previous exposure to long wavelength light increases, while short wavelength light decreases the amplitude of pupil constriction, a fundamental property of IRP difference spectra. Modelling these responses to invertebrate photopigment templates yields two putative spectra for the underlying R and M photopigment states with peaks at 481 nm and 587 nm respectively. Furthermore, this bistable mechanism may confer a novel form of “photic memory” since information of prior light conditions is retained and shapes subsequent responses to light. These results suggest that the human retina exploits fly-like photoreceptive mechanisms that are potentially important for the modulation of non-visual responses to light and highlights the ubiquitous nature of photoswitchable photosensors across living organisms.  相似文献   

14.
Photoreception in the mammalian retina is not restricted to rods and cones but extends to a small number of intrinsically photosensitive retinal ganglion cells expressing the photopigment melanopsin. These mRGCs are especially important contributors to circadian entrainment, the pupil light reflex, and other so-called nonimage-forming (NIF) responses. The spectral sensitivity of melanopsin phototransduction has been addressed in several species by comparing responses to a range of monochromatic stimuli. The resultant action spectra match the predicted profile of an opsin:vitamin A-based photopigment (nomogram) with a peak sensitivity (λ(max)) around 480 nm. It would be most useful to be able to use this spectral sensitivity function to predict melanopsin's sensitivity to broad-spectrum, including "white," lights. However, evidence that melanopsin is a bistable pigment with an intrinsic light-dependent bleach recovery mechanism raises the possibility of a more complex relationship between spectral quality and photoreceptor response. Here, we set out to empirically determine whether simply weighting optical power at each wavelength according to the 480-nm nomogram and integrating across the spectrum could predict melanopsin sensitivity to a variety of polychromatic stimuli. We show that pupillomotor and circadian responses of mice relying solely on melanopsin for their photosensitivity (rd/rd cl) can indeed be accurately predicted using this methodology. Our data therefore suggest that the 480-nm nomogram may be employed as the basis for a new photometric measure of light intensity (which we term "melanopic") relevant for melanopsin photoreception. They further show that measuring light in these terms predicts the melanopsin response to light of divergent spectral composition much more reliably than other methods for quantifying irradiance or illuminance currently in widespread use.  相似文献   

15.
It has been accepted for a hundred years or more that rods and cones are the only photoreceptive cells in the retina. The light signals generated in rods and cones, after processing by downstream retinal neurons (bipolar, horizontal, amacrine and ganglion cells), are transmitted to the brain via the axons of the ganglion cells for further analysis. In the past few years, however, convincing evidence has rapidly emerged indicating that a small subset of retinal ganglion cells in mammals is also intrinsically photosensitive. Melanopsin is the signaling photopigment in these cells. The main function of the inner-retina photoreceptors is to generate and transmit non-image-forming visual information, although some role in conventional vision (image detection) is also possible.  相似文献   

16.
视网膜中的自主感光神经节细胞   总被引:2,自引:0,他引:2  
视网膜中少数神经节细胞能够合成感光蛋白--黑视素(melanopsin),因此具备了自主感光的能力,被称为自主感光神经节细胞(intrinsically photosensitive retinal ganglion cells,ipRGCs).ipRGCs可根据树突形态和分层位置的差异分为五个不同的亚型,其轴突主要投...  相似文献   

17.
In mammals, non-visual responses to light involve intrinsically photosensitive melanopsin-expressing retinal ganglion cells (ipRGCs) that receive synaptic inputs from rod and cone photoreceptors. Several studies have shown that cones also play a role in light entrainment, photic responses of the suprachiasmatic nucleus (SCN), pupil constriction, and sleep induction. These studies suggest that cones are mainly involved in the initial response to light, whereas melanopsin provides a sustained input for non-visual responses during continued light exposure. Based on this idea, we explored the effects of the absence of middle-wavelength (MW)-cones on the temporal responses of circadian behavior and clock gene expression in light. In mice lacking MW-cones, our results show a reduction in behavioral phase shifts in response to light stimulations of short duration at 480 and 530?nm, but no alteration for short-wavelength (360-nm) light exposures. Similarly, induction of the period gene mPer1 and mPer2 mRNAs in the SCN are attenuated in response to light exposures of mid to long wavelengths. Modeling of the photoresponses shows that mice lacking MW-cones have an overall reduction in sensitivity that increases with longer wavelengths. The differences in photic responsiveness are consistent with the idea that cones provide a strong initial phasic input to the circadian system at light-onset and may confer a priming effect on ipRGC responses to sub-threshold light exposures. In summary, the contribution of MW-cones is essential for the normal expression of phase shifts and clock gene induction by light in mammals. (Author correspondence: )  相似文献   

18.
Wong KY  Dunn FA  Berson DM 《Neuron》2005,48(6):1001-1010
A rare type of mammalian retinal ganglion cell (RGC) expresses the photopigment melanopsin and is a photoreceptor. These intrinsically photosensitive RGCs (ipRGCs) drive circadian-clock resetting, pupillary constriction, and other non-image-forming photic responses. Both the light responses of ipRGCs and the behaviors they drive are remarkably sustained, raising the possibility that, unlike rods and cones, ipRGCs do not adjust their sensitivity according to lighting conditions ("adaptation"). We found, to the contrary, that ipRGC sensitivity is plastic, strongly influenced by lighting history. When exposed to a constant, bright background, the background-evoked response decayed, and responses to superimposed flashes grew in amplitude, indicating light adaptation. After extinction of a light-adapting background, sensitivity recovered progressively in darkness, indicating dark adaptation. Because these adjustments in sensitivity persisted when synapses were blocked, they constitute "photoreceptor adaptation" rather than "network adaptation." Implications for the mechanisms generating various non-image-forming visual responses are discussed.  相似文献   

19.
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate numerous nonvisual phenomena, including entrainment of the circadian clock to light-dark cycles, pupillary light responsiveness, and light-regulated hormone release. We have applied multielectrode array recording to characterize murine ipRGCs. We find that all ipRGC photosensitivity is melanopsin dependent. At least three populations of ipRGCs are present in the postnatal day 8 (P8) murine retina: slow onset, sensitive, fast off (type I); slow onset, insensitive, slow off (type II); and rapid onset, sensitive, very slow off (type III). Recordings from adult rd/rd retinas reveal cells comparable to postnatal types II and III. Recordings from early postnatal retinas demonstrate intrinsic light responses from P0. Early light responses are transient and insensitive but by P6 show increased photosensitivity and persistence. These results demonstrate that ipRGCs are the first light-sensitive cells in the retina and suggest previously unappreciated diversity in this cell population.  相似文献   

20.
A direct projection from melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) reaches the primary visual thalamus (dorsal lateral geniculate nucleus; dLGN). The significance of this melanopsin input to the visual system is only recently being investigated. One unresolved question is the degree to which neurons in the dLGN could use melanopsin to track dynamic changes in light intensity under light adapted conditions. Here we set out to address this question. We were able to present full field steps visible only to melanopsin by switching between rod-isoluminant ‘yellow’ and ‘blue’ lights in a mouse lacking cone function (Cnga3-/-). In the retina these stimuli elicited melanopsin-like responses from a subset of ganglion cells. When presented to anaesthetised mice, we found that ~25-30% of visually responsive neurones in the contralateral dLGN responded to these melanopsin-isolating steps with small increases in firing rate. Such responses could be elicited even with fairly modest increases in effective irradiance (32% Michelson contrast for melanopsin). These melanopsin-driven responses were apparent at bright backgrounds (corresponding to twilight-daylight conditions), but their threshold irradiance was strongly dependent upon prior light exposure when stimuli were superimposed on a spectrally neutral ramping background light. While both onset and offset latencies were long for melanopsin-derived responses compared to those evoked by rods, there was great variability in these parameters with some cells responding to melanopsin steps in <1 s. These data indicate that a subset of dLGN units can employ melanopsin signals to detect modest changes in irradiance under photopic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号