首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symbiotic nitrogen (N2) fixation in legumes may give the host plant a distinct competitive advantage; at the same time it is mainly responsible for introducing N into terrestrial ecosystems which may ultimately benefit all organisms. Depending on environmental conditions, symbiotic N2 fixation may be tuned to the plant's N demand or specifically inhibited (a disadvantage for plants which depend mainly on symbiotic N2 fixation), or even prevented. Thus, the ecological range for symbiotic N2 fixation can be narrower than that of the host plants. A shortage of mineral N is the only case in which adverse environmental conditions clearly favour symbiotic N2 fixation. Variations in number or mass of nodules or nodule morphology are persistent features, that may represent one kind of regulation of N2 fixation. In addition, varying O2 permeability of nodules functions as a rapid and reversible control of N2 fixation which may compensate partially or fully for poor nodulation. The plant's demand for symbiotically fixed N is thought to play a central role in modulating both nodulation and N2 fixation activity; an N feedback mechanism is assumed. The control of symbiotic N2 fixation operates through a series of ecophysiological triggers which are also influenced by complex interactions between legume plants and other organisms in the ecosystem. The proportion of legume biomass and the performance of symbiotic N2 fixation in each individual legume are the main parameters which determine the amount of symbiotically fixed N introduced into a terrestrial ecosystem. The various triggers and N feedback mechanisms from the whole ecosystem to the gene expression level which regulate symbiotic N2 fixation in terrestrial ecosystems are reviewed and discussed in terms of a conceptual model. Although the presented model is based primarily on our knowledge about the physiology of a few leguminous crop species and of ecosystem processes in managed, perennial grassland in temperate climatic conditions, it may stimulate thinking about functional relationships between symbiotic N2 fixation and terrestrial ecosystems at various system levels.  相似文献   

2.
人类活动造成大气二氧化碳(CO2)浓度不断升高,使当今世界面临着气候变化的重大危机。微生物CO2固定为实现地球“碳中和”提供了一条有前景的绿色发展路线。与自养微生物相比,异养微生物具有更快的生长速度和更先进的遗传工具,但是其固定CO2的能力还很有限。近年来,基于合成生物学技术强化异养微生物CO2固定受到诸多关注,主要包括优化能量供给、改造羧化途径以及基于异养微生物间接固定CO2。本综述将围绕上述3个方面重点讨论异养微生物CO2固定的研究进展,为将来更好地利用微生物CO2固定技术实现“碳达峰、碳中和”提供参考。  相似文献   

3.
Dark, that is, nonphototrophic, microbial CO2 fixation occurs in a large range of soils. However, it is still not known whether dark microbial CO2 fixation substantially contributes to the C balance of soils and what factors control this process. Therefore, the objective of this study was to quantitate dark microbial CO2 fixation in temperate forest soils, to determine the relationship between the soil CO2 concentration and dark microbial CO2 fixation, and to estimate the relative contribution of different microbial groups to dark CO2 fixation. For this purpose, we conducted a 13C‐CO2 labeling experiment. We found that the rates of dark microbial CO2 fixation were positively correlated with the CO2 concentration in all soils. Dark microbial CO2 fixation amounted to up to 320 µg C kg?1 soil day?1 in the Ah horizon. The fixation rates were 2.8–8.9 times higher in the Ah horizon than in the Bw1 horizon. Although the rates of dark microbial fixation were small compared to the respiration rate (1.2%–3.9% of the respiration rate), our findings suggest that organic matter formed by microorganisms from CO2 contributes to the soil organic matter pool, especially given that microbial detritus is more stable in soil than plant detritus. Phospholipid fatty acid analyses indicated that CO2 was mostly fixed by gram‐positive bacteria, and not by fungi. In conclusion, our study shows that the dark microbial CO2 fixation rate in temperate forest soils increases in periods of high CO2 concentrations, that dark microbial CO2 fixation is mostly accomplished by gram‐positive bacteria, and that dark microbial CO2 fixation contributes to the formation of soil organic matter.  相似文献   

4.

Background and aims

Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen- and legume-associated N2 fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N2 to a subarctic heath with an altered climate.

Methods

We estimated N2 fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long- vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest).

Results

N2 fixation activity was measured from late April to mid November and 33 % of all N2 was fixed outside the vascular plant growing season (Jun–Aug). This substantial amount underlines the importance of N2 fixation in the cold period. Warming increased N2 fixation two- to fivefold during late spring. However, long-term summer warming tended to decrease N2 fixation outside the treatment (tents present) period. Litter alone did not alter N2 fixation but in combination with warming N2 fixation increased, probably because N2 fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter.

Conclusion

In subarctic heath, the current N2 fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N2 fixation in different directions and thereby complicate predictions of future N cycling.  相似文献   

5.
Adgo  Enyew  Schulze  Joachim 《Plant and Soil》2002,239(2):291-299
Dinitrogen (N2) fixation and assimilation efficiency in a German and two Ethiopian varieties of Pisum sativum L. was studied in a pot experiment during vegetative and reproductive growth. The objective of the study was to assess whether genotypes having contrasting growth habits showed differences in physiological processes that affect the efficiency of N2 fixation and assimilation. Dry matter formation, nodulation and nitrogen assimilation were compared between two treatments where one depended solely on N2 fixation while the other was nourished with nitrate. Moreover, carbon (C) costs of N2 fixation and the capacity of different respiratory chains in roots and nodules were determined at vegetative and reproductive growth. As compared to the Ethiopian cultivars, the German variety displayed a more rapid vegetative growth with intensive N2 fixation and assimilation and highly efficient individual nodules. However, during reproductive growth, N2 fixation in the German variety declined sharply, while continuing in the Ethiopian varieties. Lowest C costs of N2 fixation coincided with most efficient individual nodules in both growth intervals. C costs of N2 fixation were lower during reproductive growth in all varieties which was accompanied by a shift in root/nodule respiratory capacity towards more C efficient respiratory pathways. The results provide further evidence that unreliable nitrogen fixation rates during reproductive growth of pea can be connected with restricted C supply to nodules. One strategy of pea plants to adapt to critical C availability is an increase in capacity of more C efficient root/nodule respiration.  相似文献   

6.
1. The pH in the stroma and in the thylakoid space has been measured in a number of chloroplast preparations in the dark and in the light at 20 °C. Illumination causes a decrease of the pH in the thylakoid space by 1.5 and an increase of the pH in the stroma by almost 1 pH unit.2. CO2 fixation is shown to be strongly dependent on the pH in the stroma. The pH optimum was 8.1, with almost zero activity below pH 7.3. Phosphoglycerate reduction, which is a partial reaction of CO2 fixation, shows very little pH dependency.3. Low concentrations of the uncoupler m-chlorocarbonylcyanide phenylhydrazone (CCCP) inhibit CO2 fixation without affecting phosophoglycerate reduction. This inhibition of CO2 fixation appears to be caused by reversal of light induced alkalisation in the stroma by CCCP.4. Methylamine has a very different effect compared to CCCP. Increasing concentrations of methylamine inhibit CO2 fixation and phosphoglycerate reduction to the same extent. The light induced alkalisation of the stroma appears not to be significantly inhibited by methylamine, but the protons in the thylakoid space are neutralized. The inhibition of CO2 fixation by higher concentrations of methylamine is explained by an inhibition of photophosphorylation. It appears that methylamine does not abolish proton transport.5. It is shown that intact chloroplasts are able to fix CO2 in the dark, yielding 3-phosphoglycerate. This requires the addition of dihydroxyacetone phosphate as precursor of ribulosemonophosphate and also to supply ATP, and the addition of oxaloacetate for reoxidation of the NADPH in the stroma.6. Dark CO2 fixation in the presence of dihydroxyacetone phosphate and oxaloacetate has the same pH dependency as CO2 fixation in the light. This demonstrates that CO2 fixation in the dark is not possible, unless the pH in the medium is artificially raised to pH 8.8.7. It is shown that pH changes occurring in the stroma after illumination are sufficient to switch CO2 fixation from zero to maximal activity. This offers a mechanism for light control of CO2 fixation, avoiding wasteful CO2 fixation in the dark.  相似文献   

7.
The nonheterocystous filamentous cyanobacterial genus Lyngbya is a widespread and frequently dominant component of marine microbial mats. It is suspected of contributing to relatively high rates of N2 fixation associated with mats. The ability to contemporaneously conduct O2-sensitive N2 fixation and oxygenic photosynthesis was investigated in Lyngbya aestuarii isolates from a North Carolina intertidal mat. Short-term (<4-h) additions of the photosystem II (O2 evolution) inhibitor 3(3,4-dichlorophenyl)-1,1-dimethylurea stimulated light-mediated N2 fixation (nitrogenase activity), indicating potential inhibition of N2 fixation by O2 production. However, some degree of light-mediated N2 fixation in the absence of 3(3,4-dichlorophenyl)-1,1-dimethylurea was observed. Electron microscopic immunocytochemical localization of nitrogenase, coupled to microautoradiographic studies of 14CO2 fixation and cellular deposition of the tetrazolium salt 2,4,5-triphenyltetrazolium chloride, revealed that (i) nitrogenase was widely distributed throughout individual filaments during illuminated and dark periods, (ii) 14CO2 fixation was most active in intercalary regions, and (iii) daylight 2,4,5-triphenyltetrazolium chloride reduction (formazan deposition) was most intense in terminal regions. Results suggest lateral partitioning of photosynthesis and N2 fixation during illumination, with N2 fixation being confined to terminal regions. During darkness, a larger share of the filament appears capable of N2 fixation.  相似文献   

8.
The use of the relative ureide content of xylem sap [(ureide-N/total N) × 100] as an indicator of N2 fixation in soybeans (Merr.) was examined under greenhouse conditions. Acetylene treatments to inhibit N2 fixation were imposed upon the root systems of plants totally dependent upon N2 fixation as their source of N and of plants dependent upon both N2 fixation and uptake of exogenous nitrate. Significant decreases in the total N concentration of xylem sap from plants of the former type were observed, but no significant decrease was observed in the total N concentration of sap from the latter type of plants. In both types of plants, acetylene treatment caused significant decreases in the relative ureide content of xylem sap. The results provided further support for a link between the presence of ureides in the xylem and the occurrence of N2 fixation in soybeans. The relative ureide content of xylem sap from plants totally dependent upon N2 fixation was shown to be insensitive to changes in the exudation rate and total N concentration of xylem sap brought about by diurnal changes in environmental factors. There was little evidence of soybean cultivars or nodulating strains affecting the relative ureide content of xylem sap. `Ransom' soybeans nodulated with Rhizobium japonicum strain USDA 110 were grown under conditions to obtain plants exhibiting a wide range of dependency upon N2 fixation. The relative ureide content of xylem sap was shown to indicate reliably the N2 fixation of these plants during vegetative growth using a 15N method to measure N2 fixation activity. The use of the relative ureide content of xylem sap for quantification of N2 fixation in soybeans should be evaluated further.  相似文献   

9.
Algal turf communities are ubiquitous on coral reefs in the Caribbean and are often dominated by N2-fixing cyanobacteria. However, it is largely unknown (1) how much N2 is actually fixed by turf communities and (2) which factors affect their N2 fixation rates. Therefore, we compared N2 fixation activity by turf communities at different depths and during day and night-time on a degraded versus a less degraded coral reef site on the island of Curaçao. N2 fixation rates measured with the acetylene reduction assay were slightly higher in shallow (5–10-m depth) than in deep turf communities (30-m depth), and N2 fixation rates during the daytime significantly exceeded those during the night. N2 fixation rates by the turf communities did not differ between the degraded and less degraded reef. Both our study and a literature survey of earlier studies indicated that turf communities tend to have lower N2 fixation rates than cyanobacterial mats. However, at least in our study area, turf communities were more abundant than cyanobacterial mats. Our results therefore suggest that turf communities play an important role in the nitrogen cycle of coral reefs. N2 fixation by turfs may contribute to an undesirable positive feedback that promotes the proliferation of algal turf communities while accelerating coral reef degradation.  相似文献   

10.
In a study of chemosynthesis (the fixation of CO2 by autotrophic bacteria in the dark) in Thiobacillus thiooxidans, the data obtained support the following conclusions: 1. CO2 can be fixed by "resting cells" of Thiobacillus thiooxidans; the fixation is not "growth bound." 2. The physiological condition of the cell is of considerable importance in determining CO2 fixation. 3. CO2 fixation can occur in the absence of oxidizable sulfur in "young" cells. The extent of this fixation appears to be dependent upon the pCO2. 4. CO2 fixation can also occur under anaerobic conditions and the presence of sulfur does not influence such fixation. 5. However, in the CO2 fixation by cells in the absence of sulfur, only a limited amount of CO2 can be fixed. This amount is approximately 40 µl. CO2 per 100 micrograms bacterial nitrogen. After a culture has utilized this amount of CO2 it no longer has the ability to fix CO2 but releases it during its respiration. 6. Relatively short periods of sulfur oxidation can restore the ability of cells to fix CO2 under conditions where sulfur oxidation is prevented. 7. It is possible to oxidize sulfur in the absence of CO2 and to store the energy thus formed within the cell. It is then possible to use this energy at a later time for the fixation of CO2 in the entire absence of sulfur oxidation. 8. Cultures of Thiobacillus thiooxidans respiring on sulfur utilize CO2 in a reaction which proceeds to a zero concentration of CO2 in the atmosphere. 9. CO2 may act as an oxidizing agent for sulfur. 10. Hydrogen is not utilized by the organism. 11. It is possible to selectively inhibit sulfur oxidation and CO2 fixation.  相似文献   

11.
Non-phototrophic CO 2 fixation by soil microorganisms   总被引:1,自引:0,他引:1  
Although soils are generally known to be a net source of CO2 due to microbial respiration, CO2 fixation may also be an important process. The non-phototrophic fixation of CO2 was investigated in a tracer experiment with 14CO2 in order to obtain information about the extent and the mechanisms of this process. Soils were incubated for up to 91 days in the dark. In three independent incubation experiments, a significant transfer of radioactivity from 14CO2 to soil organic matter was observed. The process was related to microbial activity and could be enhanced by the addition of readily available substrates such as acetate. CO2 fixation exhibited biphasic kinetics and was linearly related to respiration during the first phase of incubation (about 20–40 days). The fixation amounted to 3–5% of the net respiration. After this phase, the CO2 fixation decreased to 1–2% of the respiration. The amount of carbon fixed by an agricultural soil corresponded to 0.05% of the organic carbon present in the soil at the beginning of the experiment, and virtually all of the fixed CO2 was converted to organic compounds. Many autotrophic and heterotrophic biochemical processes result in the fixation of CO2. However, the enhancement of the fixation by addition of readily available substrates and the linear correlation with respiration suggested that the process is mainly driven by aerobic heterotrophic microorganisms. We conclude that heterotrophic CO2 fixation represents a significant factor of microbial activity in soils.  相似文献   

12.
Increased biomass and yield of plants grown under elevated [CO2] often corresponds to decreased grain N concentration ([N]), diminishing nutritional quality of crops. Legumes through their symbiotic N2 fixation may be better able to maintain biomass [N] and grain [N] under elevated [CO2], provided N2 fixation is stimulated by elevated [CO2] in line with growth and yield. In Mediterranean‐type agroecosystems, N2 fixation may be impaired by drought, and it is unclear whether elevated [CO2] stimulation of N2 fixation can overcome this impact in dry years. To address this question, we grew lentil under two [CO2] (ambient ~400 ppm and elevated ~550 ppm) levels in a free‐air CO2 enrichment facility over two growing seasons sharply contrasting in rainfall. Elevated [CO2] stimulated N2 fixation through greater nodule number (+27%), mass (+18%), and specific fixation activity (+17%), and this stimulation was greater in the high than in the low rainfall/dry season. Elevated [CO2] depressed grain [N] (?4%) in the dry season. In contrast, grain [N] increased (+3%) in the high rainfall season under elevated [CO2], as a consequence of greater post‐flowering N2 fixation. Our results suggest that the benefit for N2 fixation from elevated [CO2] is high as long as there is enough soil water to continue N2 fixation during grain filling.  相似文献   

13.
Mesophyll cells, protoplasts, and protoplast extracts of Digitaria sanguinalis were used for comparative studies of light-dependent CO2 fixation. CO2 fixation was low without the addition of organic substrates. Pyruvate, oxaloacetate, and 3-phosphoglycerate induced relatively low rates (10 to 90 μmoles/mg chlorophyll·hr) of CO2 fixation when added separately. However, a highly synergistic relationship was found between pyruvate + oxaloacetate and pyruvate + 3-phosphoglycerate for inducing light-dependent CO2 fixation in the mesophyll preparations. Highest rates of CO2 fixation were obtained with protoplast extracts. Pyruvate, in combination with oxaloacetate or 3-phosphoglycerate induced light-dependent rates from 150 to 380 μmoles of CO2 fixed/mg chlorophyll·hr which are equivalent to or exceed reported rates of whole leaf photosynthesis in C4 species. Concentrations of various substrates required to give half-maximum velocities of CO2 fixation were determined, with the protoplast extracts generally saturating at the lowest substrate concentrations. Chloroplasts separated from protoplast extracts showed little capacity for CO2 fixation. The results suggest that CO2 fixation in C4 mesophyll cells is dependent on chloroplasts and extrachloroplastic phosphoenolpyruvate carboxylase.  相似文献   

14.
Periphyton N2 fixation plays a key role in N cycling of aquatic systems, but temporal studies of this process are often lacking, especially in systems with only seasonal flooding. We used seven samplings to characterize nitrogenase activity (acetylene reduction method) of periphyton in short-hydroperiod marl prairies and two wetlands restored from agricultural disturbance in Everglades National Park, USA. We hypothesized that the seasonal drying and rewetting would increase the temporal dynamics of the process. All sites showed significant periphyton N2 fixation, but in restored areas highest rates were observed only in the early wet season (July), while in reference sites fixation was spread throughout the summer. Most N2 fixation in the restored areas was confined to a 3-month-period resulting in large underestimates of annual fixation in previous studies with few seasonal measurements. N2 fixation rates correlated with total P, N and TN:TP ratio, and periphyton moisture content in the dry season. N stable isotopic signature was a good indicator of N2 fixation rates between sites, but did not correctly indicate seasonal patterns. These findings improve our understanding of N cycling in wetlands like the Everglades and indicate a need for more detailed measurements of processes in seasonally flooded systems.  相似文献   

15.
While the diazotrophic cyanobacterium Trichodesmium is known to display inverse diurnal performances of photosynthesis and N2 fixation, such a phenomenon has not been well documented under different day-night (L-D) cycles and different levels of light dose exposed to the cells. Here, we show differences in growth, N2 fixation and photosynthetic carbon fixation as well as photochemical performances of Trichodesmium IMS101 grown under 12L:12D, 8L:16D and 16L:8D L-D cycles at 70 μmol photons m-2 s-1 PAR (LL) and 350 μmol photons m-2 s-1 PAR (HL). The specific growth rate was the highest under LL and the lowest under HL under 16L:8D, and it increased under LL and decreased under HL with increased levels of daytime light doses exposed under the different light regimes, respectively. N2 fixation and photosynthetic carbon fixation were affected differentially by changes in the day-night regimes, with the former increasing directly under LL with increased daytime light doses and decreased under HL over growth-saturating light levels. Temporal segregation of N2 fixation from photosynthetic carbon fixation was evidenced under all day-night regimes, showing a time lag between the peak in N2 fixation and dip in carbon fixation. Elongation of light period led to higher N2 fixation rate under LL than under HL, while shortening the light exposure to 8 h delayed the N2 fixation peaking time (at the end of light period) and extended it to night period. Photosynthetic carbon fixation rates and transfer of light photons were always higher under HL than LL, regardless of the day-night cycles. Conclusively, diel performance of N2 fixation possesses functional plasticity, which was regulated by levels of light energy supplies either via changing light levels or length of light exposure.  相似文献   

16.
Henning Kage 《Plant and Soil》1995,176(2):189-196
An experiment was carried out to determine the relationship between nitrate uptake and nitrogen fixation of faba beans. Therefore inoculated and uninoculated faba beans were grown in nutrient solution with different nitrate concentrations. Nitrate uptake was measured every two days during the growing period. At the end of the experiment the nitrate uptake kinetics were determined with a short time depletion technique and nitrogen fixation was measured with the acetylene reduction method. A limitation of nitrate uptake due to nitrogen fixation was relatively small. Nitrate concentrations of approximately 1 mol m–3 and 5 mol m–3 decreased nitrogen fixation to values of 16% and 1% of the control plants which received no nitrate nitrogen. A reduction of nitrogen fixation was mainly due to a decrease of specific nitrogen fixation per unit nodule weight and to a lesser extent due to a reduction of nodule growth. Only the maximum nitrate influx (Imax) seemed to be influenced by nitrogen fixation. Michaelis-Menten constants (Km) and minimum NO inf3 -concentrations (Cmin) were not significantly influenced by nitrogen fixation.  相似文献   

17.
Stimulation of dark fixation of carbon by NH4+ is often used as an indicator of phytoplankton N deficiency. This assay is based on the influence of available NH4+ on anaplerotic CO2 fixation by algae. However, carbon fixation by chemoautotrophic NH4+-oxidizing bacteria may also be stimulated by NH4+ enrichment, a process that can mask the algal response in natural communities. NH4+ addition enhanced dark carbon fixation up to 300%, relative to unamended controls, in organisms collected on a 0.7-μm retention filter in oligotrophic Flathead Lake, Montana, but the effect was not detectable in the presence of nitrapyrin, an inhibitor of NH4+-oxidizing bacteria. Dark carbon fixation was enhanced with addition of NH4+ in organisms retained on 2-μm filters (which should allow passage of most bacteria). NH4+ stimulated dark carbon fixation in N-deficient axenic cultures of Chlamydomonas reinhardtii Dang but not in N-replete cultures in both the presence and absence of nitrapyrin. Application of nitrapyrin or size fractionation treatments, to separate the processes of dark carbon fixation by nitrifiers and phytoplankton, may improve the efficacy of assays using NH4+ stimulation of dark carbon fixation to specifically indicate N deficiency in natural algal communities.  相似文献   

18.
Summary Nitrogen fixation is generally considered to be a major parameter of productivity in soybean (Glycine max). The aim of the investigations reported here was to analyse the genetic behaviour of this trait in view of its possible use as an indirect criterion of selection for productivity. Divergent selection for nitrogen fixation rate was carried out on F2 populations obtained from crosses between high-yielding cultivars that are well adapted to French climatic conditions. The genetic component of nitrogen fixation and yield was isolated through the analysis of (1) the nitrogen fixation potentials of the genotypes under controlled conditions and (2) the field yields under favourable conditions. Divergent selection resulted in two groups of genotypes whose nitrogen fixation abilities are significantly different. The F6 filial progeny obtained by single seed descent from the two groups displayed significantly different abilities for nitrogen fixation and for field productivity. The gain achieved for the nitrogen fixation activity with respect to the mean value of the parents ranged from 20% to 33% for the positive selection, depending on the crosses. The occurrence of positive and significant correlations between the level of nitrogen fixation activity in F2 plants and N2 fixation or yield in the F6 generation corroborates the relatively high heritability of this trait and suggests its possible use as an indirect selection criterion for yield.  相似文献   

19.
Dinitrogen fixation by cyanobacteria is of particular importance for the nutrient economy of cold biomes, constituting the main pathway for new N supplies to tundra ecosystems. It is prevalent in cyanobacterial colonies on bryophytes and in obligate associations within cyanolichens. Recent studies, applying interspecific variation in plant functional traits to upscale species effects on ecosystems, have all but neglected cryptogams and their association with cyanobacteria. Here we looked for species-specific patterns that determine cryptogam-mediated rates of N2 fixation in the Subarctic. We hypothesised a contrast in N2 fixation rates (1) between the structurally and physiologically different lichens and bryophytes, and (2) within bryophytes based on their respective plant functional types. Throughout the survey we supplied 15N-labelled N2 gas to quantify fixation rates for monospecific moss, liverwort and lichen turfs. We sampled fifteen species in a design that captures spatial and temporal variations during the growing season in Abisko region, Sweden. We measured N2 fixation potential of each turf in a common environment and in its field sampling site, in order to embrace both comparativeness and realism. Cyanolichens and bryophytes differed significantly in their cyanobacterial N2 fixation capacity, which was not driven by microhabitat characteristics, but rather by morphology and physiology. Cyanolichens were much more prominent fixers than bryophytes per unit dry weight, but not per unit area due to their low specific thallus weight. Mosses did not exhibit consistent differences in N2 fixation rates across species and functional types. Liverworts did not fix detectable amounts of N2. Despite the very high rates of N2 fixation associated with cyanolichens, large cover of mosses per unit area at the landscape scale compensates for their lower fixation rates, thereby probably making them the primary regional atmospheric nitrogen sink.  相似文献   

20.
Soybean (Glycine max [L.] Merr.) N2 fixation is a primary plant mechanism responsible for meeting plant-N demand during seed development. Nitrogen fixation is recognized as a drought-sensitive mechanism; however, N2 fixation response to water deficit and N2 fixation recovery at different reproductive stages are not well documented. We tested the hypothesis that water deficit during late reproductive stages would inhibit N2 fixation and lead to the breakdown of essential leaf proteins and an inability to recover N2 fixation. Acetylene reduction activity (ARA) and N redistribution response to a 5-d drought period at flowering (R2), early seed fill (R5), and late seed fill (R6) were evaluated in one genotype (Hendricks, maturity group 0). Control plants maintained high rates of nodule activity until late seed fill. Plants drought stressed at R2 and R5 recovered ARA after rewatering and in some cases had higher nitrogenase activity than control plants during mid-seed fill. Recovery of ARA on plants stressed at R2 and R5 was associated with higher shoot N concentration than control plants at maturity. Drought stress at R6 reduced ARA, and the inability to recover ARA after stress alleviation at R6 resulted in decreased individual seed mass, which was likely caused by an acceleration of leaf N redistribution and a shorter seed-fill period. Results emphasized the importance of soybean N2 fixation during late seed development on seed yield and that the ability to recover N2 fixation following drought is dependent upon crop developmental stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号