首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To simultaneously measure 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxyindoleacetic acid (5HIAA), and homovanillic acid (HVA) in human cerebrospinal fluid (CSF), we used an acetonitrile protein precipitation, reversed-phase high-perforamance liquid chromatography with coulometric detection, and 3-methoxy-4-hydroxyphenyllactic acid (MHPLA) as an internal standard for all three metabolites. MHPG, 5HIAA, HVA, and MHPLA were stable for one month when stored in CSF at −70°C. Three determinations were made in triplicate for each of seven subjects over a 30-day storage period and the coefficients of variation within subject for these determinations ranged from 0.075 to 0.165 for MHPG, 0.045 to 0.148 for 5HIAA and 0.053 to 0.181 for HVA. Means and standard deviations fo CSF concentrations were 10.7 ± 3.0 ng/ml for MHPG, 22.4 ± 9.9 ng/ml for 5HIAA, and 39.9 ± 21.4 ng/ml for HVA. This method provides simple sample preparation, sensitivity, and cost advantages, as well as simultaneous extraction and quantitation of MHPG, 5HIAA, and HVA using an internal standard.  相似文献   

2.
Objective: Neurotransmitter systems participate in the regulation of food intake, and their activities are expected to influence eating behavior. Design and Methods: We investigated possible associations between body mass index (BMI) and central noradrenaline, serotonin, and dopamine activities, as reflected by the cerebrospinal fluid levels of their main metabolites methoxyhydroxyphenylglycol (MHPG), 5‐hydroxyindoleacetic acid (5‐HIAA), and homovanillic acid (HVA), respectively. We studied 192 subjects (111 males, 81 females) admitted to neurologic clinic for diagnostic investigations that included CSF analysis, and were found not to suffer from any major neurological disease. Subjects were categorized in three groups, namely in lower, in the two middle, and in upper BMI quartiles, the limits calculated separately for males and females. Results: No differences were found in MHPG levels between groups, while subjects in the upper BMI quartile showed significantly elevated levels of 5‐HIAA and HVA compared to the levels of subjects in lower and middle quartiles. Conclusions: The results provide evidence that in overweight subjects there are enhanced demands in serotoninergic and dopaminergic signaling for their reward system that may lead to increased motivation for food consumption. The implication of reward centers in eating behavior supports the hypothesis of common mechanisms in obesity and drug addiction.  相似文献   

3.
A new approach to biochemical evaluation of brain dopamine metabolism   总被引:2,自引:0,他引:2  
1. Dopaminergic neurotransmission in brain is receiving increased attention because of its known involvement in Parkinson's disease and new methods for the treatment of this disorder and because of hypotheses relating several psychiatric disorders to abnormalities in brain dopaminergic systems. 2. Chemical assessment of brain dopamine metabolism has been attempted by measuring levels of its major metabolite, homovanillic acid (HVA), in cerebrospinal fluid, plasma, or urine. Because HVA is derived in part from dopamine formed in noradrenergic neurons, plasma levels and urinary excretion rates of HVA do not adequately reflect solely metabolism of brain dopamine. 3. Using debrisoquin, the peripheral contributions of HVA to plasma or urinary HVA can be diminished, but the extent of residual HVA formation in noradrenergic neurons is unknown. By measuring the levels of methoxy-hydroxyphenylglycol (MHPG) in plasma or of urinary norepinephrine metabolites (total MHPG in monkeys; the sum of total MHPG and vanillyl mandelic acid (VMA) in humans) along with HVA, it is possible to estimate the degree of impairment by debrisoquin of HVA formation from noradrenergic neuronal dopamine and thereby better assess brain dopamine metabolism. 4. This method was applied to a monkey before and after destruction of the nigrostriatal pathway by the administration of MPTP.  相似文献   

4.
Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), noradrenaline (NA), 3-methoxy-4-hydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) in the CSF of patients with Huntington's disease (HD) were measured by HPLC. CSF DA, DOPAC, and MHPG levels were found to be increased in HD patients. Levels of HVA, 5-HIAA, and NA in the CSF of HD patients did not differ from those of controls. Changes in CSF DA and DOPAC levels were consistent with previous findings of increased DA tissue content in some brain areas of patients with HD. These results suggest that CSF DOPAC levels could be a more reliable index of overactive dopaminergic brain systems in HD than CSF HVA levels.  相似文献   

5.
Chronic administration of d-amphetamine sulfate (7.5 mg/kg, i.p. every 12 hrs. for 6 days) to cats produced significant decreases in the Vmax of brain-stem and forebrain tryptophan hydroxylase when measured 1 day (?34 and ?46%) and 10 days (?17 and ?30%) after the final amphetamine injection. Serotonin and 5-hydroxyindoleacetic acid (5HIAA) levels were decreased by a similar magnitude. A single injection of amphetamine (7.5 mg/kg) produced no significant changes in tryptophan hydroxylase activity, serotonin, or 5HIAA when measured 1 day after the injection. Neither acute nor chronic amphetamine treatment produced any significant changes in the Km of tryptophan hydroxylase for either tryptophan or the natural co-factor, tetrahydrobiopterin. These data suggest that chronic amphetamine treatment decreases central serotonergic neurotransmission by an action on the rate-limiting enzyme in serotonin biosynthesis.  相似文献   

6.
E K Gordon  J Oliver  I J Kopin 《Life sciences》1975,16(10):1527-1531
A gas chromatography-mass fragmentography (GC-MS) method was used to measure homovanillic acid (HVA), vanillylmandelic acid (VMA) and 3-methoxy-4-hydroxyphenethylene glycol (MHPG) in lumbar cerebrospinal fluid (CSF) of 31 patients before and after treatment with probenecid. HVA values increased from 24.6 ± 2.6 S.E.M. to 210 ± 17 ng/ml. The increase in VMA was from 1.06 ± 0.23 to 2.22 ± 0.17 ng/ml and that of MHPG was from 12.2 ± 1.08 to 15.6 ± 1.27 ng/ml. All increases were significant (p = < .01). The results for MHPG and HVA are consistent with results of earlier studies using different methods. VMA concentrations increased significantly but at a rate much lower than those of HVA.  相似文献   

7.
Phenelzine [2-phenylethylhydrazine] (PLZ), a potent inhibitor of monoamine oxidase (MAO)-A and-B, is used widely in psychiatry. We have studied the effects of PLZ administration on urinary excretion of several bioactive amines and their metabolites in psychiatric patients. Urine samples (24-hour) were collected prior to treatment and again at 2 and 4 weeks of treatment with PLZ (30–90 mg daily in divided doses). Amines and metabolites analyzed included 2-phenylethylamine (PEA), m-and p-tyramine (m-and p-TA), phenylacetic acid (PAA), m-and p-hydroxyphenylacetic acid (m-and p-OH-PAA), tryptamine (T), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), normetanephrine (NME), 3-methoxy-4-hydroxyphenylglycol (MHPG), 3-methoxytyramine (3-MT), and homovanillic acid (HVA). Levels of PEA, p-TA, 5-HT, and T were elevated during treatment with PLZ, but no significant changes in urinary excretion of the acid metabolites PAA, p-OH-PAA, and 5-HIAA were observed. Urinary levels of the noradrenaline metabolites NME and MHPG were increased and decreased, respectively; a similar pattern was observed with the dopamine metabolites 3-MT and HVA. There was an elevation in levels of m-TA and a decrease in its acid metabolite m-OH-PAA during the treatment with PLZ.  相似文献   

8.
The effect of naloxone-precipitated withdrawal after acute morphine was studied on the concentrations of noradrenaline (NA), 4-hydroxy-3-methoxyphenylethyleneglycol (MHPG), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and on the metabolite/parent amine ratios MHPG/NA, DOPAC/DA and HVA/DA, in eight regions of the guineapig brain. Guinea-pigs were treated with a single dose of morphine sulphate (15 mg/kg s.c.) or saline (control) and 2h later with naloxone hydrochloride (15 mg/kg s.c.) to precipitate withdrawal. The animals were decapitated at 0.5 h or 1 h after naloxone injections and their brains analysed for monoamine concentrations by HPLC-ECD. At 0.5 h after naloxone-precipitated withdrawal NA and MHPG levels, and the MHPG/NA ratio, were increased in the hypothalamus, and the NA levels were increased in the hypothalamus, medulla/pons and cortex 1 h after naloxone. Naloxoneprecipitated withdrawal also produced increased DA metabolism in the cortex, midbrain and medulla 0.5 h later, and in the cortex, hypothalamus and striatum 1 h later. Hence naloxone-precipitated withdrawal from acute morphine treatment produced a complex pattern of increased synthesis and metabolism of NA and DA which varied over time and with the brain region examined.  相似文献   

9.
The effect of indomethacin 3 mg/kg on levels of homovanillic acid (HVA), 4-hydroxy-3-methoxy phenyl ethylene glycol (HMPG) and 5-hydroxy indol acetic acid (5HIAA) was studied in rat striatum and olfactory tubercle with and without pretreatment with morphine 10 mg/kg. Indomethacin caused a small decrease in resting levels of HVA in striatum but not in olfactory tubercle. No effects were seen on resting or morphine induced changes in the levels of these monoamine metabolites. Likewise indomethacin 20 mg/kg failed to alter the elevation of HVA induced by chlorpromazine 15 mg/kg or the decrease of HVA induced by apomorphine (1–10 mg/kg) in the rat striatum. Our results do not support a major role for endogenous prostaglandins in the modulation of monoamine neurotransmission in the rat brain.  相似文献   

10.
Self-injurious behavior (SIB) presents a serious problem in laboratory macaques that cannot be socially housed for scientific reasons and among institutionalized children and adults where it is often associated with different forms of brain dysfunction. We have experienced limited success in reducing SIB in macaques by enhancing their environment with enrichment devices. Psychotropic drugs also help, but problems are associated with their use. Because sexual and aggressive behavioral problems in men have been treated with progestational drugs, we tested the efficacy of cyproterone acetate (CA, 5-10 mg/kg/week) on reducing SIB in 8 singly housed, adult male rhesus macaques. The main findings were: (1) SIB and other atypical behaviors were significantly reduced during CA treatment; (2) serum testosterone was significantly reduced during CA treatment; (3) cerebral spinal fluid (CSF) levels of 5HIAA and HVA, metabolites of serotonin and dopamine, respectively, declined significantly during CA treatment; (4) the duration of SIB positively correlated with levels of 5HIAA in CSF; but (5) sperm counts were not reduced during treatment. Thus, CA was a partially effective treatment (3 months) for adult male macaques whose behavioral problems include SIB. In summary, CA reduced SIB, overall aggression, serum testosterone, CSF 5HIAA, and CSF HVA. We hypothesized that the progestin activity of CA represses the hypothalamic gonadal axis and decreases testosterone, which in turn decreases SIB. In addition, we speculate that the decrease in 5HIAA and HVA in CSF may have been caused by progestins decreasing the activity of MAO. Therefore, the reduction of SIB may also be related to an increase in the availability of active monoamines in the CNS.  相似文献   

11.
Concentrations of dopamine (DA), its metabolites 3-methoxytyramine and homovanillic acid (HVA), noradrenaline (NA), its metabolites normetanephrine (NM) and 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT, serotonin), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in 14 brain regions and in CSF from the third ventricle of 27 human autopsy cases. In addition, in six cases, lumbar CSF was obtained. Monoamine concentrations were determined by reversed-phase liquid chromatography with electrochemical detection. Ventricular/lumbar CSF ratios indicated persistence of rostrocaudal gradients for HVA and 5-HIAA post mortem. Ventricular CSF concentrations of DA and HVA correlated positively with striatal DA and HVA. CSF NA correlated positively with NA in hypothalamus, and CSF MHPG with levels of MHPG in hypothalamus, temporal cortex, and pons, whereas CSF NM concentration showed positive correlations with NM in striatum, pons, cingulate cortex, and olfactory tubercle. CSF 5-HT concentrations correlated positively with 5-HT in caudate nucleus, whereas the concentration of CSF 5-HIAA correlated to 5-HIAA levels in thalamus, hypothalamus, and the cortical areas. These data suggest a specific topographic origin for monoamine neurotransmitters and their metabolites in human ventricular CSF and support the contention that CSF measurements are useful indices of central monoaminergic activity in man.  相似文献   

12.
In previous experiments rats pretreated with slow-release d-amphetamine (d-Amp) pellets for 412 days, given a 12-hr drug-free period, and then injected with d-Amp have been found to show a behavioral syndrome which has similarities to that induced by acute injections of the hallucinogens LSD and mescaline. The present results indicate that rats administered this same drug regimen have large decreases in Dopamine (DA), dihydroxyphenyl acetic acid (Dopac), and homovanillic acid (HVA) in caudate nucleus, smaller decreases in DA with no changes in Dopac and HVA levels in nucleus accumbens, but no alterations in 5-hydroxytryptamine (5HT) and 5-hydroxyindole acetic acid (5HIAA) levels in caudate, accumbens, brainstem and hippocampus. Increased 5HIAA levels are found in rats sacrificed with pellets intact following 3 days of continuous d-Amp administration, while sleep deprived and in motor stereotypies. The late and hallucinatory stage following continuous d-amp is correlated more closely with alterations in dopamine than of 5HT.  相似文献   

13.
DETERMINATION of homovanillic acid (HVA) and 5-hydroxy-indole acetic acid (5HIAA) in human lumbar cerebrospinal fluid (CSF) is becoming an important tool in the study of the metabolism in the brain of their respective precursors, dopamine and 5-hydroxytryptamine and in the interpretation of the effects of drugs on these substances. The assumption that the concentration of the acidic metabolites HVA and 5HIAA in the lumbar CSF gives a measure of the amount of turnover of the parent amines in the brain is supported by several findings. (1) Amine metabolite concentrations in the lateral ventricular CSF of the dog correlate with their concentrations in adjacent brain areas1. (2) Peripherally administered HVA only penetrates slightly or not at all to lateral ventricular CSF in the cat2 or dog3, similar results being obtained for 5HIAA in the dog4. (3) Drugs which alter brain amine turnover in laboratory animals also alter the concentrations of the acidic metabolites in dog3, rabbit5 and human6 CSF in the appropriate direction. (4) In Parkinsonism and in senile and presenile dementia, conditions in which there is evidence of defective turnover of amines in the brain, low concentrations of HVA and 5HIAA are found in the CSF7.  相似文献   

14.
Comparatively little is known about the pathways of proximate causation that link divergent genotypes, via neurophysiological differences, to distinct, species-specific social behaviors and systems. One approach to the problem compares gross activity levels of monoamine neurotransmitters (norepinephrine, dopamine, and serotonin), evidenced by their metabolites —3-methoxy-4-hydroxyphenylglycol (MHPG), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA), respectively— in cerebrospinal fluid (CSF). We have applied this method to Papio hamadryas and P. anubis, closely related baboon species with divergent social behavior, living in the Awash National Park (ANP), Ethiopia. We had previously shown that adult males of the two species differ in the ratio of HVA to 5-HIAA, and in concentrations of MHPG and HVA, but not 5-HIAA. Here, we compare monoamine metabolite levels of the parental species with those of 49 members of a naturally formed, multigenerational hamadryas × anubis hybrid group. We cage-trapped the baboons in July 1998, sampled their CSF by cisternal puncture, and assayed monoamine metabolites by high-performance liquid chromatography. Previous findings suggested, anomalously, that hybrid males showed the high 5-HIAA levels predicted by the low-serotonin–early-dispersal hypothesis (originally based on observation of rhesus macaques, Macaca mulatta), while hamadryas did not. The present study failed to find higher 5-HIAA levels in hybrids, resolving the anomaly, but leaving the previous result unexplained. Among adult females (underrepresented in our sample) and juveniles, metabolite levels of the hybrids did not differ significantly from either parental species. Overall, adult male hybrids resembled anubis in HVA and HVA/5-HIAA ratio, but did not show the low MHPG levels characteristic of that species. Consistent with a significant genetic influence on species differences in these metabolites, the adult hybrids showed intermediate means and greater intra-population diversity than the parental species for most variables, but showed no indication of hybrid dysgenesis in the form of low intermetabolite correlation. To the contrary, an enhanced HVA–MHPG correlation in the hybrids suggested a species-associated factor (not necessarily genetic) influencing both of these monoamine neurotransmitter systems.  相似文献   

15.
In conscious animals, handling and immobilization increase plasma levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). This study examined plasma concentrations of endogenous compounds related to catecholamine synthesis and metabolism during and after exposure to these stressors in conscious rats. Plasma levels of 3,4-dihydroxyphenylalanine (DOPA), NE, EPI, and dopamine (DA), the deaminated catechol metabolites 3,4-dihydroxyphenylglycol (DHPG), and 3,4-dihydroxyphenylacetic acid (DOPAC), and their O-methylated derivatives methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured using liquid chromatography with electrochemical detection at 1, 3, 5, 20, 60, and 120 min of immobilization. By 1 min of immobilization, plasma NE and EPI levels had already reached peak values, and plasma levels of DOPA, DHPG, DOPAC, and MHPG were increased significantly from baseline, whereas plasma DA and HVA levels were unchanged. During the remainder of the immobilization period, the increased levels of DOPA, NE, and EPI were maintained, whereas levels of the metabolites progressively increased. In animals immobilized briefly (5 min), elevated concentrations of the metabolites persisted after release from the restraint, whereas DOPA and catecholamine levels returned to baseline. Gentle handling for 1 min also significantly increased plasma levels of DOPA, NE, EPI, and the NE metabolites DHPG and MHPG, without increasing levels of DA or HVA. The results show that in conscious rats, immobilization or even gentle handling rapidly increases plasma levels of catecholamines, the catecholamine precursor DOPA, and metabolites of NE and DA, indicating rapid increases in the synthesis, release, reuptake, and metabolism of catecholamines.  相似文献   

16.
The effect of indomethacin 3 mg/kg on levels of homovanillic acid (HVA), 4-hydroxy-3-methoxy phenyl ethylene glycol (HMPG) and 5-hydroxy indol acetic acid (5HIAA) was studied in rat striatum and olfactory tubercle with and without pretreatment with morphine 10 mg/kg. Indomethacin caused a small decrease in resting levels of HVA in striatum but not in olfactory tubercle. No effects were seen on resting or morphine induced changes in the levels of these monoamine metabolites. Likewise indomethacin 20 mg/kg failed to alter the elevation of HVA induced by chlorpromazine 15 mg/kg or the decrease of HVA induced by apomorphine (1--10 mg/kg) in the rat striatum. Our results do not support a major role for endogenous prostaglandins in the modulation of monoamine neurotransmission in the rat brain.  相似文献   

17.
A simple and sensitive method for the concurrent determination of the monoamine metabolites MHPG, DOPAC, HVA and 5HIAA in brain samples is described. After solvent extraction at acid pH, the metabolites are separated by HPLC on a C18 reversed phase column using phosphate buffers. Detection and quantification are achieved using fluorescence and electrochemical detection in series. The method is applied to control samples of divers areas of human and non-human primate brain, and the distribution of results agrees well with those obtained by existing methods. The concentrations found also agreed well with literature values, and, for 5HIAA and DOPAC, with results obtained on parallel samples analysed by fluorimetry and by GC. Results for HVA however are higher than those obtained by GC, but agree well with literature values obtained by fluorimetry and by GCMS.  相似文献   

18.
Previous experimental results, using a new technique whereby the production rates of the neurotransmitter metabolites homovanillic acid (HVA) and 3-methoxy-4-hydroxyphenethyleneglycol (MHPG) by the awake primate brain are determined, have shown a wide variance in metabolite production among both animal and human subjects. These data suggested that either individual subjects differ in the activity of brain dopamine (DA) or norepinephrine (NE) neurons and/or that the activities of these neurons fluctuate over time. For these reasons a series of experiments were performed in which measures of HVA and MHPG production were obtained at three time points in the same animal (monkeys) over a three hour period. It was found that the group mean values for the production of HVA and MHPG by brain were similar for each of the three time points. However, it was also found that marked variations in HVA and MHPG production occur within a single animal over a three hour period. The coefficients of variation for individual animals for HVA ranged from 9.3 to 31.9% and for MHPG from 10.1 to 62.3%. These variations were not correlated with grossly observable changes in behavioral states. Using an analysis of variance it was found that the variance in MHPG production was significantly greater than that for HVA (F = 6.2, p < 0.05) suggesting that brain NE systems are more liable and/or show greater change than do brain DA systems. These data are interpreted as indicating that in the awake, resting primate brain fluctuations in the activities of DA and NE neurons occur, i.e. there is not a steady, invariant production of metabolites but rather they are produced in pulses of varying lengths. This interpretation of the data is generally consistent with electrophysiological studies which indicate that catecholamine neurons fire in bursts which are then followed by silent periods. Finally, in terms of practical application of the V-A difference technique, these data indicate that replicable group mean estimates of brain HVA and MHPG production can be obtained by averaging values from a single time point whereas accurate information about an individual animal will require multiple samplings.Recent reports from this laboratory have described a method whereby a direct measure of the rates of production of neurotransmitter metabolites such as homovanillic acid (HVA), 3-methoxy-4-hydroxyphenethyleneglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) by the awake primate brain can be determined (1, 2, 3, 4). Since the quantities of HVA, MHPG, and probably 5-HIAA in the brain vary as a function of the activity of dopamine (DA), norepinephrine (NE), and serotonin (5-HT) neurons (1, 5, 6, 7, 8), it is likely that these measures of neurotransmitter metabolite production reflect the functional state of brain DA, NE, and 5-HT neuronal systems. The experimental results thus far obtained with this technique have shown a wide variance in the rates of neurotransmitter metabolite production across both animal and human subjects even though the subjects were not in clearly different behavioral or emotional states (1, 2, 4, 9). These data suggested that either individual subjects differ markedly in the activities of brain DA, NE, and 5-HT neurotransmitter systems and/or that the activity of these systems fluctuates markedly over time. For these reasons, experiments were undertaken in which repeated measures of HVA and MHPG production by brain within the same animal were determined over a three hour period. The results of these experiments, which are reported here, indicate that there are marked changes in brain metabolite production which occur within animals. The implications of these findings for our understanding of the functioning of brain neurotransmitter systems and for the practical applications of this technique are discussed.  相似文献   

19.
Abstract— Noradrenaline (NA), dopamine (DA). 5-hydroxytryptamine (5-HT), 4-hydroxy, 3-methoxy-phenylethylene glycol (MHPG), homovanillic acid (HVA), 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindolylacetic acid (5-HIAA) were measured in twenty areas of post-mortem brain from ten psychiatrically and neurologically normal patients. There was a marked difference, which did not appear to be related to sex, medication, cause of death or time between death and dissection, in amine and metabolite concentrations between brains. In the cortex, 5-HT, MHPG, HVA. DOPAC and S-HIAA were approximately even in their distribution; NA and DA could not be detected. In sub-cortical areas there were clear differences in the distribution of the three amines accompanied by less marked differences in the distribution of their respective metabolites.  相似文献   

20.
There are conflicting reports of the effects of aging on human neurotransmitter systems as estimated by monoamine metabolite concentrations in cerebrospinal fluid (CSF). These discrepancies may be due to sampling site, age or sex of the subjects or other variables that affect CSF metabolite determinations. Cisternal CSF concentrations of homovanillic acid (HVA), 3-methoxy-4-hydroxyphenyl-ethylene glycol (MHPG) and 5-hydroxyindoleacetic acid (5-HIAA), major metabolites of dopamine, norepinephrine and serotonin, respectively, were measured in rhesus monkeys (Macaca mulatta) of two age groups. Concentrations of HVA and MHPG were significantly lower in the older group of monkeys, whereas no changes in 5-HIAA were found. This supports the hypothesis that brain catecholamine concentrations decline with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号