首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During inherited retinal dystrophy in Irish Setter dogs, decreased activity of cGMP phosphodiesterase (PDE) results in high cGMP levels and retinal degeneration (1-3). This defect could be in PDE itself, or in its interactions with other proteins of the rod outer segment. We report herein that when retinas from 8-week-old dogs were phosphorylated with gamma-32P-ATP, and separated on SDS-PAGE, phosphorylation of rd dog rhodopsin was reduced. When rd retinas were mixed with normal dog retinas, phosphorylation of the latter was inhibited. Since rd-mediated inhibition was prevented by 1 mM NaF, the results suggest that the cause of reduced rd phosphorylation is increased phosphatase activity. Together, these results demonstrate that decreased phosphorylation of rhodopsin due to increased phosphatase activity is a fundamental biochemical change which may partially account for the degenerative process and loss of visual acuity during inherited retinal dystrophy.  相似文献   

2.
Rhodopsin, the membrane protein responsible for dim-light vision, until recently was the only G-protein-coupled receptor (GPCR) with a known crystal structure. As a result, there is enormous interest in studying its structure, dynamics, and function. Here we report the results of three all-atom molecular dynamics simulations, each at least 1.5 μs, which predict that substantial changes in internal hydration play a functional role in rhodopsin activation. We confirm with 1H magic angle spinning NMR that the increased hydration is specific to the metarhodopsin-I intermediate. The internal water molecules interact with several conserved residues, suggesting that changes in internal hydration may be important during the activation of other GPCRs. The results serve to illustrate the synergism of long-time-scale molecular dynamics simulations and NMR in enhancing our understanding of GPCR function.  相似文献   

3.
Membrane protein stability is a key parameter with important physiological and practical implications. Inorganic salts affect protein stability, but the mechanisms of their interactions with membrane proteins are not completely understood. We have undertaken the study of a prototypical G-protein-coupled receptor, the α-helical membrane protein rhodopsin from vertebrate retina, and explored the effects of inorganic salts on the thermal decay properties of both its inactive and photoactivated states. Under high salt concentrations, rhodopsin significantly increased its activation enthalpy change for thermal bleaching, whereas acid denaturation affected the formation of a denatured loose-bundle state for both the active and inactive conformations. This behavior seems to correlate with changes in protonated Schiff-base hydrolysis. However, chromophore regeneration with the 11-cis-retinal chromophore and MetarhodopsinII decay kinetics were slower only in the presence of sodium chloride, suggesting that in this case, the underlying phenomenon may be linked to the activation of rhodopsin and the retinal release processes. Furthermore, the melting temperature, determined by means of circular dichroism and differential scanning calorimetry measurements, was increased in the presence of high salt concentrations. The observed effects on rhodopsin could indicate that salts favor electrostatic interactions in the retinal binding pocket and indirectly favor hydrophobic interactions at the membrane protein receptor core. These effects can be exploited in applications where the stability of membrane proteins in solution is highly desirable.  相似文献   

4.
A novel approach that iteratively combined the results of energy calculations and experimental data was used to generate a three-dimensional (3D) model of the photoactivated state (R*) of bovine rhodopsin (Rh). The approach started with simplified energy calculations in an effort to find a set of sterically and energetically reasonable options for transmembrane (TM) helix arrangements with all-trans-retinal. Various 3D models of TM helix packing found by computations were then compared to limited site-directed spin-label experimental data regarding the transition of the TM helices of Rh in the inactive state (R) to those in the R* state to identify the most plausible model of the TM helical bundle. At the next step, all non-TM structural elements, such as the non-TM helix 8, the N- and C-terminal fragments, and the loops connecting TM helices, were reconstructed, and after the entire R* structure had been relaxed, all other currently available additional experimental data, both mutational and spectroscopic, on the structure of the meta-II state of rhodopsin were used to validate the resulting 3D model.  相似文献   

5.
Low resolution electron density maps have revealed the general orientation of the transmembrane helices of rhodopsin. However, high resolution structural information for the transmembrane domain of the G-protein-coupled receptor, rhodopsin, is as yet unavailable. In this study, a high resolution solution structure is reported for a 15 residue portion of the sixth transmembrane helix of rhodopsin (rhovih) as a free peptide. Helix 6 is one of the transmembrane helices of rhodopsin that contains a proline (amino acid residue 267) and the influence of this proline on the structure of this transmembrane domain was unknown. The structure obtained shows an alpha-helix through most of the sequence. The proline apparently induces only a modest distortion in the helix. Previously, the structure of the intradiskal loop connected to helix 6 was solved. The sequence of this loop contained five residues in common (residues 268-272) with the peptide reported here from the rhovih. The five residues in common between these two structures were superimposed to connect these two structures. The superposition showed a root mean square deviation of 0.2 A. Thus, this five residue sequence formed the same structure in both peptides, indicating that the structure of this region is governed primarily by short range interactions.  相似文献   

6.
The alpha-factor pheromone receptor activates a G protein signaling cascade that stimulates MATa yeast cells to undergo conjugation. The cytoplasmic C terminus of the receptor is not necessary for G protein activation but instead acts as a regulatory domain that promotes adaptation to alpha-factor. The role of phosphorylation in regulating the alpha-factor receptor was examined by mutating potential phosphorylation sites. Mutation of the four most distal serine and threonine residues in the receptor C terminus to alanine caused increased sensitivity to alpha-factor and a delay in recovering from a pulse of alpha-factor. 32PO4 labeling experiments demonstrated that the alanine substitution mutations decreased the in vivo phosphorylation of the receptor. Phosphorylation apparently alters the regulation of G protein activation, since neither receptor number nor affinity for ligand was significantly altered by mutation of the distal phosphorylation sites. Furthermore, mutation of the distal phosphorylation sites in a receptor mutant that fails to undergo ligand-stimulated endocytosis caused increased sensitivity to alpha-factor, which suggests that regulation by phosphorylation can occur at the cell surface and is independent of endocytosis. Mutation of the distal serine and threonine residues of the receptor also caused a slight defect in alpha-factor-induced morphogenesis, but the defect was not as severe as the morphogenesis defect caused by truncation of the cytoplasmic C terminus of the receptor. These distal residues in the C terminus play a special role in receptor regulation, since mutation of the next five adjacent serine and threonine residues to alanine did not affect the sensitivity to alpha-factor. Altogether, these results indicate that phosphorylation plays an important role in regulating alpha-factor receptor function.  相似文献   

7.
8.
Rhodopsin is the only member of the pharmacologically important superfamily of G-protein-coupled receptors with a known structure at atomic resolution. A molecular dynamics model of rhodopsin in a POPC phospholipid bilayer was simulated for 15 ns, revealing a conformation significantly different from the recent crystal structures. The structure of the bilayer compared with a protein-free POPC control indicated hydrophobic matching with the nonpolar interface of the receptor, in agreement with deuterium NMR experiments. A new generalized molecular surface method, based on a three-dimensional Voronoi cell construction for atoms with different radii, was developed to quantify cross-sectional area profiles for the protein, lipid acyl chains and headgroups, and water. Thus, it was possible to investigate the bilayer deformation due to curvature of the individual lipid monolayers. Moreover, the generalized molecular surface derived hydrophobic interface allowed benchmarking of the hydropathy sequence analysis, an important structural genomics tool. Five water molecules diffused into internal hydration sites during the simulation, yielding a total of 12 internal waters. The cytoplasmic loops and the C-terminal tail, containing the G-protein recognition and protein sorting sequences, exhibited a high mobility, in marked contrast to the extracellular and transmembrane domains. The proposed functional coupling of the highly conserved ERY motif to the lipid-water interface via the cytoplasmic loops provides insight into lipid effects on G-protein-coupled receptor activation in terms of a flexible surface model, involving the spontaneous monolayer curvature.  相似文献   

9.
Obtaining a reliable 3D model for the complex formed by photoactivated rhodopsin (R*) and its G-protein, transducin (Gtalphabetagamma), would significantly benefit the entire field of structural biology of G-protein-coupled receptors (GPCRs). In this study, we have performed extensive configurational sampling for the isolated C-terminal fragment of the alpha-subunit of transducin, Gtalpha 340-350, within cavities of photoactivated rhodopsin formed by different energetically feasible conformations of the intracellular loops. Our results suggested a new 3D model of the rhodopsin-transducin complex that fully satisfied all available experimental data on site-directed mutagenesis of rhodopsin and Gtalphabetagamma as well as data from disulfide-linking experiments. Importantly, the experimental data were not used as a priori constraints in model building. We performed a thorough comparison of existing computational models of the rhodopsin-transducin complex with each other and with current experimental data. It was found that different models suggest interactions with different molecules in the rhodopsin oligomer, that providing valuable guidance in design of specific novel experimental studies of the R*-Gtalphabetagamma complex. Finally, we demonstrated that the isolated Gtalpha 340-350 fragment does not necessarily bind rhodopsin in the same binding mode as the same segment in intact Gtalpha.  相似文献   

10.
G-protein-coupled receptor kinases (GRKs) play a conserved role in Hedgehog (Hh) signaling. In several systems, GRKs are required for efficient Hh target gene expression. Their principal target appears to be Smoothened (Smo), the intracellular signal-generating component of the pathway and a member of the G-protein-coupled receptor (GPCR) protein family. In Drosophila, a GRK called Gprk2 is needed for internalization and downregulation of activated Smo, consistent with the typical role of these kinases in negatively regulating GPCRs. However, Hh target gene activation is strongly impaired in gprk2 mutant flies, indicating that Gprk2 must also positively regulate Hh signaling at some level. To investigate its function in signaling, we analyzed several different readouts of Hh pathway activity in animals or cells lacking Gprk2. Surprisingly, although target gene expression was impaired, Smo-dependent activation of downstream components of the signaling pathway was increased in the absence of Gprk2. This suggests that Gprk2 does indeed play a role in terminating Smo signaling. However, loss of Gprk2 resulted in a decrease in cellular cAMP concentrations to a level that was limiting for Hh target gene activation. Normal expression of target genes was restored in gprk2 mutants by stimulating cAMP production or activating the cAMP-dependent Protein kinase A (Pka). Our results suggest that direct regulation of Smo by Gprk2 is not absolutely required for Hh target gene expression. Gprk2 is important for normal cAMP regulation, and thus has an indirect effect on the activity of Pka-regulated components of the Hh pathway, including Smo itself.  相似文献   

11.
Insulin-stimulated phosphorylation of the insulin receptor precursor   总被引:2,自引:0,他引:2  
The alpha and beta subunits of the insulin receptor, Mr = 135K and 95K, appear to be synthesized via a single polypeptide precursor of Mr = 190K. We have investigated whether insulin stimulates the phosphorylation of this proreceptor, as is the case with mature receptor. Rat liver endoplasmic reticulum membranes were solubilized in Triton X-100 and chromatographed sequentially on wheat-germ agglutinin-agarose and lentil lectin-agarose columns. Phosphorylation of the lentil eluate with [gamma 32P]ATP revealed an insulin-stimulated phosphoprotein of Mr = 192K, which was recognized by antireceptor antibody, compatible with the receptor precursor. This suggests that further processing of the Mr = 190K insulin receptor precursor is not necessary for insulin binding, kinase activation, and receptor phosphorylation.  相似文献   

12.
Obesity-associated diabetes is epidemic in industrialized societies. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is highly expressed in adipose tissue and the presumed molecular target for antidiabetic thiazolidinedione drugs that reverse insulin resistance but also promote weight gain. Phosphorylation reduces the activity of PPARgamma in vitro, but physiological relevance has not been demonstrated. We have studied mice homozygous for a mutation (S112A) that prevents PPARgamma phosphorylation. Surprisingly, the weights and adipose mass of PPARgamma-S112A mice are not greater than wild-type. Remarkably, however, genetic prevention of PPARgamma phosphorylation preserves insulin sensitivity in the setting of diet-induced obesity. Underlying this protection are smaller fat cells, elevated serum adiponectin, and reduced free fatty acid levels. Thus, the phosphorylation state of PPARgamma modulates insulin sensitivity. Compounds that prevent PPARgamma phosphorylation or ligands that induce the conformation of nonphosphorylated PPARgamma may selectively enhance insulin sensitivity without increasing body weight.  相似文献   

13.
The serine/threonine kinase Akt has been shown to mediate the anti-apoptotic activity through hexokinase (HK)–mitochondria interaction. We previously reported that Akt activation in retinal rod photoreceptor cells is mediated through the light-dependent insulin receptor (IR)/PI3K pathway. Our data indicate that light-induced activation of IR/PI3K/Akt results in the translocation of HK-II to mitochondria. We also found that PHLPPL, a serine/threonine phosphatase, enhanced the binding of HK-II to mitochondria. We found a mitochondrial targeting signal in PHLPPL and our study suggests that Akt translocation to mitochondria could be mediated through PHLPPL. Our results suggest that the light-dependent IR/PI3K/Akt pathway regulates hexokinase–mitochondria interaction in photoreceptors. Down-regulation of IR signaling has been associated with ocular diseases of retinitis pigmentosa, diabetic retinopathy, and Leber Congenital Amaurosis-type 2, and agents that enhance the binding interaction between hexokinase and mitochondria may have therapeutic potential against these ocular diseases.  相似文献   

14.
In primary cultures of rat hepatocytes, epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and foetal-calf serum (FCS) prevented the stimulation of amino acid transport by glucagon (cyclic AMP-dependent) and by catecholamines (cyclic AMP-independent), but not by insulin. The insulin effect, as well as the effect of other hormones, were totally inhibited by thrombin through a mechanism independent of its proteolytic activity. The inhibitory effect of growth factors, not found in freshly isolated hepatocytes, was expressed very early in culture (4h). Induction of tyrosine aminotransferase by glucagon or dexamethasone, which, like stimulation of transport, represents a late hormonal effect, was not affected by EGF, PDGF or FCS, but was inhibited by thrombin. In contrast, none of the rapid changes in protein phosphorylation caused by hormones was altered by growth factors. Thus the inhibition by growth factors of hormonal stimulation of transport presumably involves late step(s) in the cascade of events implicated in this hormonal effect.  相似文献   

15.
Conformational possibilities of flexible loops in rhodopsin, a prototypical G-protein-coupled receptor, were studied by modeling both in the dark-adapted (R) and activated (R*) states. Loop structures were built onto templates representing the R and R* states of the TM region of rhodopsin developed previously (G. V. Nikiforovich and G. R. Marshall. 2003. Biochemistry. 42:9110). Geometrical sampling and energy calculations were performed for each individual loop, as well as for the interacting intracellular loops IC1, IC2, and IC3 and the extracellular loops EC1, EC2, and EC3 mounted on the R and R* templates. Calculations revealed that the intra- and extracellular loops of rhodopsin possess low-energy structures corresponding to large conformational movements both in the R and R* states. Results of these calculations are in good agreement with the x-ray data available for the dark-adapted rhodopsin as well as with the available experimental biophysical data on the disulfide-linked mutants of rhodopsin. The calculated results are used to exemplify how the combined application of the results of independent calculations with emerging experimental data can be used to select plausible three-dimensional structures of the loops in rhodopsin.  相似文献   

16.
G-protein-coupled receptors are hyper-phosphorylated in a process that controls receptor coupling to downstream signaling pathways. The pattern of receptor phosphorylation has been proposed to generate a "bar code" that can be varied in a tissue-specific manner to direct physiologically relevant receptor signaling. If such a mechanism existed, receptors would be expected to be phosphorylated in a cell/tissue-specific manner. Using tryptic phosphopeptide maps, mass spectrometry, and phospho-specific antibodies, it was determined here that the prototypical G(q/11)-coupled M(3)-muscarinic receptor was indeed differentially phosphorylated in various cell and tissue types supporting a role for differential receptor phosphorylation in directing tissue-specific signaling. Furthermore, the phosphorylation profile of the M(3)-muscarinic receptor was also dependent on the stimulus. Full and partial agonists to the M(3)-muscarinic receptor were observed to direct phosphorylation preferentially to specific sites. This hitherto unappreciated property of ligands raises the possibility that one mechanism underlying ligand bias/functional selectivity, a process where ligands direct receptors to preferred signaling pathways, may be centered on the capacity of ligands to promote receptor phosphorylation at specific sites.  相似文献   

17.
A lysophospholipid series, such as lysophosphatidic acid, lysophosphatidylserine, and lysophosphatidylcholine (LPC), is a bioactive lipid mediator with diverse physiological and pathological functions. LPC has been reported to induce insulin secretion from pancreatic beta-cells, however, the precise mechanism has remained elusive to date. Here we show that an orphan G-protein-coupled receptor GPR119 plays a pivotal role in this event. LPC potently enhances insulin secretion in response to high concentrations of glucose in the perfused rat pancreas via stimulation of adenylate cyclase, and dose-dependently induces intracellular cAMP accumulation and insulin secretion in a mouse pancreatic beta-cell line, NIT-1 cells. The Gs-protein-coupled receptor for LPC was identified as GPR119, which is predominantly expressed in the pancreas. GPR119-specific siRNA significantly blocked LPC-induced insulin secretion from NIT-1 cells. Our findings suggest that GPR119, which is a novel endogenous receptor for LPC, is involved in insulin secretion from beta-cells, and is a potential target for anti-diabetic drug development.  相似文献   

18.
Insulin stimulated phosphorylation of tyrosine residues by the insulin receptor kinase may be part of a signalling mechanism associated with insulin's action. We report that indomethacin inhibited the phosphorylation of the -subunit of the solubilized adipocyte insulin receptor. Indomethacin also inhibited several insulin-sensitive processes in intact rat adipocytes. Indomethacin (1 mM) inhibited basal phosphorylation of the -subunit of the solubilized insulin receptor by 6007o and insulin-stimulated phosphorylation by 30%. In adipocytes, indomethacin inhibited basal 3-0-[methyl-14C]-methyl-D glucose transport by 50070 (P < 0.01), D-[6-14C]-glucose oxidation by 5007o (P < 0.01), D-[6-14C]-glucose conversion to lipid by 30010 (P < 0.01), and D-[1-14C]-glucose conversion to lipid by 6007o (P<0.01). Similarly, indomethacin inhibited insulin-stimulated 3-0-[methyl-14C]-methyl-D-glucose transport by 75070 (P<0.01), D-[6-14C]-glucose oxidation by 20% (P<0.05), D-[1-14C]-glucose oxidation by 35070 (P<0.01), D-[6-14C] glucose conversion to lipid by 25010 (P<0.01), and D-[1-14C] glucose conversion to lipid by 4501o (P<0.01). In contrast, insulin binding to its receptor, basal D-[1-14C]-glucose oxidation and both basal and insulin-stimulated activation of glycogen synthase were unaffected by indomethacin. Thus, indomethacin partially inhibited autophosphorylation of the solubilized insulin receptor on tyrosine and partially inhibited some but not all of insulin's actions. This supports the hypothesis that insulin's metabolic effects are linked to activation of the insulin receptor protein kinase and indicates that there may be heterogeneity in the mechanisms of intracellular metabolic control by insulin.  相似文献   

19.
Constitutive activation of receptor tyrosine kinases (RTKs) is a frequent event in human cancer cells. Activating mutations in Fms-like tyrosine kinase 3 (FLT-3), notably, internal tandem duplications in the juxtamembrane domain (FLT-3 ITD), have been causally linked to acute myeloid leukemia. As we describe here, FLT-3 ITD exists predominantly in an immature, underglycosylated 130-kDa form, whereas wild-type FLT-3 is expressed predominantly as a mature, complex glycosylated 150-kDa molecule. Endogenous FLT-3 ITD, but little wild-type FLT-3, is detectable in the endoplasmic reticulum (ER) compartment. Conversely, cell surface expression of FLT-3 ITD is less efficient than that of wild-type FLT-3. Inhibition of FLT-3 ITD kinase by small molecules, inactivating point mutations, or coexpression with the protein-tyrosine phosphatases (PTPs) SHP-1, PTP1B, and PTP-PEST but not RPTPalpha promotes complex glycosylation and surface localization. However, PTP coexpression has no effect on the maturation of a surface glycoprotein of vesicular stomatitis virus. The maturation of wild-type FLT-3 is impaired by general PTP inhibition or by suppression of endogenous PTP1B. Enhanced complex formation of FLT-3 ITD with the ER-resident chaperone calnexin indicates that its retention in the ER is related to inefficient folding. The regulation of RTK maturation by tyrosine phosphorylation was observed with other RTKs as well, defines a possible role for ER-resident PTPs, and may be related to the altered signaling quality of constitutively active, transforming RTK mutants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号