首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular mechanisms by which cells detect hypoxia (1.5% O2), resulting in the stabilization of hypoxia-inducible factor 1alpha (HIF-1alpha) protein remain unclear. One model proposes that mitochondrial generation of reactive oxygen species is required to stabilize HIF-1alpha protein. Primary evidence for this model comes from the observation that cells treated with complex I inhibitors, such as rotenone, or cells that lack mitochondrial DNA (rho(0)-cells) fail to generate reactive oxygen species or stabilize HIF-1alpha protein in response to hypoxia. In the present study, we investigated the role of mitochondria in regulating HIF-1alpha protein stabilization under anoxia (0% O2). Wild-type A549 and HT1080 cells stabilized HIF-1alpha protein in response to hypoxia and anoxia. The rho(0)-A549 cells and rho(0)-HT1080 cells failed to accumulate HIF-1alpha protein in response to hypoxia. However, both rho(0)-A549 and rho(0)-HT1080 were able to stabilize HIF-1alpha protein levels in response to anoxia. Rotenone inhibited hypoxic, but not anoxic, stabilization of HIF-1alpha protein. These results indicate that a functional electron transport chain is required for hypoxic but not anoxic stabilization of HIF-1alpha protein.  相似文献   

2.
3.
In the last years, nitric oxide (NO) mediated signaling became an integral component in understanding physiological and pathophysiological processes of cell proliferation, death or cellular adaptation. Among other activities, NO affects multiple targets that allow regulation of gene expression. Recently, NO was found to attenuate accumulation of hypoxia inducible factor-1alpha (HIF-1alpha) under hypoxic conditions because of several mechanisms: redistribution of oxygen toward non-respiratory oxygen-dependent targets (like HIF-1alpha proline hydroxylases--PHDs, which perform hydroxylation of Pro402/564 of HIF-1alpha leading to its proteasomal degradation); in addition, peroxynitrite formed during interactions between NO and mitochondria derived superoxide leads to an increase in cytosolic iron/2-oxoglutarate (2-OG), which required for PHD activation. Here, we propose a hypothesis that peroxynitrite, formed in the cells upon exposure to NO under low oxygen availability, serves as an alternative donor of oxygen for activated PHDs so they can perform HIF-1alpha proline hydroxylation to de-accumulate the protein.  相似文献   

4.
Hypoxia inducible factor-1alpha (HIF-1alpha) mRNA expression is significantly decreased under hypoxia in different cell lines exposed directly to hypoxia or treated with dimethyloxalylglycine which mimics hypoxic effects under normoxic conditions. However, the decreased expression of HIF-1alpha mRNA is accompanied by an increase of HIF-1alpha protein (pHIF-1alpha) level as well as by overexpression of known HIF-dependent genes (VEGF, Glut1, PFKFB-3 and PFKFB-4) under hypoxic conditions or with the use of dimethyloxalylglycine. Expression of HIF-1alpha mRNA also depends on iron because desferrioxamine and cobalt chloride produce similar to hypoxia effects on the levels of this mRNA. It was shown that HIF-1alpha mRNA expression did not change significantly in some cell lines (SKBR3, MDA-MB468 and BT549) under hypoxia. However, in these cell lines hypoxia decreases expression of HIF-2alpha mRNA, another member of HIF-alpha gene family, as a result of cell specific regulation of HIF-alpha genes under hypoxia. Moreover, hypoxia slightly induces expression of PFKFB-4 mRNA in SKBR3, MDA-MB468 and BT549 as compared to other cell lines where this effect of hypoxia was much stronger and adaptation to hypoxia is controlled by HIF-1alpha. Hypoxia slightly reduces expression of tumor suppressor VHL which targets HIF-1alpha for ubiquitination. Thus, our results clearly demonstrated down regulation of HIF-1alpha or HIF-2alpha in different cell lines by hypoxia.  相似文献   

5.
The oxidative pentose phosphate cycle (OPPC) is necessary to maintain cellular reducing capacity during periods of increased oxidative stress. Metabolic flux through the OPPC increases stoichiometrically in response to a broad range of chemical oxidants, including those that generate reactive oxygen species (ROS). Here we show that OPPC sensitivity is sufficient to detect low levels of ROS produced metabolically as a function of the percentage of O2. We observe a significant decrease in OPPC activity in cells incubated under severe and moderate hypoxia (ranging from <0.01 to 4% O2), whereas hyperoxia (95% O2) results in a significant increase in OPPC activity. These data indicate that metabolic ROS production is directly dependent on oxygen concentration. Moreover, we have found no evidence to suggest that ROS, produced by mitochondria, are needed to stabilize hypoxia-inducible factor 1alpha (HIF-1alpha) under moderate hypoxia. Myxothiazol, an inhibitor of mitochondrial electron transfer, did not prevent HIF-1alpha stabilization under moderate hypoxia. Moreover, the levels of HIF-1alpha that we observed after exposure to moderate hypoxia were comparable between rho0 cells, which lack functional mitochondria, and the wild-type cells. Finally, we find no evidence for stabilization of HIF-1alpha in response to the non-toxic levels of H2O2 generated by the enzyme glucose oxidase. Therefore, we conclude that the oxygen dependence of the prolyl hydroxylase reaction is sufficient to mediate HIF-1alpha stability under moderate as well as severe hypoxia.  相似文献   

6.
7.
Intermittent hypoxia (IH) resulting from sleep apnea can lead to pulmonary hypertension. IH causes oxidative stress that may limit bioavailability of the endothelium-derived vasodilator nitric oxide (NO) and thus contribute to this hypertensive response. We therefore hypothesized that increased vascular superoxide anion (O(2)(-)) generation reduces NO-dependent pulmonary vasodilation following IH. To test this hypothesis, we examined effects of the O(2)(-) scavenger tiron on vasodilatory responses to the endothelium-dependent vasodilator ionomycin and the NO donor S-nitroso-N-acetylpenicillamine in isolated lungs from hypocapnic-IH (H-IH; 3 min cycles of 5% O(2)/air flush, 7 h/day, 4 wk), eucapnic-IH (E-IH; cycles of 5% O(2), 5% CO(2)/air flush), and sham-treated (air/air cycled) rats. Next, we assessed effects of endogenous O(2)(-) on NO- and cGMP-dependent vasoreactivity and measured O(2)(-) levels using the fluorescent indicator dihydroethidium (DHE) in isolated, endothelium-disrupted small pulmonary arteries from each group. Both E-IH and H-IH augmented NO-dependent vasodilation; however, enhanced vascular smooth muscle (VSM) reactivity to NO following H-IH was masked by an effect of endogenous O(2)(-). Furthermore, H-IH and E-IH similarly increased VSM sensitivity to cGMP, but this response was independent of either O(2)(-) generation or altered arterial protein kinase G expression. Finally, both H-IH and E-IH increased arterial O(2)(-) levels, although this response was more pronounced following H-IH, and H-IH exposure resulted in greater protein tyrosine nitration indicative of increased NO scavenging by O(2)(-). We conclude that IH increases pulmonary VSM sensitivity to NO and cGMP. Furthermore, endogenous O(2)(-) limits NO-dependent vasodilation following H-IH through an apparent reduction in bioavailable NO.  相似文献   

8.
When oxygen supply is restricted, protein synthesis is rapidly abrogated owing to inhibition of global translation. However, HIF-1α protein expression can persist during hypoxia, owing to an internal ribosome entry site (IRES) in the 5′-untranslated region of its mRNA. Here, we report on the molecular mechanism of HIF-1α IRES-mediated translation during oxygen deprivation. Using RNA affinity chromatography and UV-crosslinking experiments, we show that the polypyrimidine tract binding protein (PTB) can specifically interact with the HIF-1α IRES, and that this interaction is enhanced in hypoxic conditions. Overexpression of PTB enhanced HIF-1α IRES activity, whereas RNA interference-mediated downregula-tion of PTB protein expression inhibited HIF-1α IRES activity. Furthermore, hypoxia-induced stimulation of the HIF-1α IRES was reduced in cells in which PTB function was downregulated. In agreement with these results, the IRES activity of HIF-1α IRES deletion mutants that are deficient in PTB-binding could not be stimulated by oxygen deprivation. All together, our data suggest that PTB plays a stimulatory role in the IRES-mediated translation of HIF-1α when oxygen supply is limited.  相似文献   

9.
10.
Ischemic stroke results in cerebral tissue hypoxia and increased expression of hypoxia-inducible factor(HIF),which is critically implicated in ischemic brain in...  相似文献   

11.
12.
13.
低氧激活巨噬细胞内NF-κB 信号转导通路的机制   总被引:3,自引:0,他引:3  
Zhang CP  Xie YZ  Chen P  Hong X  Xiao ZH  Ma Y  Lu YD 《生理学报》2004,56(4):515-520
  相似文献   

14.
Vascularized tumors are exposed to intermittent hypoxia, that is, hypoxia followed by periods of reoxygenation. Abnormal structure and dysfunction of tumor blood vessels are responsible for these conditions. These repeated short periods of hypoxia concern tumor cells as well as endothelial cells. However, the effects of intermittent hypoxia are poorly understood. The aim of this study was to investigate the effects of intermittent hypoxia on endothelial cells and particularly on HIF-1alpha, a central actor in adaptive response to hypoxia. For that, endothelial cells were exposed to four repeated cycles of 1-h hypoxia followed by 30 min of reoxygenation. We showed that repeated cycles of hypoxia/reoxygenation induced a modification in HIF-l alpha phosphorylation pattern: a progressive increase in HIF-1alpha phosphorylated form was observed during the hypoxic periods. Activation of p42/p44, Akt and PKA was observed in parallel. PKA was shown to be involved in the phosphorylation of HIF-lalpha under intermittent hypoxia, while p42/p44 and Akt were not. As HIF-1 activity is often associated with enhanced cell survival, a better knowledge of the effects of intermittent hypoxia on endothelial cells and the highlight of particular mechanisms induced by intermittent hypoxia are essential to understand the behavior of endothelial cells during neo-angiogenesis.  相似文献   

15.
目的:探讨低氧诱导因子1α(HIF-1α)在慢性低氧高二氧化碳性大鼠肺动脉高压中的变化及其与一氧化氮(NO)的关系。方法:SD大鼠40只随机分为正常对照组(NC)、低氧高二氧化碳组(HH)、低氧高二氧化碳加L-精氨酸(L-Arg)脂质体组(HP)、低氧高二氧化碳加L-硝基-精氨酸甲酯(L-NAME)组(HM)。测定平均肺动脉压(mPAP)、右室/(左室+室间隔)重量比[RV/(LV+S)]、血浆和肺组织匀浆一氧化氮(NO)含量。免疫组织化学和原位杂交法检测肺细小动脉HIF-1α及HIF-1αmRNA、内皮结构型一氧化氮合酶(ecNCS)蛋白及其mRNA的表达。结果:①HH组mPAP、RV/(LV+S)高于NC组(P〈0.05),HP组低于HH组(P〈0.01);HM组mPAP高于HH组(P〈0.05),RV/(LV+S)与HH组差异无显著性。②HH组血浆及肺组织匀浆NO含量低于NC组(P〈0.01),HP组高于HH组(P〈0.01);HM组血浆、肺组织匀浆NO含量与HH组差异无显著性。③HH组肺细小动脉HIF-1α蛋白及HIF-1αmRNA表达高于NC组(P〈0.01),ecNOSmRNA的表达低于NC组(P〈0.01);HP组肺细小动脉HIF-1α蛋白及HIF-1αmRNA表达低于HH(P〈0.01),ecNOS蛋白和ecNOSmRNA的表达高于HH组(P〈0.01);HM组肺细小动脉HIR-1α蛋白及mRNA表达高于HH组(P〈0.05),ecNOS蛋白和mRNA的表达低于HH组(P〈0.05)。结论:HIF-1α参与了慢性低氧高二氧化碳性大鼠肺动脉高压的形成,NO可能部分通过影响HIF-1α的表达和/或活性而实现其肺血管保护效应。  相似文献   

16.
17.
It is becoming more evident that not only can drugs and environmental chemicals interfere with normal fetal development by causing structural malformations, such as limb defects, but that xenobiotic exposure during development can also cause biochemical and functional abnormalities that may ultimately lead to cancer later on in life. Fetal toxicity may be partly mediated by the embryonic bioactivation of xenobiotics to free radical intermediates that can lead to oxidative stress and potentially lead, in some cases, to carcinogenesis. Using a number of examples, this review will focus on the role of reactive oxygen species (ROS) in the mechanisms pertaining to in utero initiated cancers.  相似文献   

18.
Sperm activation: role of reactive oxygen species and kinases   总被引:2,自引:0,他引:2  
Reactive oxygen species (ROS), such as the superoxide anion (O(2)(-*)), hydrogen peroxide (H(2)O(2)) and nitric oxide (NO*), when generated at low and controlled levels, act as second messengers. ROS regulate sperm capacitation, which is the complex series of changes allowing spermatozoa to bind to the zona pellucida surrounding the oocyte, induce the acrosome reaction (exocytotic event by which proteolytic enzymes are released) and fertilize the oocyte. Capacitating spermatozoa produce controlled amounts of ROS that regulate downstream events: first, the increase in cAMP, protein kinase A (PKA) activation and phosphorylation of PKA substrates (arginine-X-X-serine/threonine motif; 15-30 min); second, the phosphorylation of MEK (extracellular signal regulated kinase [ERK] kinase)-like proteins (30-60 min) and then that of the threonine-glutamate-tyrosine motif (>1 h); finally, the late tyrosine phosphorylation of fibrous sheath proteins (>2 h). Although all these events are ROS-dependent, the regulation by various kinases, protein kinase C, PKA, protein tyrosine kinases, the ERK pathway, etc. is different. ROS also regulate the acquisition of hyperactivated motility and the acrosome reaction by spermatozoa. ROS action is probably mediated via the sulfhydryl/disulfide pair on sperm proteins. Redundancy, cross talk, and multiple systems acting in parallel point to an array of safeguards assuring the timely function of spermatozoa.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号