首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the removal of CoASH from tissue extracts by maleic anhydride is described. It eliminates CoASH interference in the acetyl-CoA cycling assay using phosphotransacetylase and citrate synthase. Maleyl-CoA thioether does not hydrolyze under the conditions of the assay and allows a reduction in the number of blank samples during acetyl-CoA determination. The levels of acetyl-CoA in whole rat brain, isolated synaptosomes, and mitochondria were found to be 61, 8.6, and 31.3 pmol/mg of protein, respectively.  相似文献   

2.
Simple and sensitive spectrophotometric and radiochemical procedures are described for the assay of acetyl-CoA:arylamine N-acetyltransferase (NAT; EC 2.3.1.5), which catalyzes the reaction acetyl-CoA + arylamine----N-acetylated arylamine + CoASH. The methods are applicable to crude tissue homogenates and blood lysates. The spectrophotometric assay is characterized by two features: (i) NAT activity is measured by quantifying the disappearance of the arylamine substrate as reflected by decreasing Schiff's base formation with dimethylaminobenzaldehyde. (ii) During the enzymatic reaction, the inhibitory product CoASH is recycled by the system acetyl phosphate/phosphotransacetylase to the substrate acetyl-CoA. The radiochemical procedure depends on enzymatic synthesis of [3H]acetyl-CoA in the assay using [3H]acetate, ATP, CoASH, and acetyl-CoA synthetase. NAT activity is measured by quantifying N-[3H]acetylarylamine after separation from [3H]acetate by extraction. Product inhibition by CoASH is prevented in this system by the use of acetyl-CoA synthetase.  相似文献   

3.
A radioactive assay for the determination of pyruvate dehydrogenase complex activity in muscle tissue has been developed. The assay measures the rate of acetyl-CoA formation from pyruvate in a reaction mixture containing NAD+ and CoASH. The acetyl-CoA is determined as [14C]citrate after condensation with [14C]-oxaloacetate by citrate synthase. The method is specific and sensitive to the picomole range of acetyl-CoA formed. In eleven normal subjects, the active form of pyruvate dehydrogenase (PDCa) in resting human skeletal muscle samples obtained using the needle biopsy technique was 0.44 +/- 0.16 (SD) mumol acetyl-CoA.min-1.g-1 wet wt. Total pyruvate dehydrogenase complex (PDCt) activity was determined after activation by pretreating the muscle homogenate with Ca2+, Mg2+, dichloroacetate, glucose, and hexokinase. The mean value for PDCt was 1.69 +/- 0.32 mumol acetyl-CoA.min-1.g-1 wet wt, n = 11. The precision of the method was determined by analyzing 4-5 samples of the same muscle piece. The coefficient of variation for PDCa was 8% and for PDCt 5%.  相似文献   

4.
Malic enzymes participate in key metabolic processes, the MaeB-like malic enzymes carry a catalytic inactive phosphotransacetylase domain whose function remains elusive. Here we show that acetyl-CoA directly binds and inhibits MaeB-like enzymes with a saturable profile under physiological relevant acetyl-CoA concentrations. A MaeB-like enzyme from the nitrogen-fixing bacterium Azospirillum brasilense, namely AbMaeB1, binds both acetyl-CoA and unesterified CoASH in a way that inhibition of AbMaeB1 by acetyl-CoA is relieved by increasing CoASH concentrations. Hence, AbMaeB1 senses the acetyl-CoA/CoASH ratio. We revisited E. coli MaeB regulation to determine the inhibitory constant for acetyl-CoA. Our data support that the phosphotransacetylase domain of MaeB-like enzymes senses acetyl-CoA to dictate the fate of carbon distribution at the phosphoenol-pyruvate / pyruvate / oxaloacetate metabolic node.  相似文献   

5.
Bromo[1-14C]acetyl-CoA has been prepared from CoASH and the N-hydroxysuccinimide ester of bromo[1-14C]acetic acid, and unlabeled bromoacetyl-CoA by reaction of CoASH with bromoacetyl bromide. The products were purified by high-pressure liquid chromatography. Purified bromoacetyl-CoA was characterized, and found to be a potent alkylating agent with a substantial stability in aqueous solution: it decomposed at 30 degrees C and pH 6.6 and 8.0 with halftimes of 3.3 and 2.5 h, respectively. The major breakdown products were CoASH and CoAS X CO X CH2 X SCoA. Bromo[1-14C]acetyl-CoA has been used to affinity label the acetyl-CoA binding site of 3-hydroxy-3-methylglutaryl-CoA synthase from ox liver. It was found to irreversibly inhibit the enzyme activity and bind covalently with a stoichiometry for complete inhibition of about 0.8 mol/mol enzyme dimer.  相似文献   

6.
7.
CoASH and some of its acyl derivatives, especially acetyl-SCoA, occupy a central position in the energy metabolism of the anaerobic Clostridium kluyveri, both as intermediates and as regulatory effectors. The steady state concentrations of these compounds were determined in growing cultures of this organism using an anaerobic and fast deproteinization technique and radio isotope assays. Acetyl-SCoA was determined as [1-14C]citrate formed in the presence of [4-14C]oxaloacetate and citrate synthase; 0.49 mol/g cell wet wt. were found CoASH, CoAS-SCoA after borohydride reduction, and total acyl derivatives of coenzyme A after hydrolysis of the thiol esters were converted to thioethers with [2,3-14C]N-ethylmaleimide and brought to radiochemical purity by chromatographic methods. While disulfides of coenzyme A were undetectable, 0.13 mol CoASH and 1.17 mol of total acyl-SCoA per g wet wt. were found. These data are consistent with the regulatory scheme of the energy metabolism of C. kluyveri previously proposed.Abbreviations DTE dithioerythritol - NEM N-ethylmaleimide - NES N-ethylsuccinimide Enzymes (EC 2.7.2.1) Acetate kinase, ATP: acetate phosphotransferase - (EC 3.1.3.1) Alkaline phosphatase, orthophosphoric monoester phosphohydrolase - (GOT) Aspartate aminotransferase - (EC 2.6.1.1) L-aspartate:2-oxoglutarate aminotransferase - (CS) Citrate synthase - (EC 4.1.3.7) citrate oxaloacetate-lyase (pro 3S-CH2COOacetyl-CoA) - (EC 2.8.3.8) CoA-transferase, acyl-CoA:acetate CoA-transferase - (EC 1.1.1.37) Malate dehydrogenase, L-malate:NAD+ oxidoreductase - (EC 1.18.1.3) NADH:ferredoxin reductase, ferredoxin:NAD+ oxidoreductase - (EC 3.1.4.1) Phosphodiesterase (snake venom), orthophosphoric diester phosphohydrolase - (EC 2.3.1.8) Phosphotransacetylase, acetyl-CoA:orthophosphate acetyltransferase - (EC 2.3.1.9) Thiolase, acetyl-CoA:acetyl-CoA C-acetyltransferase A preliminary account of this work has been given (Decker et al. 1976)  相似文献   

8.
1. Beta-Ketothiolase of Clostridium pasteurianum was purified 130-fold by ammonium sulphate fractionation and by column chromatography using DEAE-Sephadex A-50 and hydroxylapatite. Subjected to gel electrophoresis beta-ketothiolase revealed two distinct bands; by isoelectric focusing two enzymes with isoelectric points at pH 4.5 and 7.6 were separated. As established by sucrose density gradient centrifugation the molecular weight of both enzymes was found to be 158000. 2. The condensation reaction was measured by a coupled optical test using beta-hydroxybutyryl-CoA dehydrogenase as auxiliary enzyme and either acetyl-CoA or free coenzyme A plus acetyl-phosphate and phosphotransacetylase (regenerating system) or acetyl-CoA plus regenerating system as substrates. Beta-Ketothiolase from C. pasteurianum used only 20% of the chemically synthesized acetyl-CoA; the enzyme from Alcaligenes eutrophus H 16 used 25%. When the regenerating system was added the condensation reaction continued. The enzyme from C. pasteurianum was inactivated by free coenzyme A, while the enzyme from A. eutrophus was inhibited. When acetyl-CoA was added as the substrate the initial velocity determination was impeded by the lack of linearity. With acetyl-CoA as the substrate the Km-value was found to be 2.5 mM acetyl-CoA. If free CoASH (or acetyl-CoA) plus regenerating system was added the Km was 0.44 mM (0.42 mM) acetyl-CoA. 3. The beta-ketothiolase activity was measured in the direction of acetoacetyl-CoA cleavage by an optical assay following the decrease of the enol and chelate form of acetoacetyl-CoA by absorption measurement at 305 nm. The activity was maximal at 24 nM MgCl2. The apparent Km values for acetoacetyl-CoA were 0.133 mM and 0.105 mM with 0.065 and 0.016 mM CoASH, respectively. The Km-values as calculated for only the keto form of acetoacetyl-CoA were 0.0471 and 0.0372 mM, respectively. The cleavage reaction was inhibited by high acetoacetyl-CoA concentrations; the inihibition was partially relieved by CoASH. In the range of low concentrations of acetoacetyl-CoA only a slight inhibition by CoASH was observed. The Km for CoASH was found to be 0.0288 and 0.0189 mM with 0.09 and 0.045 mM acetoacetyl-CoA, respectively. High concentrations of CoASH exerted an inhibitory effect on the cleavage reaction. With respect to enzyme kinetics and sensitivity to inhibitors and metabolites the beta-ketothiolases of C. pasteurianum and A. eutrophus were rather similar.  相似文献   

9.
Mutants of Escherichia coli K12 have been isolated that grow on media containing pyruvate of proline as sole carbon sources despite the presence of 10 or 50 mM-sodium fluoroacetate. Such mutants lack either acetate kinase [ATP: acetate phosphotransferase; EC 2.7.2.1] or phosphotransacetylase [acetyl-CoA: orthophosphate acetyltransferase; EC 2.3.1.8] activity. Unlike wild-type E. coli, phosphotransacetylase mutants do not excrete acetate when growing aerobically or anaerobically on glucose; their anaerobic growth on this sugar is slow. The genes that specify acetate kinase (ack) and phosphotransacetylase (pta) activities are cotransducible with each other and with purF and are thus located at about min 50 on the E. coli linkage map. Although Pta- and Ack- mutants are greatly impaired in their growth on acetate, they incorporate [2-14C]acetate added to cultures growing on glycerol, but not on glucose. An inducible acetyl-CoA synthetase [acetate: CoA ligase (AMP-forming); EC 6.2.1.1] effects this uptake of acetate.  相似文献   

10.
D S Flournoy  P A Frey 《Biochemistry》1986,25(20):6036-6043
The pyruvate dehydrogenase component (E1) of the pyruvate dehydrogenase complex catalyzes the decomposition of 3-fluoropyruvate to CO2, fluoride anion, and acetate. Acetylthiamin pyrophosphate (acetyl-TPP) is an intermediate in this reaction. Incubation of the pyruvate dehydrogenase complex with 3-fluoro[1,2-14C]pyruvate, TPP, coenzyme A (CoASH), and either NADH or pyruvate as reducing systems leads to the formation of [14C]acetyl-CoA. In this reaction the acetyl group of acetyl-TPP is partitioned by transfer to both CoASH (87 +/- 2%) and water (13 +/- 2%). When the E1 component is incubated with 3-fluoro[1,2-14C]pyruvate, TPP, and dihydrolipoamide, [14C]acetyldihydrolipoamide is produced. The formation of [14C]acetyldihydrolipoamide was examined as a function of dihydrolipoamide concentration (0.25-16 mM). A plot of the extent of acetyl group partitioning to dihydrolipoamide as a function of 1/[dihydrolipoamide] showed 95 +/- 2% acetyl group transfer to dihydrolipoamide when dihydrolipoamide concentration was extrapolated to infinity. It is concluded that acetyl-TPP is chemically competent as an intermediate for the pyruvate dehydrogenase complex catalyzed oxidative decarboxylation of pyruvate.  相似文献   

11.
ATP citrate lyase (ACL) is a cytosolic enzyme that catalyzes the synthesis of acetyl-CoA and oxaloacetate using citrate, CoA, and ATP as substrates and Mg2+ as a necessary cofactor. The ACL-dependent synthesis of acetyl-CoA is thought to be an essential step for the de novo synthesis of fatty acids and cholesterol. For this reason, inhibition of ACL has been pursued as a strategy to treat dyslipidemia and obesity. Traditionally, ACL enzyme activity is measured indirectly by coupling to enzymes such as malate dehydrogenase or chloramphenicol acetyl transferase. In this report, however, we describe a novel procedure to directly measure ACL enzyme activity. We first identified a convenient method to specifically detect [14C]acetyl-CoA without detecting [14C]citrate by MicroScint-O. Using this detection system, we devised a simple, direct, and homogeneous ACL assay in 384-well plate format that is suitable for high-throughput screening. The current assay consists of 1) incubation of ACL enzyme with [14C]citrate and other substrates/cofactors CoA, ATP, and Mg2+, 2) EDTA quench, 3) addition of MicroScint-O, the agent that specifically detects product [14C]acetyl-CoA, and 4) detection of signal by TopCount. This unique ACL assay may provide more efficient identification of new ACL inhibitors and allow detailed mechanistic characterization of ACL/inhibitor interactions.  相似文献   

12.
Thiolase proceeds via covalent catalysis involving an acetyl-S-enzyme. The active-site thiol nucleophile is identified as Cys89 by acetylation with [14C]acetyl-CoA, rapid denaturation, tryptic digestion, and sequencing of the labeled peptide. The native acetyl enzyme is labile to hydrolytic decomposition with t 1/2 of 2 min at pH 7, 25 degrees C. Cys89 has been converted to the alternate nucleophile Ser89 by mutagenesis and the C89S enzyme overproduced, purified, and assessed for activity. The Ser89 enzyme retains 1% of the Vmax of the Cys89 enzyme in the direction of acetoacetyl-CoA thiolytic cleavage and 0.05% of the Vmax in the condensation of two acetyl-CoA molecules. A covalent acetyl-O-enzyme intermediate is detected on incubation with [14C]acetyl-CoA and isolation of the labeled Ser89-containing tryptic peptide. Comparisons of the Cys89 and Ser89 enzymes have been made for kinetic and thermodynamic stability of the acetyl enzyme intermediates both by isolation and by analysis of [32P]CoASH/acetyl-CoA partial reactions and for rate-limiting steps in catalysis with trideuterioacetyl-CoA.  相似文献   

13.
In an attempt to elucidate the mechanism by which the rate of fatty acid oxidation is tuned to the energy demand of the heart, the effects of changing intramitochondrial ratios of [acetyl-CoA]/[CoASH] and [NADH]/[NAD+] on the rate of beta-oxidation were studied. When 10 mM L-carnitine was added to coupled rat heart mitochondria to lower the ratio of [acetyl-CoA]/[CoASH], the rate of palmitoylcarnitine beta-oxidation, as measured by the formation of acid-soluble products, was stimulated more than fourfold at state 4 respiration while beta-oxidation at state 3 respiration was hardly affected. Neither oxaloacetate nor acetoacetate, added to mitochondria to lower the [NADH]/[NAD+] ratio, stimulated beta-oxidation. Rates of respiration at states 3 and 4 were unchanged by additions of L-carnitine, oxaloacetate, or acetoacetate. Determinations of intramitochondrial ratios of [acetyl-CoA]/[CoASH] by high performance liquid chromatography yielded values close to 10 for palmitoylcarnitine-supported respiration at state 4 and 2.5 at state 3 respiration. Addition of 10 mM L-carnitine caused a dramatic decrease of these ratios to less than 0.2 at both respiration states. Studies with purified or partially purified enzymes revealed strong inhibitions of 3-ketoacyl-CoA thiolase by acetyl-CoA and of L-3-hydroxyacyl-CoA dehydrogenase by NADH. Moreover, the activity of 3-ketoacyl-CoA thiolase at concentrations of acetyl-CoA and CoASH prevailing at state 3 respiration was 4 times higher than its activity in the presence of acetyl-CoA and CoASH observed at state 4. Altogether, this study leads to the conclusion that the rate of beta-oxidation in heart can be regulated by the intramitochondrial ratio of [acetyl-CoA]/[CoASH] which reflects the energy demand of the tissue. The thiolytic cleavage catalyzed by 3-ketoacyl-CoA thiolase may be the site at which beta-oxidation is controlled by the [acetyl-CoA]/[CoASH] ratio.  相似文献   

14.
Glucagon and N,(6)O(2)-dibutyryl cyclic adenosine 3',5'-cyclic monophosphate (Bt(2)cAMP) inhibit fatty acid synthesis from acetate by more than 90% and prevent citrate formation in chick hepatocytes metabolizing glucose. With substrates that enter glycolysis at or below triose-phosphates, e.g., fructose, lactate, or pyruvate, Bt(2)cAMP has no effect on the citrate level and its inhibitory effect on fatty acid synthesis is substantially reversed. Because acetyl-CoA carboxylase requires a tricarboxylic acid activator for activity, it is proposed that regulation of fatty acid synthesis by Bt(2)cAMP is due, in part, to changes in the citrate level. Reduced citrate formation appears to result from a cAMP-induced inhibition of glycolysis. Bt(2)cAMP inhibits (14)CO(2) production from [1-(14)C]-, [6-(14)C]-, and [U-(14)C]glucose and has little effect on (14)CO(2) formation from [1-(14)C]- or [2-(14)C]pyruvate or from [1-(14)C]fructose. [(14)C]Lactate formation from glucose is depressed 50% by Bt(2)cAMP. In the presence of an inhibitor of mitochondrial pyruvate transport lactate accumulation is enhanced, but continues to be lowered 50% by Bt(2)cAMP. The activity of phosphofructokinase is greatly decreased in Bt(2)cAMP-treated cells while the activities of pyruvate kinase and acetyl-CoA carboxylase are unaffected. It appears that decreased glycolytic flux and decreased citrate formation result from depressed phosphofructokinase activity. Fatty acid synthesis from [(14)C]acetate is partially inhibited by Bt(2)cAMP in the presence of fructose, lactate, and pyruvate despite a high citrate level. Incorporation of [(14)C]fructose, [(14)C]pyruvate, or [(14)C]lactate into fatty acids is similarly depressed by Bt(2)cAMP. Synthesis of cholesterol from [(14)C]acetate or [2-(14)C]pyruvate is unaffected by Bt(2)cAMP. These results implicate a second site of inhibition of fatty acid synthesis by Bt(2)cAMP that involves the utilization, but not the production, of cytoplasmic acetyl-CoA.-Clarke, S. D., P. A. Watkins, and M. D. Lane. Acute control of fatty acid synthesis by cyclic AMP in the chick liver cell: possible site of inhibition of citrate formation.  相似文献   

15.
1. Although citrate is known to activate purified preparations of acetyl-CoA carboxylase, it had no stimulatory effect on the incorporation of [14C]acetate into long-chain fatty acids in a whole homogenate of rat liver (S0.7) under conditions in which the activity of acetyl-CoA carboxylase was rate-limiting for fatty acid synthesis. 2. The rate of incorporation of acetyl carbon into fatty acids was estimated in S0.7 preparations incubated with [14C]acetate, by measuring the specific radioactivity of the acetyl carbon of acetyl-CoA and the incorporation of 14C into fatty acids. These estimates were compared with estimates of acetyl-CoA carboxylase activity in the S0.7 preparation obtained by direct assay in conditions in which the enzyme was in the fully activated state. 3. In the absence of citrate, incorporation of acetyl carbon into fatty acids was about 75% of the value expected if the acetyl-CoA carboxylase in the S0.7 preparation were in the fully activated state. 4. Incorporation of acetyl carbon into fatty acids in the S0.7 preparation was stimulated by citrate, but the effect was many times less than the stimulation of [14C]acetate incorporation by citrate in particle-free preparations. 5. When the mitochondria and microsomes were removed from the S0.7 preparation, [14C]acetate incorporation into fatty acids fell to a negligible value and the preparation became highly sensitive to stimulation by citrate. 6. It is suggested that in the presence of mitochondria and microsomes, and in the intact liver cell, the degree of activation of acetyl-CoA carboxylase is such that citrate activation may not be of physiological significance.  相似文献   

16.
1. A species of Arthrobacter (designated Arthrobacter 9759) was isolated from soil by its ability to grow aerobically on l-threonine as sole source of carbon atoms, nitrogen atoms and energy; the organism also grew well on other sources of carbon atoms including glycine, but no growth was obtainable on aminoacetone or dl-1-aminopropan-2-ol. 2. During growth on threonine, (14)C from l-[U-(14)C]threonine was rapidly incorporated into glycine and citrate, and thereafter into serine, alanine, aspartate and glutamate. 3. With extracts of threonine-grown cells supplied with l-[U-(14)C]threonine, evidence was obtained of the NAD and CoA-dependent catabolism of l-threonine to produce acetyl-CoA plus glycine. Short-term incorporation studies in which [2-(14)C]acetate and [2-(14)C]glycine were supplied (a) to cultures growing on threonine, and (b) to extracts of threonine-grown cells, showed that the acetyl-CoA was metabolized via the tricarboxylic acid cycle and glyoxylate cycle whereas the glycine was converted into pyruvate via the folate-dependent ;serine pathway'. 4. The threonine-grown organism contained ;biosynthetic' threonine dehydratase and a potent NAD-linked l-threonine dehydrogenase but possessed no l-threonine aldolase activity. 5. Evidence was obtained that the acetyl-CoA and glycine produced from l-threonine had their immediate origin in the alpha-amino-beta-oxobutyrate formed by the threonine dehydrogenase; the CoA-dependent cleavage of this compound was catalysed by an alpha-amino-beta-oxobutyrate CoA-ligase, which was identified with ;aminoacetone synthase'. A continuous spectrophotometric assay of this enzyme was developed, and it was found to be inducibly synthesized only during growth on threonine and not during growth on acetate plus glycine. 6. By using a reconstituted mixture of separately purified l-threonine dehydrogenase and alpha-amino-beta-oxobutyrate CoA-ligase (i.e. ;aminoacetone synthase'), l-[U-(14)C]threonine was broken down to [(14)C]glycine plus [(14)C]acetyl-CoA (trapped as [(14)C]citrate). 7. There was no evidence of aminoacetone metabolism by Arthrobacter 9759 even though a small amount of this amino ketone appeared in the culture medium during growth on threonine.  相似文献   

17.
CO dehydrogenase from Clostridium thermoaceticum is a nickel-containing enzyme that catalyzes both the reversible conversion of CO2 to CO (for incorporation into the carbonyl group of acetate) and the synthesis of acetyl-CoA from methyl corrinoid, CO, and CoASH. The latter activity is conveniently assayed by monitoring the exchange of [1-14C]acetyl-CoA (carbonyl group) with 12CO. Kinetic parameters for the highly oxygen sensitive exchange activity have been determined: Km (acetyl-CoA) = 600 microM; Vmax = 440 min-1. In addition, coenzyme A analogues have been tested as inhibitors of the exchange to probe the active site of the enzyme; each has no effect on the CO2 in equilibrium CO activity of CO dehydrogenase. Coenzyme A, the substrate for acetate biosynthesis, is a potent competitive inhibitor, KI = 7 microM. Comparison of this value with that for desulfo-CoA (KI = 6000 microM) suggests that a key mode of binding is through the sulfur atom, possibly to a metal site on the enzyme. The relatively high affinity of the enzyme for CoASH relative to acetyl-CoA is consistent with its proposed operation in the acetogenic direction. The differential sensitivity to oxygen and storage of the two activities of CO dehydrogenase as well as the contrasting effect of coenzyme A inhibitors suggests that acetate assemblage occurs at a site distinct from that for CO dehydrogenation.  相似文献   

18.
Rat brain contains substantial concentrations of free malonate (192 nmol/g wet weight) but origin and biological importance of the dicarboxylic acid are poorly understood. A dietary source has been excluded. A recently described malonyl-CoA decarboxylase deficiency is associated with malonic aciduria and clinical manifestations, including mental retardation. In an effort to study the metabolic origin of free malonate, several labeled acetyl-CoA precursors were administered by intracerebral injection. [2-14C]pyruvate or [1,5-14C]citrate produced radioactive glutamate but failed to label malonate. In contrast, [1-14C]acetate, [2-14C]acetate, and [1-14C]butyrate were converted to labeled glutamateand malonate after the same route of administration. The intracerebral injection of [1-14C]--alanine as a precursor of malonic semialdehyde and possibly free malonate did not give rise to radioactivity in the dicarboxylate. The labeling pattern of malonic acid is compatible with the reaction sequence: acetyl-CoAmalonyl-CoAmalonate. The final step is thought to occur by transfer of the CoA-group from malonyl-CoA to succinate and/or acetoacetate. Labeling of malonate from acetate is most effective at the age of 7 days when the net concentration of the dicarboxylic acid in rat brain is still very low. At this age, butyrate was a better precursor of malonate than acetate. It is proposed that fatty acid oxidation provides the acetyl-CoA which functions as the precursor of free brain malonate. Compartmentation of malonate biosynthesis is likely because the acetyl-CoA precursors citrate and pyruvate are ineffective.Presented before the 12th Biennial Meeting of the International Society for Neurochemistry, Algarve, Portugal, April 24, 1989.  相似文献   

19.
Some aspects of tricarboxylic acid-cycle activity during differentiation and aging in Dictyostelium discoideum were examined. The concentrations of glutamate, aspartate, alanine, citrate, 2-oxoglutarate, succinate, fumarate, malate, oxaloacetate, pyruvate and acetyl-CoA were determined at four stages over the course of differentiation. The rate of O2 utilization was also determined over differentiation. In addition, experiments are described in which the specific radioactivities of citrate, 2-oxoglutarate, succinate, fumarate and malate were determined during a 30 min labelling of cells from the preculmination stage of development with [14C]glutamate, [14C]aspartate or [14C]alanine. A similar experiment was also performed with cells from the aggregation stage of development using [14C]glutamate.  相似文献   

20.
Slices of rat caudate nuclei were incubated in saline media containing choline, paraoxon, unlabelled glucose, and [1,5-14C] citrate, [1-14C-acetyl]carnitine, [1-14C]acetate, [2-14C]pyruvate, or [U-14C]glucose. The synthesis of acetyl-labelled acetylcholine (ACh) was compared with the total synthesis of ACh. When related to the utilization of unlabelled glucose (responsible for the formation of unlabelled ACh), the utilization of labelled substrates for the synthesis of the acetyl moiety of ACh was found to decrease in the following order: [2-14C]pyruvate greater than [U-14C]glucose greater than [1-14C-acetyl]carnitine greater than [1,5-14C]citrate greater than [1-14C]acetate. The utilization of [1,5-14C]citrate and [1-14C]acetate for the synthesis of [14C]ACh was low, although it was apparent from the formation of 14CO2 and 14C-labelled lipid that the substrates entered the cells and were metabolized. The utilization of [1,5-14C]citrate for the synthesis of [14C]ACh was higher when the incubation was performed in a medium without calcium (with EGTA); that of glucose did not change, whereas the utilization of other substrates for the synthesis of ACh decreased. The results indicate that earlier (indirect) evidence led to an underestimation of acetylcarnitine as a potential source of acetyl groups for the synthesis of ACh in mammalian brian; they do not support (but do not disprove) the view that citrate is the main carrier of acetyl groups from the intramitochondrial acetyl-CoA to the extramitochondrial space in cerebral cholinergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号