首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The nervus corporis cardiaci III (NCC III) of the locust Locust migratoria was investigated with intracellular and extracellular cobalt staining techniques in order to elucidate the morphology of neurons within the suboesophageal ganglion, which send axons into this nerve. Six neurons have many features in common with the dorsal, unpaired, median (DUM) neurons of thoracic and abdominal ganglia. Three other cells have cell bodies contralateral to their axons (contralateral neuron 1–3; CN 1–3). Two of these neurons (CN2 and CN3) appear to degenerate after imaginal ecdysis. CN3 innervates pharyngeal dilator muscles via its anterior axon in the NCC III, and a neck muscle via an additional posterior axon within the intersegmental nerve between the suboesophageal and prothoracic ganglia. A large cell with a ventral posterior cell body is located close to the sagittal plane of the ganglion (ventral, posterior, median neuron; VPMN). Staining of the NCC III towards the periphery reveals that the branching pattern of this nerve is extremely variable. It innervates the retrocerebral glandular complex, the antennal heart and pharyngeal dilator muscles, and has a connection to the frontal ganglion.Abbreviations AH antennal heart - AN antennal nerves - AO aorta - AV antennal vessel - CA corpus allatum - CC corpus cardiacum - CN1, CN2, CN3 contralateral neuron 1–3 - DIT dorsal intermediate tract - DMT dorsal median tract - DUM dorsal, unpaired, median - FC frontal connective - FG frontal ganglion - HG hypocerebral ganglion - LDT lateral dorsal tract - LMN, LSN labral motor and sensory nerves - LN+FC common root of labral nerves and frontal connective - LO lateral ocellus - MDT median dorsal tract - MDVR ventral root of mandibular nerve - MVT median ventral tract - NCA I, II nervus corporis allati I, II - NCC I, II, III nervus corporis cardiaci I, III - NR nervus recurrens - NTD nervus tegumentarius dorsalis - N8 nerve 8 of SOG - OE oesophagus - OEN oesophageal nerve - PH pharynx - SOG suboesophageal ganglion - T tentorium - TVN tritocerebral ventral nerve - VLT ventral lateral tract - VIT ventral intermediate tract - VMT ventral median tract - VPMN ventral, posterior, median neuron - 1–7 peripheral nerves of the SOG - 36, 37, 40–45 pharyngeal dilator muscles  相似文献   

2.
The morphology of the stomodeal nervous system of the adult dragon flies Bradinopyga geminata and Orthetrum chrysis is described. No gastric ganglion or ganglion ingluviale has been found. Instead the oesophageal nerve forks near the junction of the proventriculus and the midgut. The two nerves run on either side of the midline as ingluvial nerves and enter the proventricular ganglionic masses. These ganglionic masses are connected by a transverse nerve, which has been called as the nervus transversus proventriculare. Both bipolar and multipolar types of sensory cells have been found over the surface of the crop. These cell bodies appear to be interconnected by connective tissue. Dendrites of these cells terminate on the longitudinal muscle fibres, surrounding the proventriculus and the midgut. The proximal processes of these cells enter the proventricular ganglionic mass. In methylene blue whole mounts they resemble the stretch receptors, hence it is quite probable that they play some role in the peristaltic movement of the gut. The corpora cardiaca lie dorsal to the pharynx and are connected to the brain by two pairs of nerves, the nervi corporis cardiaci (NCC I, NCC II). Unlike in other insects, the nerve connecting the corpora cardiaca with the corpora allata is slender and arises as a branch of the nerve, nervus corporis allati II. The corpora alata are spherical to ovoid in shape and lie ventral to the nerve cord. Anteriorly they are attached to the inner wall of the hypopharynx and posteriorly to the subesophageal ganglion by a pair of nerves, the nervi corporis allati II.  相似文献   

3.
Summary The cerebral origins and axonal trajectories of neurons projecting to the retrocerebral complex of the cricket, Teleogryllus commodus, were examined in silver-intensified nickel preparations. Spatially separate groups of somata in the pars intercerebralis (PI) and in the pars lateralis (PL), commonly accepted as neurosecretory loci, were found to give rise to axons which terminate in the nervus corporis allati 2, the corpus allatum, or the corpus cardiacum. Additional findings demonstrated a distinct group of somata from the PI whose axons run in the esophageal nerve (stomatogastric nervous system), nine somata in the subesophageal ganglion with axons projecting into the nervus corporis allati 2, and also a small cluster of tritocerebral perikarya with axons terminating in the corpus cardiacum. Somata residing in the PI and PL were found to be compartmentally organized based upon the retrocerebral destinations of their axons. Possible functional consequences of these results with respect to the insect neurosecretory system are discussed.  相似文献   

4.
Summary Neural connections of the corpus cardiacum (CC) in the African locust, Locusta migratoria, were labelled with the fluorescent tracer Lucifer yellow. (1) Unilateral anterograde labelling of the nervus corporis cardiaci I revealed fluorescent fibres in the storage lobe of the CC (CCS). Some fluorescent fibres in the CCS closely approached the ipsilateral border of the glandular lobes of the CC (CCG). Fluorescent fibres also projected into the neuropile of the hypocerebral ganglion via the ipsilateral nervi cardiostomatogastrici I and II, and from there into the oesophageal nerves. (2) Unilateral anterograde labelling of the nervus corporis cardiaci II revealed fluorescent fibres in the CCS and in the ipsilateral CCG. Fluorescent fibres also projected via the ipsilateral nervus corporis allati I into the corpus allatum. (3) Unilateral retrograde labelling of the nervus corporis allati I revealed a distinct fluorescent nerve tract that runs through the CCS and into the nervus corporis cardiaci II. The tract arises from about eight cell bodies in the brain at the rostroventral side of the ipsilateral calyx of the mushroom body. (4) Labelling of the recurrent nerve revealed fluorescent fibres and some fluorescent cell bodies in the hypocerebral ganglion and, via the nervi cardiostomatogastrici I and II, also in the CCS. Fluorescent fibres were also present in the oesophageal nerves.  相似文献   

5.
Summary In the abdominal ganglia of the turnip moth Agrotis segetum, an antibody against the cockroach neuropeptide leucokinin I recognizes neurons with varicose fibers and terminals innervating the perisympathetic neurohemal organs. In the larva, the abdominal perisympathetic organs consist of a segmental series of discrete neurohemal swellings on the dorsal unpaired nerve and the transverse nerves originating at its bifurcation. These neurohemal structures are innervated by varicose terminals of leucokinin I-immunoreactive (LKIR) fibers originating from neuronal cell bodies located in the preceding segment. In the adult, the abdominal segmental neurohemal units are more or less fused into a plexus that extends over almost the whole abdominal nerve cord. The adult plexus consists of peripheral nerve branches and superficial nerve fibers beneath the basal lamina of the neural sheath of the nerve cord. During metamorphosis, the LKIR fibers closely follow the restructuration of the perisympathetic organs. In both larvae and adults the LKIR fibers in the neurohemal structures originate from the same cell bodies, which are distributed as ventrolateral bilateral pairs in all abdominal ganglia. The transformation of the series of separated and relatively simple larval neurohemal organs into the larger, continuous and more complex adult neurohemal areas occurs during the first of the two weeks of pupal life. The efferent abdominal LKIR neurons of the moth Agrotis segetum thus belong to the class of larval neurons which persist into adult life with substantial peripheral reorganization occurring during metamorphosis.  相似文献   

6.
Three distinct clusters of crustacean cardioactive-peptide-immunoreactive neurones occur in the terminal abdominal ganglion of the crayfish species Orconectes limosus, Astacus leptodactylus, Astacus astacus and Procambarus clarkii, as revealed by immunocytochemistry of whole-mount preparations and sections. They exhibit similar topology and projection patterns in all four studied species. An anterior ventral lateral and a posterior lateral cluster contain one small, strongly stained perikaryon and two large, less intensely stained perikarya, each showing contralateral projections. A posterior medial lateral cluster of up to six cells also contains these two types of perikarya. Whereas the small type perikarya belong to putative interneurones, the large type perikarya give rise to extensive neurohaemal plexuses in perineural sheaths of the third roots of the fifth abdominal ganglia, the connectives, the dorsal telson nerves, the ganglion itself, its roots and arteriolar supply. Thin fibres from these plexuses reach newly discovered putative neurohaemal areas around the hindgut and anus via the intestinal and the anal nerves, and directly innervate the phasic telson musculature. A comparison with earlier investigations of motoneurones and segmentation indicates that these three cell groups containing putative neurosecretory neurones may be members of at least three neuromeres in this ganglion. Crustacean cardioactive peptide released from these neurones may participate in the neurohumoral and modulatory control of different neuronal and muscle targets, thereby exceeding its previously established hindgut and heart excitatory effects.Abbreviations AG abdominal ganglion - adpl arteria dorsalis pleica - Ala arreria lateralis abdominalis - Asub arteria subneuralis - CCAP crustacean cardioactive peptide - CNS central nervous system - IR immunoreactive - LG lateral giant axon - LTr lateral tract - MDT medial dorsal tract - MG medial giant axon - M Tr medial tract - mcan musculus compressor ani - mfltp museulus flexor telsonos posterior - nan nervus ani (AG6 N5) - nant nervus anterior (AG6 N1, N2) - nia nervus intestinal anterior - nin nervus intestinalis (AG6 N7) - nip nervus intestinalis posterior - nteld nervus telsonos dorsalis (AG6 N6) - nielv nervus telsonos ventralis (AG6 N4) - nur nervus uropedalis (AG6 N3) - nven nervus ventralis (AG5 N3) - PIR peri-intestinal ring - PTF posterior telson flexor - VLT ventral lateral tract - VMT ventral medial tract - VNC ventral nerve cord - VIF ventral telson flexor - AVLC, PLC, PMLC anterior ventral lateral, posterior lateral, posterior medial lateral CCAP-immunoreactive cell cluster - A6AVC, A7AVC anterior ventral commissures - A7DCI dorsal commissure I - A7PVC posterior ventral commissure - A7SCII sensory commissure II - A7VCII, A7VCIII ventral commissures II and III of the sixth (A6) and seventh (A7) abdominal neuromer  相似文献   

7.
Retrograde and orthograde labeling of neurons projecting to the corpus allatum was performed in locust, grasshopper, cricket, and cockroach species in order to identify brain neurons that may be involved in the regulation of juvenile hormone production. In the acridid grasshopper Gomphocerus rufus L., and the locusts Locusta migratoria (R.&F.) and Schistocerca gregaria Forskal, the corpora allata are innervated by two morphologically distinguishable types of brain neurons. One group of 9–13 neurons (depending on species) with somata in the pars lateralis extend axons via the nervus corporis cardiaci 2 and nervus corporis allati 1 to the ipsilateral corpus allatum, whereas two cells in each pars lateralis have bilateral projections and innervate both glands. No direct connection between the pars intercerebralis and corpus allatum has been found. In contrast, neurons with paired axons innervating both glands are not present in Periplaneta americana (L.) and Gryllus bimaculatus de Geer. Instead, two cells in each pars lateralis project only to the gland contralateral to their somata. Electrophysiological experiments on acridid grasshoppers have confirmed the existence of a direct conduction pathway between the two glands via the paired axons of four cells that have been identified by neuroanatomy. These cells are not spontaneously active under experimental conditions. Ongoing discharges in the left and right nerves are unrelated, suggesting that the corpora allata receive independent neuronal inputs from the brain.  相似文献   

8.
The anatomy of the retrocerebral complex was studied after supravital staining with methylene blue, and axonal tracts within the corpora allata (CA) were traced after applying the CoCl2 technique together with Timm's sulfide-silver enhancement. Cobalt chloride fills of the nerves to and from the CA revealed two major sources of innervation: the brain and the subesophageal ganglion. Three cell clusters in the brain contribute axons that reach each nervus corporis allati I (NCA I) and, apparently, pass to or beyond the CA. These are: a cluster of 8 to 12 cells in the contralateral pars lateralis, a cluster of 16 to 20 cells in the ipsilateral pars lateralis, and a cluster of 50 to 60 cells in the contralateral pars intercerebralis. PAF-stained sections of other brains revealed a corresponding number of PAF-positive cells in these same regions. The medial and lateral neurons arborize in the neuropile adjacent to the pars intercerebralis, and may associate there. The lateral group also arborizes extensively in the neuropile surrounding the pedunculus of the mushroom body. At least four cell bodies located antero-ventrad in the subesophageal ganglion send axons to the CA via each nervus corporis allati II (NCA II).To determine possible inhibitory pathways to the CA, the NCA I, NCA II, and postallatal nerves of last instar larvae were severed; either singly, or in combination. Additional experiments were performed on last instar larvae to substantiate that superlarvae were a direct result of an enhanced or sustained juvenile hormone titre. These experiments included: implanting two or more CA, extirpating one CA, or applying 100 μg of Altosid topically onto allatectomized larvae. The experiments indicated that only NCA I is an inhibitory pathway and that superlarvae were a direct consequence of CA activation. NCA II does not seem to provide the CA with an essential excitatory innervation; when it and NCA I are severed a supernumerary apolysis will still result. Some of the cells in the brain stainable by the CoCl2 method are most probably identical to those that are PAF-positive. These cells may inhibit the CA in last instar larvae via neurosecretomotor junctions.  相似文献   

9.
The distribution and morphology of crustacean cardioactive peptide-immunoreactive neurons in the brain of the locust Locusta migratoria has been determined. Of more than 500 immunoreactive neurons in total, about 380 are interneurons in the optic lobes. These neurons invade several layers of the medulla and distal parts of the lobula. In addition, a small group of neurons projects into the accessory medulla, the lamina, and to several areas in the median protocerebrum. In the midbrain, 12 groups or individual neurons have been reconstructed. Four groups innervate areas of the superior lateral and ventral lateral protocerebrum and the lateral horn. Two cell groups have bilateral arborizations anterior and posterior to the central body or in the superior median protocerebrum. Ramifications in subunits of the central body and in the lateral and the median accessory lobes arise from four additional cell groups. Two local interneurons innervate the antennal lobe. A tritocerebral cell projects contralaterally into the frontal ganglion and appears to give rise to fibers in the recurrent nerve, and in the hypocerebral and ingluvial ganglia. Varicose fibers in the nervi corporis cardiaci III and the corpora cardiaca, and terminals on pharyngeal dilator muscles arise from two subesophageal neurons. Some of the locust neurons closely resemble immunopositive neurons in a beetle and a moth. Our results suggest that the peptide may be (1) a modulatory substance produced by many brain interneurons, and (2) a neurohormone released from subesophageal neurosecretory cells.  相似文献   

10.
Anatomical study of neurons projecting to the retrocerebral complex of the adult blow fly, Protophormia terraenovae, was done by NiCl2 filling and immunocytochemistry. Retrograde filling through the cardiac-recurrent nerve labeled three groups of neurons in the brain/subesophageal ganglion: (1) paramedial clusters of the pars intercerebralis, (2) neurons in each pars lateralis, and (3) neurons in the subesophageal ganglion. The pars intercerebralis neurons send prominent axons into the median bundle and exit from the brain via the contralateral nervus corporis cardiaci. Based on the projection pattern, two types of the pars lateralis neurons can be distinguished: the most lateral pairs of neurons contralaterally extend through the posterior lateral tract and the remainder ipsilaterally extend through the posterior lateral tract. The neurons in the subesophageal ganglion run through the contralateral nervus corporis cardiaci. The dendritic arborization of the pars intercerebralis and pars lateralis neurons is restricted to the superior protocerebral neuropil and to the anterior neuropil of the subesophageal ganglion where the neurons in the subesophageal ganglion also project. Retrograde filling from the corpus allatum indicated that the pars lateralis neurons and a few pars intercerebralis neurons project to the corpus allatum, but that the neurons in the subesophageal ganglion do not. Orthograde filling from the pars intercerebralis and staining by paraldehyde-thionin/paraldehyde-fuchsin indicated that the pars intercerebralis neurons project primarily to the corpus cardiacum/hypocerebral ganglion complex. Immunostaining with a polyclonal antiserum against diapause hormone, a member of the FXPRLamide family, suggests that some of the subesophageal ganglion neurons contain FXPRLamide-like peptides.  相似文献   

11.
Summary An antiserum against the cockroach neuropeptide leucokinin I (LKI) was used to study peptidergic neurons and their innervation patterns in larvae and adults of three species of higher dipteran insects, the flies Drosophila melanogaster, Calliphora vomitoria, and Phormia terraenovae, as well as larvae of a primitive dipteran insect, the crane fly Phalacrocera replicata. In the larvae of the higher dipteran flies, the antiserum revealed three pairs of cells in the brain, three pairs of ventro-medial cells in the subesophageal ganglion, and seven pairs of ventro-lateral cells in the abdominal ganglia. Each of these 14 abdominal leucokinin-immunoreactive (LKIR) neurons innervates a single muscle of the abdominal body wall (muscle 8), which is known to degenerate shortly after adult emergence. Conventional electron microscopy demonstrates that this muscle is innervated by at least one axon containing clear vesicles and two axons containing dense-cored vesicles. Electronmicroscopical immunocytochemistry shows that the LKIR axon is one of these two axons with dense-cored vesicles and that it forms terminals on the sarcolemma of its target muscle. The abdominal LKIR neurons appear to survive metamorphosis. In the adult fly, the efferent abdominal LKIR neurons innervate the spiracles, the heart, and neurohemal regions of the abdominal wall. In the crane fly larva, dorso-medial and ventrolateral LKIR cell bodies are located in both thoracic and abdominal ganglia of the ventral nerve cord. As in the larvae of the other flies, the abdominal ventrolateral LKIR neurons form efferent axons. However, in the crane fly larva there are two pairs of efferent LKIR neurons in each of the abdominal ganglia and their peripheral targets include neurohemal regions of the dorsal transverse nerves. An additional difference is that in the crane fly, a caudal pair of LKIR axons originating from the penultimate pair of dorso-median LKIR cells in the terminal ganglion innervate the hindgut.  相似文献   

12.
The pyrokinin/pheromone-biosynthesis-activating neuropeptide (PBAN) family of peptides found in insects is characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. The pentapeptide is the active core required for diverse physiological functions, including the stimulation of pheromone biosynthesis in female moths, muscle contraction, induction of embryonic diapause, melanization, acceleration of puparium formation, and termination of pupal diapause. We have used immunocytochemical techniques to demonstrate the presence of pyrokinin/PBAN-like peptides in the central nervous system of the fire ant, Solenopsis invicta. Polyclonal antisera against the C-terminal end of PBAN have revealed the location of the peptide-producing cell bodies and axons in the central nervous system. Immunoreactive material is detectable in at least three groups of neurons in the subesophageal ganglion and corpora cardiaca of all adult sexual forms. The ventral nerve cord of adults consists of two segmented thoracic ganglia and four segmented abdominal ganglia. Two immunoreactive pairs of neurons are present in the thoracic ganglia, and three neuron pairs in each of the first three abdominal ganglia. The terminal abdominal ganglion has no immunoreactive neurons. PBAN immunoreactive material found in abdominal neurons appears to be projected to perisympathetic organs connected to the abdominal ganglia. These results indicate that the fire ant nervous system contains pyrokinin/PBAN-like peptides, and that these peptides are released into the hemolymph. In support of our immunocytochemical results, significant pheromonotropic activity is found in fire ant brain-subesophageal ganglion extracts from all adult fire ant forms (queens, female and male alates, and workers) when extracts are injected into decapitated females of Helicoverpa zea. This is the first demonstration of the presence of pyrokinin/PBAN-like peptides and pheromonotropic activity in an ant species. This research was supported in part by a US-Israel Binational Science Foundation Grant (no. 2003367).  相似文献   

13.
Pigment‐dispersing factor (PDF) is a neuropeptide that has been indicated as a likely output signal from the circadian clock neurons in the brain of Drosophila. In addition to these brain neurons, there are PDF‐immunoreactive (PDFI) neurons in the abdominal ganglia of Drosophila and other insects; the function of these neurons is not known. We have analyzed PDFI neurons in the abdominal ganglia of the locust Locusta migratoria. These PDFI neurons can first be detected at about 45% embryonic development and have an adult appearance at about 80%. In each of the abdominal ganglia (A3–A7) there is one pair of lateral PDFI neurons and in each of the A5–A7 ganglia there is additionally a pair of median neurons. The lateral neurons supply varicose branches to neurohemal areas of the lateral heart nerves and perisympathetic organs, whereas the median cells form processes in the terminal abdominal ganglion and supply terminals on the hindgut. Because PDF does not influence hindgut contractility, it is possible that also these median neurons release PDF into the circulation. Release from one or both the PDFI neuron types was confirmed by measurements of PDF‐immunoreactivity in hemolymph by enzyme immunoassay. PDF applied to the terminal abdominal ganglion triggers firing of action potentials in motoneurons with axons in the genital nerves of males and the 8th ventral nerve of females. Because this action is blocked in calcium‐free saline, it is likely that PDF acts via interneurons. Thus, PDF seems to have a modulatory role in central neuronal circuits of the terminal abdominal ganglion that control muscles of genital organs. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 19–41, 2001  相似文献   

14.
The morphology and position of putative neurohemal areas in the peripheral nervous system (ventral nerve cord and retrocerebral complex) of the cricket Gryllus bimaculatus are described. By using antisera to the amines dopamine, histamine, octopamine, and serotonin, and the neuropeptides crustacean cardioactive peptide, FMRFamide, leucokinin 1, and proctolin, an extensive system of varicose fibers has been detected throughout the nerves of all neuromeres, except for nerve 2 of the prothoracic ganglion. Immunoreactive varicose fibers occur mainly in a superficial position at the neurilemma, indicating neurosecretory storage and release of neuroactive compounds. The varicose fibers are projections from central or peripheral neurons that may extend over more than one segment. The peripheral fiber varicosities show segment-specific arrangements for each of the substances investigated. Immunoreactivity to histamine and octopamine is mainly found in the nerves of abdominal segments, whereas serotonin immunoreactivity is concentrated in subesophageal and terminal ganglion nerves. Immunoreactivity to FMRFamide and crustacean cardioactive peptide is widespread throughout all segments. Structures immunoreactive to leucokinin 1 are present in abdominal nerves, and proctolin immunostaining is found in the terminal ganglion and thoracic nerves. Codistribution of peripheral varicose fiber plexuses is regularly seen for amines and peptides, whereas the colocalization of substances in neurons has not been detected for any of the neuroactive compounds investigated. The varicose fiber system is regarded as complementary to the classical neurohemal organs.  相似文献   

15.
Summary Proctolin-immunoreactive neurons in all neuromers of the ventral nerve cord of Tenebrio molitor L. have been quantitatively demonstrated and mapped throughout metamorphosis. Each neuromer contains an anterior and a posterior group of neurons with light and dark staining properties as revealed by peroxidase-antiperoxidase labeling. Serial homologous subsets of dark staining neurons with central and peripheral projections have been identified and found to persist during morphogenetic changes from the larva to the adult. Most neurons maintain their topological and structural characteristics throughout metamorphosis. The identified proctolin-immunoreactive neurons exhibit structures similar to those described in other insect species; some may correspond known motoneurons.  相似文献   

16.
Retrocerebral glandular complexes of Teleogryllus commodus (Orthoptera : Gryllidae) and Periplaneta americana (Dictyoptera : Blattidae) were examined for 5-hydroxytryptamine (serotonin)-immunoreactive (5-HTi) neurons. In Teleogryllus, a prominent tract of 5-HTi axons crosses the ventral surface of the corpus allatum (CA) from nervus corporis allati 1 (NCA 1), and seems to end at varicosities in NCA 2. Serotoninergic axons within this tract pass cephalad to the corpus cardiacum (CC), which also contains numerous, fine 5-HTi branches. 5-HTi axons originate anteriorly, presumably from the pars intercerebralis (PI) and pars lateralis (PL) of the brain. This is suggested by absence of immunoreactivity at the NCA 2-subesophageal ganglion junction, by intense immunofluorescence of the nervi corporis cardiaci (NCC) 1 and 2, by the presence of 5-HTi perikarya in PI and PL, and by previous data obtained by backfilling NCA 1 and 2. In Periplaneta, 5-HTi varicosities are rare in the CA, but abound in the NCA 2, and in NCC 1, 2, and 3. A few 5-HTi fibers project anteriorly from NCA 2 into the cap-like junction of CA and CC, and some traverse the CA to enter the postallatal nerves. Large, 5-HTi axons of NCC 3 ramify within the CC, while others contribute to an anterior branch of NCA 2. As in Teleogryllus, it is unlikely that 5-HTi fibers in NCA 2 originate from somata in the subesophageal ganglion. When cobalt staining and serotonin immunocytochemistry were combined to stain subesophageal neurons of Periplaneta, 5-HTi somata could not be paired with those back-filled via NCA 2. Conspicuous 5-HTi tracts between NCA 2 and the CC of Teleogryllus have no counterpart in Periplaneta.  相似文献   

17.
Immunocytochemistry was used to determine sites of synthesis and pathways for the transport of the neuropeptide, Leucomyosuppressin (pQDVDHVFLRFamide) in the cockroach,Leucophaea maderae. This study led to identification of neurons in the brain and thoracic ganglia reactive to polyclonal antibodies raised against this peptide. No immunoreactive cells were found in the subsophageal or abdominal ganglia. Although the corpus cardiacum contained no intrinsic cells immunoreactive to LMS antibodies, the periphery of this organ and that of the nervi corporis allati contain an abundance of LMS-reactive terminals.  相似文献   

18.
Pigment-dispersing factor (PDF) is a neuropeptide that has been indicated as a likely output signal from the circadian clock neurons in the brain of Drosophila. In addition to these brain neurons, there are PDF-immunoreactive (PDFI) neurons in the abdominal ganglia of Drosophila and other insects; the function of these neurons is not known. We have analyzed PDFI neurons in the abdominal ganglia of the locust Locusta migratoria. These PDFI neurons can first be detected at about 45% embryonic development and have an adult appearance at about 80%. In each of the abdominal ganglia (A3-A7) there is one pair of lateral PDFI neurons and in each of the A5-A7 ganglia there is additionally a pair of median neurons. The lateral neurons supply varicose branches to neurohemal areas of the lateral heart nerves and perisympathetic organs, whereas the median cells form processes in the terminal abdominal ganglion and supply terminals on the hindgut. Because PDF does not influence hindgut contractility, it is possible that also these median neurons release PDF into the circulation. Release from one or both the PDFI neuron types was confirmed by measurements of PDF-immunoreactivity in hemolymph by enzyme immunoassay. PDF applied to the terminal abdominal ganglion triggers firing of action potentials in motoneurons with axons in the genital nerves of males and the 8th ventral nerve of females. Because this action is blocked in calcium-free saline, it is likely that PDF acts via interneurons. Thus, PDF seems to have a modulatory role in central neuronal circuits of the terminal abdominal ganglion that control muscles of genital organs.  相似文献   

19.
Summary By use of an antiserum against the crustacean cardioactive peptide (CCAP) several types of bilaterally symmetrical neurons have been mapped quantitatively in the ventral nerve cord and in the brain of the meal beetle, Tenebrio molitor. The general architecture of these neurons was reconstructed from peroxidase-antiperoxidase-labelled whole-mount preparations. From the subesophageal to the seventh abdominal ganglia two types of neurons show a repetitive organization of contralateral projection patterns in each neuromere. The first type has few branches in the central neuropil and a distinct peripheral projection. The second type is characterized by an elaborate central branching pattern, which includes ascending and descending processes. Some of its peripheral branches were found to supply peripheral neurohemal areas. In the protocerebrum, 10 CCAP-immunoreactive neurons occur with projections into the superior median protocerebrum and the tritocerebrum. Immunopositive neurons were mapped in larval and various pupal stages, as well as in the adult. All types of identified neurons were found to persist throughout metamorphosis maintaining their essential structural and topological characteristics. The CCAP-immunoreactive neurons of T. molitor are compared with those described for the locust. Putative structural homologies of subsets of neurons in both species are discussed.  相似文献   

20.
The nervous system of the planktotrophic trochophore larva of Polygordius lacteus has been investigated using antibodies to serotonin (5-HT) and the neuropeptide FMRFamide. The apical ganglion contains three 5-HT-ir neurons, many FMRFamide-ir neurons and a tripartate 5-HT-ir and FMRFamide-ir neuropil. A lateral nerve extends from each side of the apical ganglion across the episphere and the ventral hyposphere, where the two nerves combine to form the paired ventral nerve cord. These nerves have both 5-HT-ir and FMRFamide-ir processes. Three circumferential nerves are associated with the ciliary bands: two prototroch and one metatroch nerve. All contain 5-HT-ir and FMRFamide-ir processes. An oral nerve plexus also contain both 5-HT-ir and FMRFamide-ir processes develops from the metatroch nerve, and an esophageal ring of FMRFamide-ir processes develops in later larval stages. In young stages the ventral ganglion contains two 5-HT-ir and two FMRFamide-ir perikarya; during development the ventral ganglion grows caudally and adds additional 5-HR-ir and FMRFamide-ir perikarya. These are the only perikarya that could be found along the lateral nerve and ventral nerve cord. The telotroch nerve develops from the ventral nerve cord. The 5-HT-ir and FMRFamide-ir part of the nervous system is strictly bilateral symmetric. and much of the system (i.e. apical ganglion, lateral nerves ventral nerve cord, dorsal nerve and oral plexus) is retained in the adult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号