首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genes coding for the major 70,000 Mr heat shock protein (hsp70) are found at two loci, 87A7 and 87C1, in Drosophila melanogaster. At 87A7 they are present as two genes in diverging orientation, whilst at 87C1 two tandemly repeated distal copies are separated from a single copy in divergent orientation by about 40,000 bases of DNA. Within this 40,000 bases are found the αβ heat-induced genes, interspersed with γ elements. In this paper we report the isolation and characterization of the proximal hsp70 gene from locus 87C1. The DNA sequence upstream from this gene shows greater than 98% homology with that of αγ, suggesting that the γ element interspersed with αβ sequences originated from this position. In addition, we present the DNA sequence between the two genes in a cloned DNA segment from 87A7, and compare the sequence with those from 87C1. We find a complex pattern of nucleotide sequence homology extending far upstream of the hsp70 genes at the two loci. The evolution of the present arrangement at these two loci is discussed.  相似文献   

3.
4.
Using deficiencies in D. melanogaster that lack either the 87A or 87C heat-induced puffs, we have shown that the 70,000 dalton heat-induced protein (hsp 70) is encoded at both these loci. Embryos deleted for one of the two loci retain the ability to make hsp 70 after heat shock, but deleting both loci eliminates synthesis of hsp 70. Thus both loci encode hsp 70 and can be active following heat shock. We have analyzed the proteins made by embryos lacking either 87A or 87C, and have compared the 87A- and 87C-coded hsp 70 by isoelectric focusing and tryptic peptide fingerprinting. The hsp 70 made by the two loci is very similar, although a variant tryptic peptide appears to be encoded only at 87C. Using deficiencies with slightly different breakpoints, we have mapped the 87A locus to band 87A7, the site of the 87A heat-induced puff. The 87C locus maps within 87C1.  相似文献   

5.
Studies of cloned sequences from four Drosophila heat shock loci.   总被引:45,自引:0,他引:45  
R Holmgren  K Livak  R Morimoto  R Freund  M Meselson 《Cell》1979,18(4):1359-1370
DNA cloned from the D. melanogaster (Oregon R) heat shock loci at 63BC and 95D codes for the 83,000 and the 68,000 dalton heat shock proteins, respectively. Both coding sequences occur once per haploid genome. Sequences complementary to messenger RNA for the 70,000 dalton heat shock protein are represented five times, twice at 87A and three times at 87 C. The copies at 87A differ characteristically from those at 87C in an interval of a few hundred bp near the 5' end of the messenger sequence, and the corresponding two classes of hsp 70 messenger RNA are found on polysomes after heat shock. Within this differential region, there is about 15% divergence between messenger sequences cloned from the two loci, while in the rest of the messenger region examined the homology is much closer although still imperfect. Unexpectedly, considerable homology is found between the sequence for the 68,000 dalton heat shock protein at 95D and the sequences for the 70,000 dalton protein at 87A and 87C, and between these sequences and a site in 87D. Messenger RNA molecules of 2.4, 2.55 and 3.05 kb code for the 68,000, 70,000 and 83,000 dalton heat shock proteins and hybridize to apparently uninterrupted DNA sequences of 2.1, 2.25 and 2.6 kb, respectively.  相似文献   

6.
The chromatin fiber of eukaryotic chromosomes is thought to be organized into a series of discrete domains or loops. To learn more about these large-scale structures, we have examined the sequence and chromatin organization of the DNA segments surrounding the two hsp 70 genes at the Drosophila melanogaster cytogenetic locus 87A7. These studies indicate that this heat shock locus is flanked on both the proximal and distal sides by novel chromatin structures, which we have called, respectively, scs and scs' (specialized chromatin structures). Each structure is defined by two sets of closely spaced nuclease-hypersensitive sites arranged around a central nuclease-resistant segment. Our findings suggest that these two structures define the proximal and distal boundaries of the 87A7 chromomere and, hence, may be one of the first examples of anchor points for the organization of eukaryotic chromosomes into a series of discrete higher order domains. Moreover, these structures may provide focal points both for the decondensation of the chromomere when the hsp 70 genes are induced by heat shock and for the subsequent rewinding and condensation of the chromomere during recovery from heat shock.  相似文献   

7.
8.
9.
10.
11.
12.
13.
The major heat shock protein of 70,000 Mr in Drosophila melanogaster is encoded by two variant gene types located, respectively, at the chromosomal sites 87A7 and 87C1. We present the DNA sequence of a complete hsp702 gene of the 87A7 type and of the adjacent regions from both variants, extending to 1·2 × 103 bases upstream from the start of the messenger coding region. We find an untranslated region of 250 nucleotides at the 5′ end of the messenger coding sequence in both variants. There is only one open reading frame which allows coding of a 70,000 Mr protein within the 87A7 variant, as found for an 87C1 variant (Ingolia et al., 1980). We observe 4·2% nucleotide divergence between these two variants with complete conservation of the reading frame. There is a conserved sequence of 355 nucleotides in front of each hsp70 gene, which is 85% homologous between the two variants. The presence of the same sequence element in γ, in front of the αβ heat shock genes (R. W. Hackett & J. T. Lis, personal communication) suggests that this element contains the regulatory signals for the coordinate expression of both the hsp70 and the αβ heat shock genes. Finally we find a very A + T-rich sequence of 150 basepairs which is highly conserved (91·8%) 0·6 × 103 bases upstream from two hps70 gene variants.  相似文献   

14.
The region between 86F1,2 and 87B15 on chromosome 3 of Drosophila melanogaster, which contains about 27 polytene chromosome bands including the 87A7 heat-shock locus, has been screened for EMS-induced visible and lethal mutations. We have recovered 268 lethal mutations that fall into 25 complementation groups. Cytogenetic localization of the complementation groups by deficiency mapping is consistent with the notion that each band encodes a single genetic function. We have also screened for mutations at the 87A7 heat shock locus, using a chromosome that has only one copy of the gene encoding the 70,000 dalton heat-shock protein (hsp70). No lethal or visible mutations at 87A7 were identified from 10,719 mutagenized chromosomes, and no female-sterile mutations at 87A7 were recovered from the 1,520 chromosomes whose progeny were tested for female fertility. We found no evidence that a functional hsp70 gene is required for development under laboratory conditions.  相似文献   

15.
16.
We present the sequences at the 5' and 3' ends of one hsp 70 gene variant which is derived from the chromosomal locus 87A7. The 5' end of the hsp 70 mRNA has also been determined. 550 bp upstream from the 5' end of the hsp 70 mRNA, there is a very A+T rich region shown by heteroduplex analysis to be also present at the same position in other hsp 70 genes9. The 5' end of the hsp 70 mRNA was found 26 bp after a characteristic "Hogness box". The first ATG codon was found 250 bp downstream from the 5' end of the hsp 70 mRNA. We also determined the termination codon at the 3' end of the hsp 70 gene. Comparisons with other genes are discussed.  相似文献   

17.
The sequence dependence of Drosophila topoisomerase II supercoil relaxation and binding activities has been examined. The DNA substrates used in binding experiments were two fragments from Drosophila heat shock locus 87A7. One of these DNA fragments includes the coding region for the heat shock protein hsp70, and the other includes the intergenic non-coding region that separates two divergently transcribed copies of the hsp70 gene at the locus. The intergenic region was previously shown to have a much higher density of topoisomerase cleavage sites than the hsp70 coding region. Competition nitrocellulose filter binding assays demonstrate a preferential binding of the intergene fragment, and that binding specificity increases with increasing ionic strength. Dissociation kinetics indicate a greater kinetic stability of topoisomerase II complexes with the intergene DNA fragment. To study topoisomerase II relaxation activity, we used supercoiled plasmids that contained the same fragments from locus 87A7 cloned as inserts. The relative relaxation rates of the two plasmids were determined under several conditions of ionic strength, and when the plasmid substrates were included in separate reactions or when they were mixed in a single reaction. The relaxation properties of these two plasmids can be explained by a coincidence of high-affinity binding sites, strong cleavage sites, and sites used during the catalysis of strand passage events by topoisomerase II. Sequence dependence of topoisomerase II catalytic activity may therefore parallel the sequence dependence of DNA cleavage by this enzyme.  相似文献   

18.
Fucosyltransferases catalyse fucose transfer onto oligosaccharides. Two fucosylated structures have been identified in plants: the alpha1,4-fucosylated Lewis-a epitope and the alpha1,3-fucosylated core. Here we report the cloning, genomic characterization, and physical mapping of two genes encoding proteins similar to alpha1,4-fucosyltransferase (EC 2.4.1.65, MtFUT1) and alpha1,3-fucosyltransferase (EC 2.4.1.214, MtFUT2) in Medicago truncatula. Analysis of the genomic organization of the fucosyltransferase genes in M. truncatula, revealed the presence of two genomic variants of the MtFUT1 gene coding sequence, one containing a single intron and the other intronless, whereas in MtFUT2, the gene coding region is interrupted by four introns. Using for the first time fluorescence in situ hybridization (FISH) to physically map fucosyltransferase genes in plants, this study reveals a high genomic dispersion of these genes in Medicago. The MtFUT1 genes are mapped on chromosomes 4, 7, and 8, colocalizing on three of the five MtFUT2 loci. Chromosomes 1 and 5 carry the additional MtFUT2 loci. Moreover, the intensity of the FISH signals reveals marked differences in the number of gene copies per locus for both genes. Simultaneous mapping of rRNA genes on chromosome 5 shows that several MTFUT2 gene loci are inserted within the rDNA array. Insertions of coding DNA sequences into the rDNA repeats were never reported to date.  相似文献   

19.
20.
We have isolated recombinant DNA clones which include cDNA and chromosomal DNA sequences of the major heat shock-inducible gene of Drosophila. With the cDNA fragments used as specific hybridization probes, DNA:DNA reassociation and in situ hybridization analysis demonstrated that the DNA sequences are repeated approximately 7 times in the haploid Drosophila genome, and that gene sequences are present at both the 87A and 87C loci on the cytological map. The cloned cDNA and homologous cloned chromosomal DNA hybridized to mRNA which translated in vitro into the major 70K heat shock-specific protein. Here we summarize a study of the organization of genes coding for the 70K heat shock-specific protein contained in the two recombinant chromosomal DNA plasmids pG3 and pG5. On the basis of R loop hybridization experiments and restriction enzyme analysis, we conclude that a 14 kb fragment, G3, contains three copies of the gene coding for the 70K protein. A second 9.2 kb fragment, G5, contains one copy of the gene coding for the 70K protein. Hybridization of labeled poly(A)-containing RNA to restriction endonuclease-cleaved DNA indicates that the mRNA coding regions in G3 and G5 are each approximately 2100 bp long. The three tandemly repeated genes of G3 are separated by approximately 1400 bp of spacer DNA. The two internal spacer regions in G3 appear to be identical, whereas differences in restriction enzyme sites indicate that the sequences adjacent to the cluster differ from the internal spacer and from each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号