首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A study was made of changes in F-actin conformation occurring in a myosin-free single ghost fibre induced by the binding of glycolytic enzyme lactate dehydrogenase (LDG) to F-actin. The formation of the complex between LDG and F-actin induces changes in the parameters of the intrinsic (tryptophan) and extrinsic (rodominil--phalloin) polarized fluorescence of F-actin of the ghost muscle fibre. It is found that LDG stimulates Mg2+-ATPase of actomyosin in solution. It is assumed that the coupling of energy-providing mechanism with that of muscle contraction may be accomplished through the conformation changes in F-actin.  相似文献   

2.
Iu S Borovikov 《Tsitologiia》1984,26(11):1262-1266
Conformational changes in F-actin, induced by glutaraldehyde or phalloidin, were found in glycerinated m. psoas rabbit fibres (ghost and reconstructed fibres). It is shown that the conformational changes of F-actin decreased the thin filament flexibility as well as weakened fibre's contractility. It is assumed that the stabilization in F-actin structure may be an important factor involved in the mechanism of muscle contraction regulation.  相似文献   

3.
Ca2+-dependent conformational changes in F-actin during myosin subfragment-1 binding with thin filament (in the absence of troponin and tropomyosin) were found in myosin-free ghost fibres by polarized UV microscopy. The pattern of the conformational changes in F-actin changed cooperatively within the range of free Ca2+ concentrations from 10(-7) mol/l to 10(-6) mol/l. It should be suggested that in skeletal muscle of vertebrates there exists a myosin-linked modulation of contraction by Ca2+.  相似文献   

4.
Using polarized UV fluorescent microscopy it has been shown that phallotoxins (phalloidin-sulfone, phalloidin-sulfoxide-B, phalloidin-sulfoxide-A and dithio-phalloidin) cause an increase in tryptophan fluorescence anisotropy of F-actin myofilaments in myosin-free ghost muscle fibres of rabbit. The results obtained are considered to be evidence of conformational changes in F-actin, induced by phallotoxins. These changes are irreversible to a significant extent, which points to a high degree of actin binding to both toxic and nontoxic phallotoxins.  相似文献   

5.
A possibility of binding glyceraldehyde-3-phosphate dehydrogenase (GAPhDG) in frog (Rana temporaria L.) skeletal muscles was studied by measuring its solubilization in 0.15 M KCl and by its presence in isolated actomyosin. Using a 0.15 M KCl solution, more GAPhDG was extracted from intact muscles and muscles treated with heat at 38, 42 and 46 degrees C for 15 min than in a non-electrolyte medium. Actomyosin isolated from muscles reveals GAPhDG activity which cannot be removed by actomyosin reprecipitation. In myosin-, troponin- and tropomyosin-free single glycerinated muscle fibres (ghost fibres) GAPhDG absorption to F-actin was shown. It is suggested that under thermal injure of muscle cells, the increase in GAPhDG binding with thermolabile proteins of actomyosin complex may occur.  相似文献   

6.
The binding of pig skeletal muscle lactate dehydrogenase by F-actin has been studied using the sedimentation method in 10 mM Tris-acetate buffer, pH 6.0 at 20 degrees C. Adsorption capacity of F-actin is equal to (1 +/- 0.1) . 10(-5) moles of lactate dehydrogenase per 1 g of actin. NADH decreases the affinity of F-actin with respect to lactate dehydrogenase. The binding of lactate dehydrogenase by F-actin in diminishing the rate of enzymatic reduction of alpha-ketoglutarate. The microscopic dissociation constant for the complex of the enzyme with F-actin which is estimated from the dependence of the enzymatic reaction rate of F-actin concentration at saturating NADH concentrations is equal (3.0 +2- 0.5) . 10(-7) M. It has been shown that the bound enzyme is characterized by the greater value of Km and the lower value of Vmax in comparison to the free enzyme.  相似文献   

7.
The changes in F-actin conformation in myosin-free single ghost fiber induced by the binding of heavy meromyosin (HMM) with dephosphorylated or phosphorylated light chains-2 (LC2) have been studied by measuring intrinsic tryptophan polarized fluorescence of F-actin. It has been found that at low concentrations of Ca2+ (pCa greater than or equal to 8), the binding of HMM with dephosphorylated LC2 to F-actin in ghost fibres increases, whereas the binding of HMM with phosphorylated LC2 decreases the anisotropy of polarized tryptophan fluorescence. The effect is reversed at high concentrations of Ca2+ (pCa = 5). It has been assumed that this effect of myosin light chains phosphorylation may be due to its influence on the type of myosin head binding to F-actin.  相似文献   

8.
1. Human foetal skeletal muscles involved in support and in periodic contractility were studied for their content of total extractable lactate dehydrogenase, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities as well as for the relative distribution of lactate dehydrogenase isoenzymes. 2. During foetal development a linear steady increase in total lactate dehydrogenase activity as well as a linear decrease in the H/M sub-unit ratio of the isoenzymes was found. 3. No significant changes were found in the activities of the enzymes of the hexose monophosphate shunt (C-6 oxidation). 4. The changes found suggest a steady increased synthesis of lactate dehydrogenase M-sub-units in human skeletal muscles during foetal development. 5. The weekly changes in the total lactate dehydrogenase activity and in lactate dehydrogenase isoenzymes are lower in muscles involved in support than in those involved in periodic contractility. 6. These findings, together with the literature available, are consistent with the morphological fact that foetal development of skeletal muscles mostly concerns the white muscle fibres and not the red muscle fibres.  相似文献   

9.
The polarized fluorescence of intrinsic tryptophan residues and the birefringence of ghost muscle fibres of rabbit were measured during thin filaments binding to heavy meromyosin containing 5,5'-dithiobis [2-nitrobenzoic acid] light chains and to those devoid of them with a view of investigating conformational changes in F-actin. Ca2+ binding to heavy meromyosin containing 5,5'-dithiobis [2-nitrobenzoic acid] light chains was shown to affect the character of these changes during the formation of the F-actin - heavy meromyosin complex.  相似文献   

10.
Interaction of tropomyosin with F-actin-heavy meromyosin complex   总被引:1,自引:0,他引:1  
The effect of phosphorylated and dephosphorylated heavy meromyosins (HMMs) saturated with Ca2+ or Mg2+ on the binding of tropomyosin to F-actin and on the conformational changes of tropomyosin on actin was investigated. The experimental data were analysed on the basis of th emodel of cooperative binding of tropomyosin to F-actin with overlapping binding sites. In general, attachment of both HMMs to F-actin increased around 100-fold the tropomyosin-binding affinity but concomittantly reduced the cooperatively of binding. In the presence of Ca2+ and in the absence of ATP the binding of tropomyosin to F-actin in a "doubly contiguous" manner was three-fold stronger for F-actin saturated with dephosphorylated HMM as compared to phosphorylated HMM. Under the same rigor conditions but in the absence of Ca2+ the reverse was true but the difference was about 1.5-fold. The binding stoichiometry of tropomyosin to actin was 7:1 in the presence of dephosphorylated HMM saturated with Ca2+ or phosphorylated-saturated with Mg2+ and tended to be about 6:1 for both after the exchange of the cation bound to myosin heads. Bound HMM was also found to influence the fluorescence polarization of 1,5-IAEDANS-labelled tropomyosin complexed with F-actin in muscle ghost fibres. In the presence of Ca2+, the amount of randomly arranged tropomyosin fluorophores decreased when dephosphorylated HMM was bound to ghost fibres, in contrast to an observed increase in the case of bound phosphorylated HMM. Thus HMM induced conformational changes of tropomyosin in the actin-tropomyosin complex that was reflected in an alteration of the geometrical arrangement between tropomyosin and actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effect of electrostimulation of fast (EDL) and slow (SOL) rat muscles on the orientation and mobility of fluorescent probes rhodamine-phalloidine and 1.5-IAEDANS (N-iodoacetyl-N'-(5-sulpho-1-naphtyl)-ethylenediamine), located in various parts of actin molecule, has been studied by polarized microfluorimetry techniques. Muscles were stimulated at 20 Hz with the pulse width of 0.3 msec, some muscles were treated for 6 h during the first day, the other muscles for 6 h a day during the next 4 days before glycerinization. Then muscle fibres freed by the extraction of myosin, tropomyosin and troponin (ghost fibres) were used. It was shown that the binding of myosin subfragment 1 (S1) to actin induced the changes in polarized fluorescence of the fibres. The analysis of the obtained data showed that the formation of actomyosin complex in stimulated muscles resulted in increasing the angle between the thin filaments and the emission dipole of rhodamine-phalloidine, as well as in decreasing the mobility of this dye. In the experiments with the 1.5-IAEDANS label, the angle of the emission dipole decreased, while the label mobility increased. It was suggested that the orientation of domains in actomyosin complex changes following the electrostimulation to affect both the conformational state of F-actin in thin filaments of ghost fibres and actin-myosin interaction.  相似文献   

12.
Changes in F-actin conformation in myosin-free single ghost fibers of rabbit skeletal muscle induced by the binding of skeletal and gizzard tropomyosin to F-actin were studied by measuring intrinsic tryptophan-polarized fluorescence of F-actin. It was found that skeletal and gizzard tropomyosin binding to F-actin initiate different conformational changes in actin filaments. Skeletal tropomyosin inhibits, while gizzard tropomyosin activates the Mg2+-ATPase activity of skeletal actomyosin. It is supposed that in muscle fibers tropomyosin modulates the ATPase activity of actomyosin via conformational changes in F-actin.  相似文献   

13.
The orientation and mobility of an N-(iodoacetyl)-(1-naphtyl-5-sulpho-ethylenediamine) fluorescent probe (1.5-IAEDANS) specifically bound to Cys-374 of actin in ghost muscle fibers isolated from fast and slow rat muscles were studied by polarized fluorimetry in the absence and presence of a myosin subfragment-1 (S1) in intact rats and in animals with a gradual (2–5 weeks) reduction in the level of thyroid hormones (development of hypothyroidism). The binding of S1 to F-actin of ghost muscle fibers was shown to induce changes in the orientation of dipoles of the 1.5-IAEDANS fluorescent probe and in the relative amount of the randomly oriented fluorophores that indicates changes in actin subdomain-1 orientation and mobility resulting from formation of its strong binding with S1. This effect is markedly inhibited by the development of hypothyroidism. The maximal effect of hypothyroidism is observed after 34 days of the development of the disease. It is suggested that the change in the thyroid status in muscle inhibits the ability of F-actin to form strong binding with myosin, which is essential for the generation of force.  相似文献   

14.
Samples of semitendinosus muscle from 28 male cattle (18 Salers and 10 Limousins) were taken at 10 months (biopsy) and at 16 months of age (at slaughter). The animals had received the same diet and were slaughtered after the same duration of fattening. The activities of isocitrate dehydrogenase and lactate dehydrogenase were measured in the muscle samples. The five lactate dehydrogenase isoenzymes were separated by electrophoresis under non-denaturing conditions and assayed by densitometry. Fibres were identified by histochemistry by myofibrillar ATPase and succinate dehydrogenase activities as SO (slow oxidative), FOG (fast oxidative glycolytic) or FG (fast glycolytic), and by immunohistochemistry by their reaction to monoclonal antibodies specific to slow and fast myosin heavy chain reactions in I, IIC, IIA, IIAB and IIB type fibres. The isocitrate dehydrogenase activity was not modified between 10 and 16 months of age; the lactate dehydrogenase activity decreased and was correlated with an increase in the proportion of the H isozyme to the detriment of the proportion of the M form. This period was characterized by an increase in fibre size, increased expression of MHC IIa, resulting in more IIA fibres, less IIB fibres, and an increase in the percentage of type IIAB fibres, however the proportions of SO, FOG and FG, when analysed statistically, were not modified between 10 and 16 months of age.  相似文献   

15.
Abstract: Lactate dehydrogenase and aldolase activity were reduced in lateral gastrocnemius muscle from two mouse mutants, A2G- adr and 129Re- dy , with abnormal muscle function. The activities of both of these enzymes were significantly reduced in the lateral gastrocnemius muscle from the A2G- adr mice at ages varying from 2 weeks to 32 weeks, whereas the activities in the soleus, heart, liver, and brain were the same as in the control animals. The lactate dehydrogenase isoenzymes in the lateral gastrocnemius and soleus muscles from the A2G mice were quantified, and although those of the soleus were comparable in mutant and control muscle, the lateral gastrocnemius from the adr mutant had reduced activity of LDH 5 and increased activities of the other four isoenzymes. The findings suggest that the adr mutation is expressed in the white (Type II) muscle fibres and not in the red (Type I) fibres or in any of the organs studied. It is suggested that the initiation of differentiation into Type II fibres from the embryonic form is absent or delayed in the A2G mutant. The reduced activities of lactate dehydrogenase and aldolase in 129Re- dy muscle confirm the findings of other workers.  相似文献   

16.
Changes in conformation of F-actin induced by the binding of myosin molecule subfragment 1 were studied in myosin-free single ghost muscle fibers with the method of polarization microfluorimetry. The modification of the structure of subfragment 1 by proteolytic digestion with one or two cuts in subfragment 1 or degradation of 50 kDa domain did not influence the character of changes in the conformation of F-actin. The use of preparations of subfragment 1 devoid of the 20 kDa domain or both cross-linked SH1 and SH2-groups changed the character of conformational rearrangements in F-actin. The present data show that a site of interaction with actin in the 20 kDa domain plays a key role in inducing the changes in actin conformation corresponding to a "strong" form of the binding. It is supposed that transmission of changes in the conformation of the myosin head to F-actin might be important for muscle contraction.  相似文献   

17.
C Spamer  D Pette 《Histochemistry》1977,52(3):201-216
Methods for standardized determination of phosphofructokinase (PFK), glyceraldehydephosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in nanogram samples of microdissected single fibres of rabbit psoas and soleus muscle are described. Fast and slow fibres in soleus muscle show lower absolute activities of these enzymes than the respective fibre types in psoas muscle. Slow fibres represent a more uniform population in the two muscles according to absolute and relative activities of the enzymes investigated. Slow fibres are characterized by high activities of MDH and relatively low activities of glycolytic enzymes. Fast fibres in the soleus muscle represent a population with high activities of MDH and glycolytic enzymes. Fast fibres in psoas muscle represent a heterogeneous population with high activities of glycolytic enzymes and extremely variable activity of MDH. More than 10-fold differences exist in the MDH activities of the extreme types of this fibre population. Differences in the activity levels of MDH in single fast type fibres but also in the activities of glycolytic enzymes between fast and slow fibres are greater than those reported between extreme white and red rabbit muscles.  相似文献   

18.
Summary Methods for standardized determination of phosphofructokinase (PFK), glyceraldehydephosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in nanogram samples of microdissected single fibres of rabbit psoas and soleus muscle are described. Fast and slow fibres in soleus muscle show lower absolute activities of these enzymes than the respective fibre types in psoas muscle. Slow fibres represent a more uniform population in the two muscles according to absolute and relative activities of the enzymes investigated. Slow fibres are characterized by high activities of MDH and relatively low activities of glycolytic enzymes. Fast fibres in the soleus muscle represent a population with high activities of MDH and glycolytic enzymes. Fast fibres in psoas muscle represent a heterogeneous population with high activities of glycolytic enzymes and extremely variable activity of MDH. More than 10-fold differences exist in the MDH activities of the extreme types of this fibre population. Differences in the activity levels of MDH in single fast type fibres but also in the activities of glycolytic enzymes between fast and slow fibres are greater than those reported between extreme white and red rabbit muscles.  相似文献   

19.
Comparison of two types of Ca2+-regulated thin filament, reconstructed in ghost fibers by incorporating either caldesmon-gizzard tropomyosin-calmodulin or skeletal muscle troponin-tropomyosin complex, was performed by polarized microphotometry. The changes in actin structure under the influence of these regulatory complexes, as well as those upon the binding of the myosin heads, were followed by measurements of F-actin intrinsic tryptophan fluorescence and the fluorescence of phalloidin-rhodamine complex attached to F-actin. The results show that in the presence of smooth muscle tropomyosin and calmodulin, caldesmon causes Ca2+-dependent alterations of actin conformation and flexibility similar to those induced by skeletal muscle troponin-tropomyosin complex. In both cases, transferring of the fiber from '-Ca2+' to '+Ca2+' solution increases the number of turned-on actin monomers. However, whereas troponin in the absence of Ca2+ potentiates the effect of skeletal muscle tropomyosin, caldesmon-calmodulin complex inhibits the effect of smooth muscle tropomyosin. This difference seems to be due to the qualitatively different alterations in the structure and flexibility of F-actin in ghost fibers evoked by smooth and skeletal muscle tropomyosins. Troponin can bind to F-actin-smooth muscle tropomyosin-caldesmon complex and, in the presence of Ca2+, release the restraint by caldesmon for S-1-induced alterations of conformation, and reduce that for flexibility of actin in ghost fibers. This effect seems to be related to the abolishment by troponin of the potentiating effect of tropomyosin on caldesmon-induced inhibition of actomyosin ATPase activity.  相似文献   

20.
Using polarization fluorimetry, we have investigated conformational changes of FITC-phalloidin-labeled F-actin in ghost muscle fibers. These changes were induced by myosin subfragment-1 (S1) in the absence and presence of MgADP, MgAMP-PNP, MgATPgammaS, or MgATP. Modeling of various intermediate states was accompanied by discrete changes in actomyosin orientation and mobility of fluorescent dye dipoles. This suggests multistep changes of orientation and mobility of actin monomers during the ATPase cycle. The most pronounced differences in orientation (~4 degrees ) and in mobility (~43%) of actin were found between the actomyosin states induced by MgADP and MgATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号