首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to the 7-, 5- and 2-carboxyglutamyl varieties of dicoumarol-induced prothrombins (Malhotra, O.P. (1979) Thromb. Res. 15, 427-463), we have isolated two more atypical prothrombins, one containing 1.1 +/- 0.1 gamma-carboxyglutamic acid, '1-carboxyglutamyl prothrombin,' and the other less than 0.2, '0-carboxyglutamyl prothrombin.' Both variants showed a single component by analytical polyacrylamide-gel electrophoresis in the absence and in the presence of sodium dodecyl sulfate and contained antigenic activity indistinguishable from that of normal prothrombin. The pI of both proteins as assessed by electrofocusing was 4.835 +/- 0.015, compared with 4.58 for 10- and 7-, 4.75 for 5- and 4.81 for 2-carboxyglutamyl materials. By the two-stage prothrombin assay procedure, the 1- and 0-carboxyglutamyl variants generated thrombin, respectively 19 and 13% of normal prothrombin, and their activation times ranged from 4 to 7 h, compared with 7 min for normal. Kinetic studies, utilizing the one-stage coagulation assay, showed that both Km and tmin (minimal clotting time) increase proportionally with the decrease of gamma-carboxyglutamyl residues (from 10 to 7, 5, 2, 1 and 0 gamma-carboxyglutamic acids). Each of the five (partially) acarboxy prothrombins owe their clotting activity to gamma-carboxyglutamyl residues and not to the presence of some normal prothrombin molecules.  相似文献   

2.
Isolation and characterization of gamma-carboxyglutamic acid (Gla) deficient prothrombins induced by Warfarin or dicoumarol are useful for studying the role of specific Gla residues in prothrombin. In addition to 7-Gla prothrombin, we have isolated two more atypical prothrombins from the barium citrate eluate, one containing 6.11, and the other, 7.85 Gla residues, presumably 6- and 8-Gla prothrombins. The actual Gla content of the 7-Gla isomer was 7.05. Each of the 6-, 7-, and 8-Gla variants showed a single component by agar or dodecyl sulfate polyacrylamide gel electrophoresis. When agar gel electrophoresis was performed in calcium, each of the variants moved more rapidly than normal (10-Gla) prothrombin. In the presence of EDTA, the 8-Gla isomer exhibited the fastest mobility, equivalent to that of normal prothrombin, followed by 7-, and then 6-Gla variants. The physiological activities of the isomers were found to be 18 to 23% for 8-, 6 to 8% for 7-, and 2 to 3% of normal prothrombin for 6-Gla variant. Prothrombin fragment 1, derived from 8-Gla prothrombin, exhibited 23% of calcium-induced fluorescence quenching, compared with 40% for 10-Gla and 8% or less for 7- and 6-Gla fragments 1. Competition radioimmunoassay data show that calcium-dependent anti (normal) prothrombin polyclonal antibodies are not specific for 10-Gla prothrombin, since the 7- and 8-Gla isomers were able to displace radiolabeled (125I) normal prothrombin.  相似文献   

3.
The kinetics of activation of normal and gamma-carboxyglutamic acid (Gla)-deficient prothrombins isolated from cattle maintained for extended periods on the vitamin K antagonist dicoumarol were studied. The catalyst was prothrombinase, comprising isolated Factor Xa, Factor Va, phospholipid vesicles, and calcium ion. The Km and kcat values for prothrombins with 0, 1, 2, 5, 7, and 10 Gla residues were determined both by initial rate analysis and by integrated Michaelis-Menten-Henri analysis. Each of the Gla-deficient prothrombins exhibited kcat values similar to that of normal 10-Gla prothrombin but Km values that were 8- to 20-fold greater than that of the normal molecule. The increased Km coincided with a loss of Ca2+- and phospholipid-binding properties of the Gla-deficient prothrombins. The magnitude of the defect in both the kinetics of activation and Ca2+ and phospholipid binding is not progressive with the loss of Gla residues but rather appears abruptly with the loss of as few as 3 of the 10 Gla residues present in the normal substrate. The theoretical relationship between Km(app) and the dissociation constant (Kd) of the prothrombin-phospholipid interactions was derived. According to the result, the increase in apparent Km observed with the Gla-deficient prothrombins corresponds to at least a 100- to 1000-fold decrease in affinity for phospholipid compared to the affinity of normal prothrombin. In addition, the products of the activation of 10-Gla prothrombin were found to inhibit the activation of the Gla-deficient prothrombins.  相似文献   

4.
The role of gamma-carboxyglutamic acid (Gla) in prothrombin function can be effectively evaluated by characterizing dicoumarol-induced, Gla-deficient prothrombin structural isomers. In addition to the isolation of 8-, 7-, 6-, 5-, 3-, 2-, 1-, and 0-Gla isomers, we have now purified a variant prothrombin containing 9(8.80) Gla residues by barium citrate adsorption, elution, and finally by DEAE-cellulose and immunoaffinity chromatographies. Agar gel electrophoretic mobilities of the 9-Gla isomer and its fragment 1 were slower than those of the respective 10-Gla (normal) prothrombin and fragment 1, both in the absence and presence of Ca(II). In the presence of Ca(II), both 9- and 10-Gla fragments 1 moved slower than 8- and 7-Gla fragments 1. However, in the absence of metal ions, 9- and 7-Gla fragments 1 migrated at the same rate, but slower than 10- and 8-Gla fragments. Similarly, the 9-Gla fragment 1 electrofocused cathodically to 10- and 8-Gla, but comparably with 7-Gla fragment 1. The 9-Gla fragment 1 exhibited a Ca(II)-induced 44% decrease in the intrinsic fluorescence, compared with a 40% decrease in that of 10-Gla; 8-Gla fragment 1 revealed only 23% quenching. Ca(II)-dependent anti-normal prothrombin antibodies are not specific for 10-Gla prothrombin, since only a twofold molar excess of the 9-Gla isomer was required to displace equal amounts of labeled normal prothrombin. The most critical Gla residue for influencing the functional, thrombin-generating properties of prothrombin appears to be the one present in the 9-Gla isomer but absent in the 8-Gla variant, since 9-Gla prothrombin possesses four times the normal coagulant activity (78 versus 20%) of the 8-Gla isomer.  相似文献   

5.
Sedimentation equilibrium studies have demonstrated that prothrombin fragment 1 from either human or bovine plasma reversibly dimerizes in the absence of Ca2+ with an equilibrium constant of 1,000 M-1. In the presence of 10 mM Ca2+ this association constant increased to 10,000 M-1. A model for preferential binding of Ca2+ to the pre-existing dimer has been found capable of accounting quantitatively for the cooperative Ca2+ binding to this prothrombin fragment, and for the dependence of its sedimentation coefficient on protein concentration in the presence and absence of metal ion. Sedimentation equilibrium studies of intact bovine and human prothrombins have confirmed previous reports that these prothrombins dimerize. For both prothrombins the association constant is 10,000 M-1, both in the absence and presence of Ca2+.  相似文献   

6.
The relationship of prothrombin structure to function with respect to gamma-carboxyglutamic acid (Gla) residues can be effectively evaluated by characterizing the behavior of prothrombin isomers differing in Gla content. In addition to the isolation of a whole spectrum of Gla-deficient, 0- to 9-Gla isomers from dicoumarol-treated plasma, prothrombin isomers containing 11 (10.90) and 9 (8.85) Gla residues have now been isolated from normal bovine plasma. The isomers were isolated by barium citrate adsorption, elution, and finally by heparin-agarose, DEAE-cellulose, and immuno-affinity chromatographies. Each of the purified isomers showed a single component by agar gel and sodium dodecyl sulfate - polyacrylamide gel electrophoresis. By agar gel electrophoresis, the 11-Gla prothrombin isomer moved the fastest, followed by the 10-, and lastly the 9-Gla isomer, independent of Ca2+. The corresponding 9-, 10-, and 11-Gla prothrombin fragments 1 exhibited similar migration tendencies. By gel electrofocusing, 11- and 9-Gla fragments 1, respectively, focused anodal and cathodal to 10-Gla fragment 1. The Ca2+-induced decrease in the intrinsic fluorescence in 11-, 10-, and 9-Gla fragments 1 was 48, 40, and 45%, respectively. This metal-induced structural change did not correlate with the functional, thrombin-generating property of the isomers, as the 9-Gla variant exhibited 75%, and the 11-Gla 110-115%, of normal coagulant activity.  相似文献   

7.
The formaldehyde-morpholine method for the conversion of gamma-carboxyglutamyl (Gla) residues to gamma-methyleneglutamyl (gamma-MGlu) residues has been applied to the modification of bovine prothrombin fragment 1. In the absence of Tb3+ ions or at Tb3+ ion concentrations of 2 Km app and 25 Km app the action of 10,000-fold molar excess of formaldehyde and morpholine, pH 5.0, converts the 10 Gla residues of the protein into 10 gamma-MGlu residues. Modification of the protein using the same conditions but increasing the Tb3+ concentration to 100 Km app provided a homogeneous protein containing 3 gamma-MGlu and 7 Gla residues, bovine 3 gamma-MGlu-fragment 1. The modified protein binds the same number of Ca2+ ions (6-7) as bovine fragment 1. However, the positive cooperatively associated with Ca2+ binding is abolished and the overall affinity for Ca2+ ions is reduced. Fluorescence titrations of 3 gamma-MGlu-fragment 1 using either Ca2+ or Mg2+ ions indicate that the modified protein retains a fluorescence quenching behavior similar to that of the native protein. The modified protein does not bind to phosphatidylserine/phosphatidylcholine vesicles in the presence of Ca2+ ions. Thus the metal ion-induced fluorescence transition exhibited by the bovine protein appears to be a necessary but not sufficient condition for phospholipid binding.  相似文献   

8.
To study the specific role of gamma-carboxyglutamic acid (Gla) residues in prothrombin, we have isolated a series of partially carboxylated prothrombin variants from a patient with a hereditary defect in vitamin K-dependent carboxylation (Goldsmith, G. H., Pence, R. E., Ratnoff, O. D., Adelstein, D. A., and Furie, B. (1982) J. Clin. Invest. 69, 1253-1260). The three variant prothrombins, purified by DEAE-Sephacel, immunoaffinity chromatography, and preparative gel electrophoresis, were indistinguishable from prothrombin in molecular weight, amino acid composition, and NH2-terminal amino acid sequence, with the exception of Gla residues. Variant prothrombin 1, with 8 Gla residues, had 66% of the coagulant activity of prothrombin, one high affinity metal-binding site (Kd = 15 nM), and three lower affinity sites (Kd = 2.7 microM); prothrombin contained two high affinity (36 nM) and four lower affinity sites (Kd = 1 microM). Ca(II) induced a 23% decrease in the intrinsic fluorescence of variant prothrombin 1 fragment 1, compared to a 35% decrease in that of prothrombin fragment 1. The phospholipid binding activity of variant prothrombin 1 was 44% that of prothrombin. Variant prothrombin 2 and variant prothrombin 3, with 4 and 6 Gla residues, respectively, had about 5% of prothrombin coagulant activity and a single high affinity and two lower affinity metal-binding sites and exhibited no phospholipid binding activity. Variant prothrombin 3 fragment 1 and variant prothrombin 2 fragment 1 demonstrated 18 and 13% of Ca(II)-induced fluorescence quenching, respectively. Abnormal prothrombin, with 1 Gla residue, had 8% of prothrombin coagulant activity, a single lower affinity (1 microM) metal-binding site, and 13% Ca(II)-induced fluorescence quenching of the fragment 1 species and did not bind to phospholipid. These results indicate that Gla residues define the metal binding properties of prothrombin. Most, if not all, of the Gla residues are required for complete prothrombin function, and the prothrombin coagulant activity correlates to the phospholipid binding activity of the prothrombin species.  相似文献   

9.
Chemical modification of the gamma-carboxyglutamyl (Gla) residues of bovine prothrombin fragment 1 using the formaldehyde-morpholine method in the presence of 100 Kappm Tb3+ ions at pH 5.0 provided a modified protein containing 3 gamma-methyleneglutamyl residues (gamma-MGlu) and 7 Gla residues (bovine 3-gamma-MGlu-fragment 1). The modified protein bound the same number of Ca2+ ions as the native protein (six to seven), exhibited 28Mg2+-binding properties identical to native fragment 1 (five Mg2+ ions bound), exhibited the metal ion-promoted quenching of the intrinsic fluorescence in a manner similar to the native protein, but did not bind to phosphatidylserine (PS)/phosphatidylcholine (PC) vesicles in the presence of Ca2+ ions. Modification of the bovine protein using [14C]formaldehyde-morpholine provided a 14C-labeled 3-gamma-MGlu-fragment 1 suitable for sequence analysis. Edman sequencing of the peptides released by a tryptic digest of the reduced and carboxymethylated bovine [14C]3-gamma-MGlu-fragment 1 indicated that Gla residues at positions 7, 8, and 33 had been converted to [14C]gamma-methyleneglutamyl residues. In addition Lys97 was found to contain a 14C label. Similar analysis of the human [14C]3-gamma-MGlu-fragment 1 indicated that Gla residues at positions 7 and 32 were major modification sites and that Gla residues at positions 6 and 14 were partially modified. Lysine 96 was also modified in the human protein. The incorporation of a 14C label at Lys97 in bovine 3-gamma-MGlu-fragment 1 protein is not responsible for the loss of Ca2+-promoted binding to PS/PC vesicles. We suggest that Gla residues 7, 8, and 33 are elements of the first Ca2+-binding site; occupancy of this site establishes the Ca2+-specific conformation which is essential for the Ca2+-promoted interaction of the bovine protein with PS/PC vesicles. These studies also suggest that the loss of Gla residues at positions 7 and 32 prevents the formation of the initial Ca2+-binding site in the human protein.  相似文献   

10.
Structural aspects of the behaviour of prothrombin and its fragments have been examined by circulae dichroism spectroscopy. It has been noted that a correlation exists between the ellipticity of the aromatic bands and the physiological activity of partially denatured and abnormal prothrombins. The origin of these bands appears to be predominantly based in the region of one or more tyrosine residues. It is shown that whereas complexation of calcium with prothrombin causes little change in the dromatic c.d. spectrum, the effect on prothrombin fragment 1 is quite dramatic. It is concluded that the binding of calcium to the dicarboxyglutamate residues in fragment 1 causes a concomitant ionization of one or more tyrosine residues. The behaviour of fragment 1 is indicative of an intact protein with a tertiary structure which supports our previous trimodular model of prothrombin, which is activated in part by the unlocking of an ‘ionic’ lock. This lock consists of the highly negatively charged dicarboxyglutamyl patch at or near the N terminus of prothrombin and a positively charged basic patch near the C terminus.  相似文献   

11.
The role of gamma-carboxyglutamic acid in prothrombin has been examined using partially carboxylated variant prothrombins isolated from a person with a hereditary defect in vitamin K-dependent carboxylation. These species differ in gamma-carboxyglutamic acid content, distribution, and function, as monitored by metal binding properties, conformational transitions, phospholipid binding, and calcium-dependent coagulant activity (Borowski, M., Furie, B. C., Goldsmith, G. H., and Furie, B. (1985) J. Biol. Chem. 260, 9258-9264). The distribution of gamma-carboxyglutamic acids in the variant prothrombin species was determined by specific tritium incorporation into gamma-carboxyglutamic acid residues, thermal decarboxylation, and automated Edman degradation. gamma-Carboxyglutamic acid residues in the partially carboxylated prothrombins were identified by the assay of tritium in the resultant glutamic acid residues in the acarboxyprothrombins. The results indicate that variant prothrombins 1-3 are nearly homogeneous populations of partially carboxylated prothrombins. The ability of prothrombin to undergo a metal-induced conformational change and to bind to phospholipid vesicles correlated closely to the presence of a gamma-carboxyglutamic acid at residue 16. This residue is likely involved in the formation of a critical high affinity metal-binding site, possibly formed by Gla 16 and Gla 25 and/or Gla 26. A second high affinity metal-binding site, present in all of the variant prothrombin species, is defined, as an upper limit, by Gla 6, Gla 14, Gla 19, and Gla 20. This region is likely responsible for the interaction of certain of the conformation-specific antibodies to the metal-stabilized conformer of prothrombin.  相似文献   

12.
The present study investigates the unique contribution of the NH2-terminal 33 residues of prothrombin, the gamma-carboxyglutamic acid (Gla) domain, to the Ca(II) and phospholipid-binding properties of prothrombin. Two Gla domain peptides, 1-42 and 1-45, produced by chymotryptic cleavage of prothrombin fragment 1 (residues 1-156 of the amino terminus of bovine prothrombin) and isolated by anion-exchange chromatography were utilized to characterize the Gla domain of prothrombin. This investigation utilized several experimental approaches to examine the properties of the Gla domain peptides. These studies were somewhat hampered by the metal ion-induced insolubility of the peptides. However, the 1-45 peptide was specifically radioiodinated, which facilitated the study of this peptide at low concentrations. In contrast to prothrombin fragment 1, the intrinsic fluorescence of both 1-42 and 1-45 was not quenched upon the addition of 1 mM Ca(II) or any concentration of Mg(II). Equilibrium dialysis studies revealed that the 1-42 peptide bound three Ca(II) ions noncooperatively, whereas fragment 1 binds seven Ca(II) ions in a positive cooperative manner. Ca(II)-promoted conformational changes are observed by comparison of electrophoretic mobility changes in the presence of increasing Ca(II) concentrations. Prothrombin, fragment 1, and the Gla domain peptides 1-42 and 1-45 exhibited similar electrophoretic mobility behavior in the presence of Ca(II) ions. The radiolabeled 1-45 peptide was found to comigrate with phospholipid vesicles on gel permeation chromatography in the presence of Ca(II). Fragment 1 was shown to inhibit this Ca(II)-dependent phospholipid binding of 1-45, demonstrating that the 1-45 peptide does possess the necessary phospholipid-binding structure. Furthermore, a metal ion-dependent conformational monoclonal antibody, F9.29, was inhibited from binding fragment 1 by the 1-42 peptide.  相似文献   

13.
Murine monoclonal antibodies, developed following immunization with human protein C, were characterized for their ability to bind antigen in the presence of either CaCl2 or excess EDTA. Three stable clones were obtained which produced antibodies that bound to protein C only in the presence of EDTA. All three antibodies bound to the light chain of protein C on immunoblots and also bound to the homologous proteins factor X and prothrombin in solid-phase radioimmunoassays. One antibody, 7D7B10 was purified and studied further. The binding of 7D7B10 to human protein C was characterized by a KD of 1.4 nM. In competition studies, it was found that the relative affinity of the antibody for protein C was 20-40-fold higher than for prothrombin, fragment 1 of prothrombin, or factor X. In contrast, 7D7B10 was unable to bind to factor IX or bovine protein C. The effect of varying Ca2+ concentration on the interaction of the antibody with protein C was complex. Low concentrations of Ca2+ enhanced the formation of the protein C-antibody complex with half-maximal effect occurring at approximately 60 microM metal ion. However, higher concentrations of Ca2+ completely inhibited 7D7B10 binding to protein C with a K0.5 of 1.1 mM. Furthermore, millimolar concentrations of Mn2+, Ba2+, or Mg2+ also completely abolished antibody binding to protein C. The location of the epitope was delineated by immunoblotting and peptide studies and found to be present in the NH2-terminal 15 residues of protein C. Although residues corresponding to positions 10-13 of human protein C were necessary for maximal binding of the antibody, they were not sufficient. No evidence could be found for involvement of the epitope in metal binding per se. Therefore, the effect of Ca2+ on antibody binding is thought to be due to metal-dependent conformational changes in protein C. It seems likely that Ca2+ occupation of a high affinity site, shown by others to be located in the epidermal growth factor-like domain, causes a conformational change in the NH2-terminal region of protein C which is favorable for antibody interaction, whereas Ca2+ binding to the low affinity site(s), known to be present in the gamma-carboxyglutamic acid domain, causes an unfavorable conformational change.  相似文献   

14.
B J Benson  D J Hanahan 《Biochemistry》1975,14(14):3265-3277
Three peptides, one of which binds Ca2-+ (calcium binding fragment, CBF) but contains no carbohydrates and two of which bind no Ca2-+ but contain carbohydrates, have been isolated from the N-terminus region of bovine prothrombin. The preparation of these peptides involved (a) thrombin cleavage of prothrombin to intermediate 1 (thrombinogenic) and fragment 1 (nonthrombinogenic), (b) tryptic attack on fragment 1, and (c) separation of the CBF from the latter reaction by addition of a phosphatidylcholine-phosphatidylserine dispersion in the presence of Ca-2+. Further study on the non-calcium-binding peptides from the tryptic digest of fragment 1 revealed the presence of two low molecular weight glycopeptides, GP-1 and GP-2. A detailed examination of the chemical characteristics of CBF provided some insight into this unusual peptide. Whereas fragment 1, as well as prothrombin, exhibited two classes of Ca-2+ binding sites (one of high affinity, 3-4 mol/mol of peptide and the other of low affinity, 10-12 mol/mol of peptide), CBF bound only 3-4 mol of Ca-2+/mol of peptide. This indicated the presence of only the high affinity sites of the parent molecule. CBF contained an unusually high level of glutamic acid (approximately 30% of the total amino acids as determined in an acid hydrolysate) and had an N-terminal glycine. Most likely these glutamyl residues were present originally as the gamma-carboxyglutamyl residue as proposed by Stenflo et al. (Stenflo, J., Ferlung, P., Egan, W., and Roepstorff, P. (1974), Proc. Natl. Acad. Sci. U.S-A 71, 2730). The CBF contained no detectable carbohydrate. Its molecular weight varied inexplicably according to the procedure used and gave the following values; 8500, by gel filtration; 5200, by 6 M guanidine-HCl gel chromatography; 3490, by analytical ultracentrifugation. The glycopeptides, GP-1 and GP-2, were distinguished from each other by differences in their behavior on ion exchange chromatography and in their amino acid composition, and from CBF by their inability to bind calcium under any conditions. On the other hand, GP-1 and GP-2 had nearly identical levels of carbohydrate, 45.1 and 48.0 wt %, and possessed essentially the same percent distribution of carbohydrates: sialic acid, 16.5 plus or minus 0.5; mannose, 10.3 plus or minus 0.4; glucosamine, 11.2 plus or minus 0.1; galactose, 7.9 plus or minus 0.3. Their molecular weights were as follows: GP-1, 70000, by gel filtration; 6500, by 6 M guanidine-HCl gel chromatography; 4600, by ultracentrifugation; GP-2, 6500 by gel filtration; 6900, by 6 M guanidine-HCl gel chromatography; 1960, by analytical ultracentifugation. Though there are some obvious variations depending on method, this could be attributable to a probable error in v measurement on these carbohydrate containing peptides. The significance of these findings as they relate to prothrombin to thrombin conversion is discussed.  相似文献   

15.
The conversion of the blood coagulation zymogen prothrombin to thrombin is associated with the production of several cleavage intermediates and products. In contrast to earlier studies of prothrombin cleavage in chemically defined systems, the current investigation examines the fragmentation of human prothrombin in normal plasma. Radiolabeled prothrombin was added to platelet-poor relipidated normal human plasma, and clotting was initiated with the addition of Ca(II) and kaolin. Analysis of the radiolabeled prothrombin cleavage products by polyacrylamide gel electrophoresis in the presence of dodecyl sulfate and beta-mercaptoethanol identified a heretofore unobserved product of prothrombin activation with an apparent molecular weight of 45,000. This product was identified as fragment 1 X 2 X 3, the NH2-terminal 286 amino acids of prothrombin. The product was isolated from a prothrombin digest by immunoaffinity chromatography using anti-prothrombin:Ca(II) antibodies and by preparative gel electrophoresis. Its amino-terminal sequence is identical to that of prothrombin. Digestion of this product with either Factor Xa or thrombin yields, at a minimum, fragment 1 X 2 and fragment 1. Amino-terminal sequence analysis of the products obtained by digestion with Factor Xa of the unknown activation product indicated 3 amino acid residues at each cycle consistent with the presence of fragment 1, fragment 2, and fragment 3. To unambiguously identify the COOH-terminal amino acid sequence of the product, its factor Xa digestion products were separated by reverse-phase high performance liquid chromatography. Edman degradation of one peptide revealed the complete sequence of fragment 3. On this basis, we identify the Mr 45,000 polypeptide as fragment 1 X 2 X 3 and indicate that it is a prominent product of prothrombin conversion to thrombin when activation occurs in plasma.  相似文献   

16.
Vitamin K dependent in vitro production of prothrombin   总被引:3,自引:0,他引:3  
J C Swanson  J W Suttie 《Biochemistry》1982,21(23):6011-6018
During prothrombin biosynthesis, glutamyl residues in prothrombin precursor proteins are carboxylated to gamma-carboxyglutamyl residues by a vitamin K dependent carboxylase. Calcium-dependent and calcium-independent rat prothrombin antibody subpopulations have been produced and utilized to study the liver microsomal precursors of prothrombin that accumulate when vitamin K action is blocked. A substantial portion of the precursor pool accumulating in the vitamin K deficient or warfarin-treated rat will react with a Ca2+-dependent antibody at high calcium concentration and appears to be partially carboxylated. During in vitro incubation in the presence of vitamin K, the fraction of the precursor pool which is tightly bound to the microsomal membrane appears to be the preferred substrate for the vitamin K dependent carboxylation. A small amount of completely carboxylated rather than a large amount of partially carboxylated products are produced during these incubations. Treatment with a Sepharose-bound prothrombin antibody demonstrated that about 20-25% of the total carboxylated microsomal protein precursor pool consists of prothrombin precursors. This treatment removes an equal amount of total carboxylase activity, and the enzyme is active in this carboxylase precursor-antibody complex.  相似文献   

17.
Fragment complementation of calbindin D28k   总被引:1,自引:0,他引:1       下载免费PDF全文
Calbindin D28k is a highly conserved Ca2+-binding protein abundant in brain and sensory neurons. The 261-residue protein contains six EF-hands packed into one globular domain. In this study, we have reconstituted calbindin D28k from two fragments containing three EF-hands each (residues 1-132 and 133-261, respectively), and from other combinations of small and large fragments. Complex formation is studied by ion-exchange and size-exclusion chromatography, electrophoresis, surface plasmon resonance, as well as circular dichroism (CD), fluorescence, and NMR spectroscopy. Similar chromatographic behavior to the native protein is observed for reconstituted complexes formed by mixing different sets of complementary fragments, produced by introducing a cut between EF-hands 1, 2, 3, or 4. The C-terminal half (residues 133-261) appears to have a lower intrinsic stability compared to the N-terminal half (residues 1-132). In the presence of Ca2+, NMR spectroscopy reveals a high degree of structural similarity between the intact protein and the protein reconstituted from the 1-132 and 133-261 fragments. The affinity between these two fragments is 2 x 10(7) M(-1), with association and dissociation rate constants of 2.7 x 10(4) M(-1) s(-1) and 1.4 x 10(-3) s(-1), respectively. The complex formed in the presence of Ca2+ is remarkably stable towards unfolding by urea and heat. Both the complex and intact protein display cold and heat denaturation, although residual alpha-helical structure is seen in the urea denatured state at high temperature. In the absence of Ca2+, the fragments do not recombine to yield a complex resembling the intact apo protein. Thus, calbindin D28k is an example of a protein that can only be reconstituted in the presence of bound ligand. The alpha-helical CD signal is increased by 26% after addition of Ca2+ to each half of the protein. This suggests that Ca2+-induced folding of the fragments is important for successful reconstitution of calbindin D28k.  相似文献   

18.
The active site of factor Xa, labelled with dansylglutamylglycylarginine (DnsEGR) is sensitive to association with Ca2+, factor Va and phospholipids. When bound to factor Va, DnsEGR-factor-Xa does not change the composition of the binding site of factor Va, as shown by fluorescence energy-transfer experiments between the Trp residues of factor Va and pyrene-labelled phospholipids. Prothrombin was cleaved by alpha-chymotrypsin into two parts: N-terminal residues 1-41 (peptide 1-41) containing the gamma-carboxyglutamic acid residues (Gla), and des-(1-41)-prothrombin; their membrane association was investigated. Peptide 1-41 contains the aromatic residues Tyr and Trp in positions 24 and 41, respectively, and is suitable for fluorescence spectroscopy. The absence of fluorescence energy transfer between these residues suggests that they are more than 2.8 nm apart. Binding of Ca2+ and of phospholipids involves essentially the Tyr residue, while the C-terminal characteristics of the Trp residue remain unchanged. The conformational change which takes place on binding does not shorten the distance between Tyr and Trp beyond 2.8 nm. Our conclusion is that peptide 1-41 has an extended conformation. This result is compatible with the disordered character of the Gla region found in the crystalline structure of fragment 1 of prothrombin. Ca2+ induces a greater fluorescence energy transfer between prothrombin and membranes labelled with pyrene but has no influence on the binding of des-(1-41)-prothrombin. Moreover, the binding curves of des(1-41)-prothrombin are similar to those of prothrombin in the absence of Ca2+. It is concluded that the Ca2+-independent association of prothrombin with membranes involves essentially that part of the prothrombin molecule deleted in the Gla region.  相似文献   

19.
Serum gelsolin, a Ca2+-dependent protein regulating the length of actin filaments, undergoes conformational changes upon binding Ca2+. These were detected and analyzed by several approaches including ultraviolet difference spectroscopy, circular dichroism studies, analytical ultracentrifugation, thiol group titration, and limited proteolytic digestions. The effect of Ca2+ binding on the UV absorption difference spectrum and the near-UV circular dichroism spectrum was consistent with changes in the environments of tyrosine and phenylalanine residues. In the presence of Ca2+, the S0(20),w value decreased from 5.3 to 4.7. This latter result implies a transformation to a more asymmetric molecular shape. Gelsolin contained only two accessible thiol groups per mole of protein, one of which was titratable in the native protein; it was more accessible to 5,5'-dithiobis(2-nitrobenzoic acid) in the absence than in the presence of Ca2+. The limited digestion of gelsolin from serum and bovine aorta smooth muscle by two different proteases, chymotrypsin and trypsin, proceeded much faster in the presence of Ca2+ than in its absence with the production of three main fragments of about 40K, 32K, and 21K. This fragment mixture was found still able to shorten F-actin in a Ca2+-dependent manner; this severing activity was expressed by the isolated 40K peptide. Gelsolin was cross-linked to F- and G-actin by the zero-length cross-linker 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC), generating a covalent 130K binary complex (actin1-gelsolin1) followed by a covalent 180K ternary complex (actin2-gelsolin1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We have isolated an intermediate plasmic degradation product, D2, of fibrinogen that does not inhibit the polymerization of fibrin monomer but does bind Ca2+. Fibrinogen was digested to a limited extent with plasmin in the presence of Ca2+, and a "large" fragment D (fragment D1A) was isolated with a gamma-chain remnant consisting of residues 63-411. Fragment D1A was digested further in the presence of Ca2+, yielding fragment D1 (with its gamma-chain containing residues 86-411). The digestion of fragment D1 [in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to complex Ca2+] led to a gradual shortening of the carboxyl-terminal portion of the gamma-chain. Fragment D2 (with its gamma-chain containing residues 86-335/356) was isolated from an intermediate digest in the presence of EGTA. The Lys-338-Cys-339 peptide bond of the gamma-chain is intact in this preparation of D2, even though it is split in the isolated peptide gamma303-355 (with an intact disulfide bond at Cys-326-Cys-339). Fragment D2 does not interfere with the polymerization of fibrin monomer, whereas fragment D1 is a potent inhibitor of this polymerization. We conclude that the gamma-chain segment 356/357-411, present in fragment D1 but absent from fragment D2, is essential for maintenance of a polymerization site located in the outer (D) nodule of fibrinogen. This segment (356/357-411) is longer than two shorter ones reported earlier [Olexa, S.A., & Budzynski, A. Z. (1981) J. Biol. Chem. 256, 3544-3549; Horwitz, B.H., Váradi, A., & Scheraga, H.A. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5980-5984]; the data for the earlier reports are reinterpreted here. Finally, fragment D2 possesses a single Ca2+ binding site, as revealed by equilibrium dialysis binding studies. Since fragment D3 (with its gamma-chain containing residues 86-302) fails to bind Ca2+, we conclude that segment gamma 303-355/356 plays a crucial role in Ca2+ binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号