首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
By catalyzing the rate-limiting step in adipose tissue lipolysis, hormone-sensitive lipase (HSL) is an important regulator of energy homeostasis. The role and importance of HSL in tissues other than adipose are poorly understood. We report here the cloning and expression of a testicular isoform, designated HSLtes. Due to an addition of amino acids at the NH2-termini, rat and human HSLtesconsist of 1068 and 1076 amino acids, respectively, compared to the 768 and 775 amino acids, respectively, of the adipocyte isoform (HSLadi). A novel exon of 1.2 kb, encoding the human testis-specific amino acids, was isolated and mapped to the HSL gene, 16 kb upstream of the exons encoding HSLadi. The transcribed mRNA of 3.9 kb was specifically expressed in testis. No significant similarity with other known proteins was found for the testis-specific sequence. The amino acid composition differs from the HSLadisequence, with a notable hydrophilic character and a high content of prolines and glutamines. COS cells, transfected by the 3.9-kb human testis cDNA, expressed a protein of the expected molecular mass (Mr≈ 120,000) that exhibited catalytic activity similar to that of HSLadi. Immunocytochemistry localized HSL to elongating spermatids and spermatozoa; HSL was not detected in interstitial cells.  相似文献   

4.
Inactivation of the hormone-sensitive lipase gene (HSL) confers male sterility with a major defect in spermatogenesis. Several forms of HSL are expressed in testis. HSLtes mRNA and protein are found in early and elongated spermatids, respectively. The other forms are expressed in diploid germ cells and interstitial cells of the testis. To determine whether the absence of the testis-specific form of HSL, HSLtes, was responsible for the infertility in HSL-null mice, we generated transgenic mice expressing HSLtes under the control of its own promoter. The transgenic animals were crossed with HSL-null mice to produce mice deficient in HSL in nongonadal tissues but expressing HSLtes in haploid germ cells. Cholesteryl ester hydrolase activity was almost completely blunted in HSL-deficient testis. Mice with one allele of the transgene showed an increase in enzymatic activity and a small elevation in the production of spermatozoa. The few fertile hemizygous male mice produced litters of very small to small size. The presence of the two alleles led to a doubling in cholesteryl ester hydrolase activity, which represented 25% of the wild type values associated with a qualitatively normal spermatogenesis and a partial restoration of sperm reserves. The fertility of these mice was totally restored with normal litter sizes. In line with the importance of the esterase activity, HSLtes transgene expression reversed the cholesteryl ester accumulation observed in HSL-null mice. Therefore, expression of HSLtes and cognate cholesteryl ester hydrolase activity leads to a rescue of the infertility observed in HSL-deficient male mice.  相似文献   

5.
The identity of the neutral cholesteryl ester hydrolase (CEH) in human monocyte/macrophages is uncertain. Prior studies indicate that hormone sensitive lipase (HSL) is a major CEH in mouse macrophages, and that HSL mRNA is present in human THP-1 monocytes. In the present study, HSL mRNA expression was examined in THP-1 cells as a function of differentiation status and cholesterol enrichment. By RT-PCR with primer pairs that span exon boundaries, HSL mRNA was demonstrated in THP-1 monocytes and phorbol-ester differentiated THP-1 macrophages. cDNA identities were confirmed by sequencing. By Northern blotting, with HSL cDNA as probe, THP-1 monocytes were found to contain HSL mRNA of approximately 3 and 3.9 kb. In THP-1 macrophages, the 3 kb mRNA was greatly diminished, while the level of the 3.9 kb mRNA was maintained. mRNA of approximately 3 and 3.9 kb are those expected of the 86-kDa (adipocyte) and 117-kDa (testicular) HSL isoforms, respectively. The presence of the testicular isoform mRNA was confirmed in THP-1 cells by amplification and sequencing of an isoform-specific cDNA. Additionally, Northern-blot comparisons showed that the 3 and 3.9 kb mRNA in THP-1 comigrated with the HSL mRNA in 3T3-L1 adipocytes and rat testis, respectively. The level of the 3.9 kb mRNA did not vary greatly with cholesterol enrichment. Thus, the HSL gene is transcribed in THP-1 cells both before and after differentiation into macrophages; after differentiation, the predominant mRNA is that for the 117-kDa isoform. This isoform is a CEH, and may mediate some CE turnover in THP-1 cells.  相似文献   

6.
7.
Hormone-sensitive lipase (HSL) is an intracellular neutral lipase that is capable of hydrolyzing triacylglycerols, diacylglycerols, monoacylglycerols, and cholesteryl esters, as well as other lipid and water soluble substrates. HSL activity is regulated post-translationally by phosphorylation and also by pretranslational mechanisms. The enzyme is highly expressed in adipose tissue and steroidogenic tissues, with lower amounts expressed in cardiac and skeletal muscle, macrophages, and islets. Studies of the structure of HSL have identified several amino acids and regions of the molecule that are critical for enzymatic activity and regulation of HSL. This has led to important insights into its function, including the interaction of HSL with other intracellular proteins, such as adipocyte lipid binding protein. Accumulating evidence has defined important functions for HSL in normal physiology, affecting adipocyte lipolysis, steroidogenesis, spermatogenesis, and perhaps insulin secretion and insulin action; however, direct links between abnormal expression or genetic variations of HSL and human disorders, such as obesity, insulin resistance, type 2 diabetes, and hyperlipidemia, await further clarification. The published reports examining the regulation, and function of HSL in normal physiology and disease are reviewed in this paper.  相似文献   

8.
9.
The expression of testis-specific and adult somatic histone genes in sea urchin testis was investigated by in situ hybridization. The testis-specific histone genes (Sp H2B-1 of Strongylocentrotus purpuratus and Sp H2B-2 of Lytechinus pictus) were expressed exclusively in a subset of male germ line cells. These cells are morphologically identical to replicating cells pulse-labelled with 3H-thymidine. Genes coding for histones expressed in adult somatic and late embryo cells (H2A-beta for S. purpuratus and H3-1 for L. pictus) were expressed in the same germ line cells, as well as in the supportive cells (nutritive phagocytes) of the gonad. All histone mRNAs detected in the male germ lineage declined precipitously by the early spermatid stage, before cytoplasmic reduction. The data suggest that both testis-specific and adult somatic histone genes are expressed in proliferating male germ line cells. Testis-specific gene expression is restricted to spermatogonia and premeiotic spermatids, but somatic histone expression is not. The decline of histone mRNA in nondividing spermatids is not merely a consequence of cytoplasmic shedding, but probably reflects mRNA turnover.  相似文献   

10.
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters (CEs). The enzyme is highly expressed in adipose tissues (ATs), where it is thought to play an important role in fat mobilization. The purpose of the present work was to study the effect of a physiological increase of HSL expression in vivo. Transgenic mice were produced with a 21 kb human genomic fragment encompassing the exons encoding the adipocyte form of HSL. hHSL mRNA was expressed at 3-fold higher levels than murine HSL mRNA in white adipocytes. Transgene expression was also observed in brown adipose tissue (BAT) and skeletal muscle. The human protein was detected in ATs of transgenic (Tg) mice. The hydrolytic activities against triacylglycerol (TG), diacylglycerol (DG) analog, and CE were increased in transgenic mouse AT. However, cAMP-inducible adipocyte lipolysis was lower in transgenic animals. In the B6CBA genetic background, transgenic mice up to 14 weeks of age showed lower body weight and fat mass. The phenotype was not observed in older animals and in mice fed a high-fat diet (HFD). In the OF1 genetic background, there was no difference in fat mass of mice fed ad libitum. However, transgenic mice became leaner than their wild-type (WT) littermates after a 4 day calorie restriction. The data show that overexpression of HSL, despite increased lipase activity, does not lead to enhanced lipolysis.  相似文献   

11.
12.
13.
There is a tight relationship between fertility and changes in cholesterol metabolism during spermatogenesis. In the testis, class B scavenger receptors (SR-B) SR-BI, SR-BII, and LIMP II mediate the selective uptake of cholesterol esters from HDL, which are hydrolyzed to unesterified cholesterol by hormone-sensitive lipase (HSL). HSL is critical because HSL knockout (KO) male mice are sterile. The aim of the present work was to determine the effects of the lack of HSL in testis on the expression of SR-B, lipid raft composition, and related cell signaling pathways. HSL-KO mouse testis presented altered spermatogenesis associated with decreased sperm counts, sperm motility, and infertility. In wild-type (WT) testis, HSL is expressed in elongated spermatids; SR-BI, in Leydig cells and spermatids; SR-BII, in spermatocytes and spermatids but not in Leydig cells; and LIMP II, in Sertoli and Leydig cells. HSL knockout male mice have increased expression of class B scavenger receptors, disrupted caveolin-1 localization in lipid raft plasma membrane microdomains, and activated phospho-ERK, phospho-AKT, and phospho-SRC in the testis, suggesting that class B scavenger receptors are involved in cholesterol ester uptake for steroidogenesis and spermatogenesis in the testis.  相似文献   

14.
Hormone-sensitive lipase (HSL) is a key enzyme in animal fat metabolism and is involved in the rate-limiting step of catalyzing the decomposition of fat and cholesterol. It also plays an important regulatory role in maintaining seminiferous epithelial structure, androgen synthesis and primordial germ cell differentiation. We previously reported that HSL is involved the synthesis of steroids in Bactrian camels, although it is unclear what role it plays in testicular development. The present study was conducted to characterize the biological function and expression pattern of the HSL gene in the hypothalamic pituitary gonadal (HPG) axis and the development of testis in Bactrian camels. We analyzed cloning of the cDNA sequence of the HSL gene of Bactrian camels by RT-PCR, as well as the structural features of HSL proteins, using bioinformatics software, such as ProtParam, TMHMM, Signal P 4.1, SOPMA and MEGA 7.0. We used qRT-PCR, Western blotting and immunofluorescence staining to clarify the expression pattern of HSL in the HPG axis and testis of two-week-old (2W), two-year-old (2Y), four-year-old (4Y) and six-year-old (6Y) Bactrian camels. According to sequence analysis, the coding sequence (CDS) region of the HSL gene is 648 bp in length and encodes 204 amino acids. According to bioinformatics analysis, the nucleotide and amino acid sequence of Bactrian camel HSL are most similar to those of Camelus pacos and Camelus dromedarius, with the lowest sequence similarity with Mus musculus. In adult Bactrian camel HPG axis tissues, both HSL mRNA and protein expression were significantly higher in the testis than in other tissues (hypothalamus, pituitary and pineal tissues) (p < 0.05). The expression of mRNA in the testis increased with age and was the highest in six-year-old testis (p < 0.01). The protein expression levels of HSL in 2Y and 6Y testis were clearly higher than in 2W and 4Y testis tissues (p < 0.01). Immunofluorescence results indicate that the HSL protein was mainly localized in the germ cells, Sertoli cells and Leydig cells from Bactrian camel testis, and strong positive signals were detected in epididymal epithelial cells, basal cells, spermatocytes and smooth muscle cells, with partially expression in hypothalamic glial cells, pituitary suspensory cells and pineal cells. According to the results of gene ontology (GO) analysis enrichment, HSL indirectly regulates the anabolism of steroid hormones through interactions with various targets. Therefore, we conclude that the HSL gene may be associated with the development and reproduction of Bactrian camels in different stages of maturity, and these results will contribute to further understanding of the regulatory mechanisms of HSL in Bactrian camel reproduction.  相似文献   

15.
Variable Charge X/Y (VCX/Y) is a human testis-specific gene family that localized on X and Y chromo-somes. In this study, VCY protein was expressed in E. coli in the form of glutathione-S-transferase (GST)fusion protein. With the purified fusion protein as antigen, the anti-GST-VCY antibody was generated andthe localization of VCY protein in human testis was determined by immunohistochemistry. In the testisseminiferous epithelium, VCY proteins were highly expressed in nuclei of germ cells. Using propidium io-dide staining and green fluorescent protein (GFP) tag technologies, VCY and VCX-8r proteins were mainlylocalized in the nucleoli of COS7 cells. In addition, the colocalization for VCY and VCX-8r in COS7 cellswas also observed. With VCY cDNA as bait, a cDNA fragment of acidic ribosomal protein PO was obtainedusing yeast two-hybrid system. All the information above indicates that VCX/Y protein family might beinvolved in the regulation of ribosome assembly during spermatogenesis.  相似文献   

16.
The role of cholesterol differs in the two compartments of the testis. In the interstitial tissue, cholesterol is necessary for the synthesis of testosterone, whereas in the seminiferous tubules, membrane cholesterol content in developing germ cells will influence the gametes' fertility. Here we evaluate the hormone-sensitive lipase (HSL) modulation of the cholesterol metabolism in each compartment of the testis. Two HSL immunoreactive bands of 104- and 108-kDa were detected in Western blots performed with polyclonal anti-human HSL antibodies in the interstitial tissue (ITf)- and seminiferous tubule (STf)-enriched fractions generated from testes harvested at 30-day intervals during puberty and, in the adult mink, during the annual seasonal reproductive cycle. Epididymal spermatozoa expressed a 104-kDa HSL isoform, and HSL was active in these cells. Immunolabeling localized HSL to interstitial macrophages; Sertoli cells, where its distribution was stage specific; spermatids; and the equatorial segment of spermatozoa. Total HSL protein levels, specific enzymatic activity, and free cholesterol (FC):esterified cholesterol (EC) ratios varied concomitantly in STf and ITf and reached maximal values in the adult during the period of maximal spermatogenic activity. In STf, HSL-specific activity correlated with FC:EC ratios but not with triglyceride levels. In STf, high HSL-specific activity occurred concomitantly with high FSH serum levels. In ITf, HSL-specific activity was high during periods of low serum prolactin levels and high serum testosterone levels. The results suggest that 1) modulation of cholesterol metabolism in individual testicular compartments may be regulated by HSL isoforms expressed by distinct cells; 2) interstitial macrophages may be part of a system involved in the synthesis of steroid hormones and in the recycling of sterols in the interstitium, whereas in the tubules, recycling could be ensured by Sertoli cells; 3) there is distinctive substrate preference for testicular HSL; and 4) HSL may be the only cholesterol esterase in this location.  相似文献   

17.
18.
Hormonally stimulated lipolysis occurs by activation of cyclic AMP-dependent protein kinase (PKA) which phosphorylates hormone-sensitive lipase (HSL) and increases adipocyte lipolysis. Evidence suggests that catecholamines not only can activate PKA, but also the mitogen-activated protein kinase pathway and extracellular signal-regulated kinase (ERK). We now demonstrate that two different inhibitors of MEK, the upstream activator of ERK, block catecholamine- and beta(3)-stimulated lipolysis by approximately 30%. Furthermore, treatment of adipocytes with dioctanoylglycerol, which activates ERK, increases lipolysis, although MEK inhibitors decrease dioctanoylglycerol-stimulated activation of lipolysis. Using a tamoxifen regulatable Raf system expressed in 3T3-L1 preadipocytes, exposure to tamoxifen causes a 14-fold activation of ERK within 15-30 min and results in approximately 2-fold increase in HSL activity. In addition, when differentiated 3T3-L1 cells expressing the regulatable Raf were exposed to tamoxifen, a 2-fold increase in lipolysis is observed. HSL is a substrate of activated ERK and site-directed mutagenesis of putative ERK consensus phosphorylation sites in HSL identified Ser(600) as the site phosphorylated by active ERK. When S600A HSL was expressed in 3T3-L1 cells expressing the regulatable Raf, tamoxifen treatment fails to increase its activity. Thus, activation of the ERK pathway appears to be able to regulate adipocyte lipolysis by phosphorylating HSL on Ser(600) and increasing the activity of HSL.  相似文献   

19.
20.
Hepatoma-derived growth factor (HDGF)-related protein (HRP)-1, a member of the HDGF gene family, showed testis-specific expression in mice. HRP-1 expression in spermatogenesis was analyzed in the testis of normal and azoospermic mice by Northern blot and immunohistochemistry. HRP-1 gene message was not expressed in the ovary and its product was detected only in the nuclei of germ cells, not in somatic cells. The HRP-1 gene is expressed through pachytene spermatocyte to round spermatid. HRP-1 gene expression was not detected in the testis of cryptorchid mice or in some strains of mutant mice. These findings suggest that the testis-specific HRP-1 gene may play an important role in the phase around meiotic cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号