首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Two groups of eight adults successfully trained with biofeedback for increases in 40-Hz EEG responses in left or right hemispheres also demonstrated significant 40-Hz EEG increases during baseline periods, and increases in the contralateral hemisphere during training periods. No changes in heart rate, 40-Hz EMG, or 21- to 31-Hz beta, alpha, or theta EEG occurred over training days. Three subjects returning for additional training demonstrated suppression of 40-Hz EEG. A group of four subjects experiencing daily bidirectional training produced substantial within-session control of 40-Hz EEG but no changes over days. Data from posttraining tests without feedback for successful subjects in both groups indicated significant control of 40-Hz EEG responses in the initial parts of these sessions, and some correlated changes in other EEG responses. Measures of successful subjects' experiences during training and control tests indicated awareness of changes in subjective concomitants of EEG responses. This study suggests further strategies for research on behavioral correlates of EEG activity.  相似文献   

3.
The present case study investigated the effects of competing task demands on biofeedback training to reduce frontalis muscle tension. Baseline levels of frontalis muscle tension were recorded for relaxation and problem solving. The subject was trained to decrease muscle tension with biofeedback for the problem-solving task alone. The results indicated that EMG training during problem solving was successfully accomplished. Frontalis muscle tension during relaxation baseline did not change as a result of reductions in muscle tension during problem-solving feedback training. This suggests that the decrease of muscle tension cannot be attributed to reductions in overall muscle tension levels. Instead, training was specific to the problem-solving feedback phases. Additionally, it was found that accuracy in problem-solving did not decline as a result of simultaneous feedback training. Thus EMG biofeedback training can be accomplished and exercised without disruption of ongoing mental activity.  相似文献   

4.
The present case study investigated the effects of competing task demands on biofeedback training to reduce frontalis muscle tension. Baseline levels of frontalis muscle tension were recorded for relaxation and problem solving. The subject was trained to decrease muscle tension with biofeedback for the problem-solving task alone. The results indicated that EMG training during problem-solving was successfully accomplished. Frontalis muscle tension during relaxation baseline did not change as a result of reductions in muscle tension during problem-solving feedback training. This suggests that the decrease of muscle tension cannot be attributed to reductions in overall muscle tension levels. Instead, training was specific to the problem-solving feedback phases. Additionally, it was found that accuracy in problem-solving did not decline as a result of simultaneous feedback training. Thus EMG biofeedback training can be accomplished and exercised without disruption of ongoing mental activity.  相似文献   

5.
The sleep EEGs of eight medically refractory epileptic patients were examined as part of a double-blind, ABA crossover study designed to determine the effectiveness of EEG biofeedback for the control of seizures. The patients were initially reinforced for one of three EEG criteria recorded from electrodes placed over sensorimotor cortex: (a) suppression of 3- to 7-Hz activity, (b) enhancement of 12- to 15-Hz activity, or (c) simultaneous suppression of 3- to 7-Hz and enhancement of 11- to 19-Hz activity. Reinforcement contingencies were reversed during the second or B phase, and then reinstated in their original form during the final A′ phase. All-night polysomnographic recordings were obtained at the end of each conditioning phase and were subjected to both visual and computer-based power spectral analyses. Four of the patients showed changes in their nocturnal paroxysmal activity that were either partially or totally consistent with the ABA′ contingencies of the study. The spectral data proved difficult to interpret, though two trends emerged from the analyses. Decreases in nocturnal 4- to 7-Hz activity were correlated with decreases in seizure activity, and increases in 8- to 11-Hz activity were correlated with decreases in seizure activity. These findings were shown to strengthen the hypothesis that EEG biofeedback may produce changes in the sleep EEG that are related to seizure incidence.  相似文献   

6.
To estimate the role of biofeedback technology in the optimization of psychomotor reactivity, 29 healthy young (aged 22.3 ± 1.5 years) musical performers were examined. On the first day of the study, they followed instructions for the voluntary control of finger motor comfort when performing musical passages for the right hand during standard performance practice without an adaptive feedback. On the second day, biofeedback was used, the muscle tone and EEG α-rhythm power being voluntarily controlled. Eventually, a biofeedback method was developed that simultaneously stimulated the activity of the EEG α rhythm and decreased the tone of the muscles not involved in the playing movement. This improved the performance in 75.8% of musicians (versus 13.8% using commonly practiced methods). The changes in the EEG parameters after effective biofeedback training were the same as in the case of successful traditional performance practice: an increase in the frequency, width, and power of the α activity and a decrease in the powers of the θ and β rhythms. The biofeedback method developed in this study can be recommended as an approach to the formation of the skills necessary for voluntarily controlling psychomotor reactivity and has prognostic implications for improving performance skills.  相似文献   

7.
To estimate the EEG predictors of successful training in the voluntary control of psychomotor reactivity, 29 healthy young (aged 22.3 ± 1.5 years) musical performers were examined. The estimation was carried out in terms of segmental α-activity analysis using a biofeedback session as an example, simultaneously stimulating the EEG α rhythm and decreasing the muscle tone. On the first day of the study, the musicians followed instructions for the voluntary control of comfortable finger motor activity when performing musical passages for the right hand during a standard performance practice (without any use of an adaptive feedback). On the second day, the muscle tone and the power of the EEG α rhythm were voluntarily controlled in the context of a biofeedback technology. The analysis of the unsteady EEG segmentation showed that the dynamics of changes in the coherence and segmental characteristics of the α activity were the same for both effective biofeedback training and the standard successful performance practice: an increase in the α-rhythm coherence, an increase in the lifetime of α spindles, and a decrease in their amplitude variability. The results obtained are discussed in terms of the formation and dissociation of neuron ensembles in central mechanisms of optimal psychomotor functioning.  相似文献   

8.
In order to estimate the effect of simultaneous α EEG stimulating and electromyogram (EMG) decreasing biofeedback training on the α activity and cognitive functions, fluency, accuracy, and flexibility during cognitive tasks, as well as α-activity characteristics before, during, and after ten training sessions of voluntarily increasing α power in an individual upper α range with the eyes closed were studied in 27 healthy men aged 18–34 years. To isolate the biofeedback effect in training for the α power increase, data on two groups of subjects were compared: an experimental group (14 subjects) with true biofeedback and a control group (13 subjects) with sham biofeedback. Follow-up testing was performed one month after the end of training to estimate the stability of the effect. The results showed that the training for the upper α power increase using biofeedback increased the frequency, width, and power in an individual upper α range at rest and improved cognitive performance only in subjects with a low baseline α frequency. Conversely, sham biofeedback training (without the feedback signal) increased the α power, though less efficiently, only in subjects with a high baseline α frequency, this increase was not accompanied by improved cognitive performance. The biofeedback α training eliminated the decrease in the α amplitude in response to a cognitive task after the biofeedback training course, this effect being preserved within one month. It may be concluded that α EEG-EMG biofeedback training can be used for improving cognitive processes in healthy subjects, as well as for prognostic purposes in clinical practice and in the brain-computer interface technology.  相似文献   

9.
The following objectives were set out to study the effect of EEG α power increase training on the heart rate variability (HRV) as an index of the autonomic regulation of cognitive functions: (1) to establish the interrelation between a voluntary increase in the α power in the individual upper α band and the HRV and related characteristics of cognitive and emotional spheres; (2) to determine the nature of the relationship between the α-activity indices and HRV depending on the resting α-frequency EEG pattern; and (3) to study how the individual α-frequency EEG pattern is reflected in the HRV changes as a result of biofeedback training. Psychometric indices of cognitive performance and the characteristics of EEG α activity and HRV were recorded in 27 healthy men 18–34 years of age before, during, and after ten training sessions of a voluntary increase in α power in the individual upper α band with the eyes closed. To determine the biofeedback effect in the α power increase training, the data of two groups were compared: the experimental, with a real biofeedback (14 subjects), and the control, with a sham biofeedback (13 subjects). The follow-up effect of the training was assessed one month after its end. The results showed that α biofeedback training increased the resting α frequency, improved cognitive performance, reduced psychoemotional stress, and increased HRV only in the subjects with a low baseline α frequency. In the subjects with a high baseline resting α frequency, the α biofeedback training had no effect on the resting α power and cognitive performance but reduced the HRV (judging by the pNN 50 parameter). The positive correlation between the α peak frequency and HRV in subjects with initially low α frequency and the negative correlation in the subjects with a high baseline α frequency explains the opposite biofeedback effects on HRV in subjects with low and high α frequency. From the theoretical standpoint, the results of this study contribute to understanding the mechanisms of heart-brain neurovisceral relationships and their effect on the cognitive performance. From the applied standpoint, they suggest that EEG biofeedback can be used for improving autonomic regulation in healthy subjects and the development of individual approaches to the development of the biofeedback technology, which can be used both in clinical practice for treatment and rehabilitation of psychosomatic syndromes and in educational training.  相似文献   

10.
This study was undertaken to investigate the effects of instructional set and biofeedback modality upon the ability of 23 females to achieve control over sexual arousal. Two levels of instructional set (increase, decrease) were completely crossed with three feedback modalities (audio, visual, no feedback). Changes in vaginal blood volume (VBV) and vaginal pulse amplitude (VPA) were monitored by a vaginal plethysmograph and reduced on line by a microcomputer. During feedback trials, all subjects received audio- or visual feedback of the VBV response. Subjects participated in two sessions, each consisting of six 3-minute trials, one in each instruction/feedback combination. Order of trials was counterbalanced. Subjective levels of arousal, VBV, and VPA were significantly higher under increase instructions. Also, a significant feedback effect was noted in the subjective measure and the VBV measure, favoring visual feedback for overall control of sexual arousal. However, the feedback effect accounted for a small portion of the variance, and it was concluded that performance was not appreciably superior with or without feedback. Thus practical considerations may determine the feedback modality to be used for vaginal vasocongestion in future research. Higher positive correlations of subjective ratings with vaginal blood volume occurred during feedback trials, which suggests that biofeedback may be helpful in discrimination training to facilitate awareness of the feelings associated with different arousal levels and correct labeling of increased vasocongestion as sexual. Further research is necessary to see if sexually dysfunctional women can benefit from a biofeedback component in a comprehensive therapy program and to determine the effect of many training sessions on discrimination and self-control of arousal.  相似文献   

11.
This study was undertaken to investigate the effects of instructional set and biofeedback modality upon the ability of 23 females to achieve control over sexual arousal. Two levels of instructional set (increase, decrease) were completely crossed with three feedback modalities (audio, visual, no feedback). Changes in vaginal blood volume (VBV) and vaginal pulse amplitude (VPA) were monitored by a vaginal plethysmograph and reduced on line by a microcomputer. During feedback trials, all subjects received audio- or visual feedback of the VBV response. Subjects participated in two sessions, each consisting of six 3-minute trials, one in each instruction/feedback combination. Order of trials was counterbalanced. Subjective levels of arousal, VBV, and VPA were significantly higher under increase instructions. Also, a significant feedback effect was noted in the subjective measure and the VBV measure, favoring visual feedback for overall control of sexual arousal. However, the feedback effect accounted for a small portion of the variance, and it was concluded that performance was not appreciably superior with or without feedback. Thus practical considerations may determine the feedback modality to be used for vaginal vasocongestion in future research. Higher positive correlations of subjective ratings with vaginal blood volume occurred during feedback trials, which suggests that biofeedback may be helpful in discrimination training to facilitate awareness of the feelings associated with different arousal levels and correct labeling of increased vasocongestion as sexual. Further research is necessary to see if sexually dysfunctional women can benefit from a biofeedback component in a comprehensive therapy program and to determine the effect of many training sessions on discrimination and self-control of arousal.  相似文献   

12.
脑电生物反馈系统的研制和脑电α成分反馈的研究   总被引:4,自引:0,他引:4  
本文介绍了我们研制的微机化脑电反馈系统.并报告了我们所进行的正常人脑电α成分生物反馈训练实验,证明了脑电生物反馈提升α成分比例的可行性.本文还论讨了国际上现行关于脑电α成分生物反馈研究中存在的问题,提出了有效的解决方法.  相似文献   

13.
Forty-five individuals with generalized anxiety (38 with GAD as defined by DSM-III) were randomized to 4 treatment conditions or a waiting list control. Patients received 8 sessions of either frontal EMG biofeedback, biofeedback to increase EEG alpha, biofeedback to decrease EEG alpha, or a pseudomeditation control condition. All treated subjects showed significant reductions in STAI-Trait Anxiety and psychophysiologic symptoms on the Psychosomatic Symptom Checklist. Only alpha-increase biofeedback subjects showed significant reductions in heart rate reactivity to stressors at a separate psychophysiological testing session. Decreased self-report of anxiety was maintained at 6 weeks posttreatment.  相似文献   

14.
Six children were provided with long-term biofeedback and academic treatment for attention deficit disorders. Their symptoms were primarily specific learning disabilities, and, in some cases, there were varying degrees of hyperkinesis. The training consisted of two sessions per week for 10 to 27 months, with a gradual phase-out. Feedback was provided for either increasing 12- to 15-Hz SMR or 16- to 20-Hz beta activity. Inhibit circuits were employed for blocking the SMR or beta when either gross movement, excessive EMG, or theta (4-8 Hz) activity was present. Treatment also consisted of combining the biofeedback with academic training, including reading, arithmetic, and spatial tasks to improve their attention. All children increased SMR or beta and decreased slow EEG and EMG activity. Changes could be seen in their power spectra after training in terms of increased beta and decreased slow activity. All six children demonstrated considerable improvement in their schoolwork in terms of grades or achievement test scores. None of the children are currently on any medications for hyperkinetic behavior. The results indicate that EEG biofeedback training, if applied comprehensively, can be highly effective in helping to remediate children who are experiencing attention deficit disorders.  相似文献   

15.
The effect of biofeedback during brief periods of relaxation was examined. Two groups (10 subjects in each group) were asked to relax as completely as possible during a series of six 3-minute relaxation periods in each of two 1-hr sessions. One group received biofeedback based on finger pulse volume (FPV) during the relaxation trials, while the other group received no biofeedback. Measures of heart rate, respiration rate, skin conductance level, and FPV were recorded during the sessions, and subjective ratings concerning relaxation were obtained after each session. The results showed that FPV scores for the groups differed during the relaxation trials of the second session, but other measures failed to distinguish between the groups. The group that received FPV feedback revealed a significantly higher level of FPV (relative to baseline) than the group that received no feedback.  相似文献   

16.
Six children were provided with long-term biofeedback and academic treatment for attention deficit disorders. Their symptoms were primarily specific learning disabilities, and, in some cases, there were varying degrees of hyperkinesis. The training consisted of two sessions per week for 10 to 27 months, with a gradual phase-out. Feedback was provided for either increasing 12-to 15-Hz SMR or 16- to 20-Hz beta activity. Inhibit circuits were employed for blocking the SMR or beta when either gross movement, excessive EMG, or theta (4–8 Hz) activity was present. Treatment also consisted of combining the biofeedback with academic training, including reading, arithmetic, and spatial tasks to improve their attention. All children increased SMR or beta and decreased slow EEG and EMG activity. Changes could be seen in their power spectra after training in terms of increased beta and decreased slow activity. All six children demonstrated considerable improvement in their schoolwork in terms of grades or achievement test scores. None of the children are currently on any medications for hyperkinetic behavior. The results indicate that EEG biofeedback training, if applied comprehensively, can be highly effective in helping to remediate children who are experiencing attention deficit disorders.The authors would like to thank Mr. Kevin Bianchini for his assistance in this study.  相似文献   

17.
Heart rate, EEG, frontal EMG, and forearm EMG were recorded in 20 subjects for 3 baseline, 8 feedback, and 2 postbaseline sessions in order to compare two biofeedback methods of teaching subjects to increase theta EEG activity. Subjects were divided into high- and low-EMG groups. Five high-EMG subjects, and 5 low-EMG subjects then received 8 sessions of strictly theta feedback. The remaining 10 subjects, 5 from the high-EMG group, and 5 from the low-EMG group, received a “graduated” training which involved shaping the target response. This procedure consisted of 4 initial sessions of EMG feedback, followed by a second phase consisting of 4 sessions of theta feedback. Results showed a clear relationship between subjects' baseline frontal EMG levels and the effect of the training methods. Although subjects with high-EMG baseline increased their theta output only with the two-phase training, subjects with low-EMG baseline levels performed better when given theta feedback only. This result shows not only that amounts of theta can be reliably increased, but that training techniques should be adapted to the physiological characteristics of the individual—in this case, baseline levels of frontal EMG levels.  相似文献   

18.
This is a preliminary study designed to investigate the potential usefulness of alveolar (lung) CO2 feedback training in promoting sleep onset in primary insomniacs. The present study was undertaken to determine if normal subjects could, without obvious manipulation of breathing, bring alveolar (lung) CO2 tension under voluntary control using biofeedback techniques and, if so, whether this control would be accompanied by shifts in level of wakefulness. Subjects participated in five baseline and five training sessions in which EEG, alveolar CO2 tension, and thoracic/abdominal respiratory movement were monitored. The feedback consisted of a pitch-modulated tone plus visual scores. We found that CO2 tension in awake portions of "up" trials was significantly higher than for awake portions of "down" trials (p less than .01), indicating that learning had occurred. In the initial trials, when subjects raised CO2 tension they became drowsy and often fell asleep, and when they lowered CO2 tension they aroused themselves. However, when subjects were awakened immediately upon falling asleep, there developed a decoupling of EEG and CO2 changes. The presence of such a decoupling phenomenon makes it unclear whether CO2 feedback will be useful in promoting sleep onset in primary insomniacs.  相似文献   

19.
Reduced seizure incidence coupled with voluntary motor inhibition accompanied conditioned increases in the sensorimotor rhythm(SMR), a 12–14 Hz rhythm appearing over rolandic cortex. Although SMR biofeedback training has been successfully applied to various forms of epilepsy in humans, its potential use in decreasing hyperactivity has been limited to a few cases in which a seizure history was also a significant feature. The present study represents a first attempt to explore the technique's applicability to the problem of hyperkinesis independent of the epilepsy issue. The results of several months of EEG biofeedback training in a hyperkinetic child tend to corroborate and extend previous findings. Feedback presentations for SMR were contingent on the production of 12–14-Hz activity in the absence of 4–7-Hz slow-wave activity. A substantial increase in SMR occurred with progressive SMR training and was associated with enhanced motor inhibition, as gauged by laboratory measures of muscular tone(chin EMG) and by a global behavioral assessment in the classroom. Opposite trends in motor inhibition occurred when the training procedure was reversed and feedback presentations were contingent on the production of 4–7 Hz in the absence of 12–14-Hz activity. Although the preliminary nature of these results is stressed, the subject population has recently been increased to establish the validity and generality of the findings and will include the use of SMR biofeedback training after medication has been withdrawn.This research was a segment of the junior author's dissertation research.  相似文献   

20.
A promising approach to nondrug correction of human stress-induced functional disorders based on double EEG biofeedback (EEGBF) has been substantiated and experimentally tested. According to this approach, narrow-band EEG oscillators that are characteristic of each patient and detectable in real-time are simultaneously used in two independent feedback loops: the traditional adaptive biofeedback loop and an additional resonance stimulation loop. In the latter loop, the feedback signals from individual narrow-band EEG oscillators serve for automatic modulation of the parameters of sensory stimuli and are not perceived consciously by the subject. The combined use of the active (conscious perception) and passive (automatic modulation) feedback signals from narrow-band EEG components of the patient have been demonstrated to offer the possibility of a substantial increase in the efficacy of EEGBF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号