首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Findings from recent studies have suggested that the low survival rate of animals derived via somatic cell nuclear transfer (SCNT) may be in part due to epigenetic abnormalities brought about by this procedure. DNA methylation is an epigenetic modification of DNA that is implicated in the regulation of imprinted genes. Genes subject to genomic imprinting are expressed monoallelically in a parent of origin-dependent manner and are important for embryo growth, placental function, and neurobehavioral processes. The vast majority of imprinted genes have been studied in mice and humans. Herein, our objectives were to characterize the bovine SNRPN gene in gametes and to compare its methylation profile in in vivo-produced, in vitro-produced, and SCNT-derived Day 17 elongating embryos. A CpG island within the 5' region of SNRPN was identified and examined using bisulfite sequencing. SNRPN alleles were unmethylated in sperm, methylated in oocytes, and approximately 50% methylated in somatic samples. The examined SNRPN region appeared for the most part to be normally methylated in three in vivo-produced Day 17 embryos and in eight in vitro-produced Day 17 embryos examined, while alleles from Day 17 SCNT embryos were severely hypomethylated in seven of eight embryos. In this study, we showed that the SNRPN methylation profiles previously observed in mouse and human studies are also conserved in cattle. Moreover, SCNT-derived Day 17 elongating embryos were abnormally hypomethylated compared with in vivo-produced and in vitro-produced embryos, which in turn suggests that SCNT may lead to faulty reprogramming or maintenance of methylation imprints at this locus.  相似文献   

2.
The widespread application of porcine SCNT to biomedical research is being hampered by the large adult size (300-600 lbs) of the commercial breeds commonly used for SCNT. The Yucatan minipig, in contrast, has an adult weight of 140-150 lbs and a long history of utility in biomedical research. In order to combine the wide availability of commercial swine with the biomedical value of the Yucatan minipig, we utilized SCNT using the Yucatan as nuclear donors and commercial swine as both oocyte donors and recipients. Of six recipient gilts receiving 631 SCNT embryos, three went to term and delivered seven piglets, four of which survived to adulthood. Additionally, we obtained fetal fibroblasts from a cloned Yucatan and used them for a second round of SCNT. Of three recipients receiving 315 reconstructed embryos, one went to term and delivered three piglets, one of which survived to adulthood. Both microsatellite and D-loop sequence analysis confirmed that all of the piglets generated were nuclear-mitochondrial hybrids carrying Yucatan nuclear DNA and commercial breed mitochondrial DNA. This report shows that it is possible to produce viable Yucatan SCNT clones and opens up the possibility of developing valuable biomedical models in this porcine breed.  相似文献   

3.
Cryopreservation of swine embryos is inefficient. Our goal was to develop a non-invasive method for “relatively” high-throughput cryopreservation of in vivo-produced swine embryos. Since removal of the lipid droplets within early swine embryos improves cryosurvival we wanted to apply a technique of high osmolality treatment followed by centrifugation that was first developed for in vitro-produced swine embryos to in vivo-produced swine embryos. The first aim was to determine how sensitive the in vivo-produced zygote and 2-cell stage embryo was to various high osmolality conditions for a short duration. Culture for 6, 12 or 18 min at 300, 400 or 500 milliosmoles (mOsm) had no detectable affect on the resulting blastocyst stage embryos (number of inner cell mass nuclei, trophectoderm nuclei, total number of nuclei, ratio of the trophectoderm to inner cell mass nuclei or percent blastocyst). However there was an effect of gilt on each of these parameters. For the second aim we focused on 300 mOsm for 6 min, 400 mOsm for 12 min, 500 mOsm for 12 min, and 500 mOsm for 18 min. The embryos were centrifuged for the duration of high osmolality treatment, then cultured to the blastocyst stage and vitrified. After vitrification and thawing the 500 mOsm for 18 min had the highest percent re-expansion with no difference in the total number of nuclei. While requiring a different base culture medium than in vitro-produced embryos, in vivo-derived embryos also survive cryopreservation without damage to their zona pellucida.  相似文献   

4.
Prevention and regulation of equine infectious anemia virus (EIAV) disease transmission solely depend on identification, isolation, and elimination of infected animals because of lack of an effective vaccine. Embryo production via the somatic cell nuclear transfer (SCNT) technology uses oocytes collected mainly from untested animals, which creates a potential risk of EIAV transmission through infected embryos. The current review examines the risk of EIAV disease transmission through SCNT embryo production and transfer. Equine infectious anemia virus is a lentivirus from the family Retroviridae. Because of a lack of direct reports on this subject, relevant information gathered from close relatives of EIAV, such as human immunodeficiency virus (HIV), bovine immunodeficiency virus (BIV), feline immunodeficiency virus (FIV), and small ruminant lentiviruses (SRLVs), is summarized and used to predict the biological plausibility of EIAV disease transmission through transfers of the equine SCNT embryos. Based on published information regarding interaction of oocytes with lentiviruses and the sufficiency of oocyte and embryo washing procedures to prevent lentivirus transmission from in vitro-produced embryos of various species, we predicted the risk of EIAV transmission through SCNT embryo production and transfer to be very small or absent.  相似文献   

5.
Advances in porcine assisted reproductive technology (ART) make it possible to use cryopreserved sperm, embryos and somatic cells in the maintenance, relocation and regeneration of swine genetics. In this review, development of key application-limiting technology is discussed in each cell type, focusing on the efficiencies, ease of storage and transportation, and minimization of pathogen transmission. Methods to regenerate swine genetics and/or models using frozen sperm, embryos and somatic cells in combination with other porcine ARTs, such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), and somatic cell nuclear transplantation (SCNT), are also discussed. The applications of these ARTs utilizing cryopreserved cells will greatly increase the efficiency as well as biosecurity for maintenance, relocation and rederivation of swine genetics/models.  相似文献   

6.
Cloning efficiency has not been dramatically improved after the first success of somatic cell nuclear transfer (SCNT) in sheep in 1997. The reasons for the low efficiency of SCNT embryos must be attributed to the insufficient reprogramming of the donor nucleus in ooplasm. It has been clarified that the methylation and acetylation status are disordered in SCNT embryos and the gene expression pattern is different and widely varied in SCNT embryos, compared with fertilized embryos. In this paper, we focused on the role of the donor nuclei in cloning efficiency, and discuss whether ooplasm can reprogram any nucleus.  相似文献   

7.
8.
Somatic cell nuclear transfer (SCNT) has been performed extensively in fish since the 1960s with a generally low efficiency of approximately 1%. Little is known about somatic nuclear reprogramming in fish. Here, we utilized the zebrafish as a model to study reprogramming events of nuclei from tail, liver and kidney cells by SCNT. We produced a total of 4,796 reconstituted embryos and obtained a high survival rate of 58.9-67.4% initially at the 8-cell stage. The survival rate exhibited two steps of dramatic decrease, leading to 8.7-13.9% at the dome stage and to 1.5-2.96% by the shield stage. Concurrently, we observed that SCNT embryos displayed apparently delayed development also at the two stages, namely the dome stage (1:30 ± 0:40) and the shield stage (2:50 ± 0:50), indicating that the dome and shield stage are critical for the SCNT efficiency. Interestingly, we also revealed that an apparent alteration in klf4 and mycb expression occurred at the dome stage in SCNT embryos from all the three donor cell sources. Taken together, these results suggest that the dome stage is critical for the SCNT efficiency, and that alternated gene expression appears to be common to SCNT embryos independently of the donor cell types, suggesting that balanced mycb and klf4 expression at this stage is important for proper reprogramming of somatic nuclei in zebrafish SCNT embryos. Although the significant alteration in klf4 and mycb expression was not identified at the shield stage between ZD and SCNT embryos, the importance of reprogramming processes at the shield stage should not be underestimated in zebrafish SCNT embryos.  相似文献   

9.
The majority of somatic cell nuclear transfer (SCNT) clones dies in the peri- or postimplantation period. Improvement of the full-term healthy pregnancy rates is a key issue for the economical viability and animal welfare profile of SCNT technology. In this study the effects of cotransfer of parthenogenetic or fertilized embryos on the pregnancy and implantation of SCNT mouse embryos have been investigated. SCNT embryos were produced by transferring cumulus cell nuclei into enucleated B6D2F1 mouse oocytes, whereas parthenogenetically activated (PA) and fertilized embryos were derived from ICR mice by artificial activation with strontium and in vivo fertilization, respectively. SCNT embryos were inferior in their developmental capacity to blastocyst compared to either PA or fertilized embryos. SCNT embryos were transferred alone (SCNT), or cotransferred with two to three PA (SCNT + PA) or fertilized (SCNT + Fert) embryos into the oviducts of an ICR recipient. Both pregnancy and implantation rates originating from clones in the SCNT + PA group were significantly higher than those of SCNT group (p < 0.05). The weight of placentas of clones derived from SCNT, SCNT + PA, or SCNT + Fert was in all cases significantly higher than that of fertilized controls (p < 0.001). Most of the clones derived from SCNT embryos cotransferred with PA or fertilized embryos survived to adulthood and were fertile and healthy according to histopathological observations. Our results demonstrate in mouse that cotransfer of PA embryos improves the pregnancy and implantation of SCNT embryos without compromising the overall health of the resulting clones.  相似文献   

10.
It has been reported that buffalo (Bubalus bubalis) embryos reconstructed by somatic cell nucleus transfer (SCNT) can develop to the full term of gestation and result in newborn calves. However, the developmental competence of reconstructed embryos is still low. Recently, it has been reported that treating donor cells or embryos with trichostatin A (TSA) can increase the cloning efficiency in some species. Thus, the present study was undertaken to improve the development of buffalo SCNT embryos by treatment of donor cells (buffalo fetal fibroblasts) with TSA and explore the relation between histone acetylation status of donor cells and developmental competence of SCNT embryos. Treatment of donor cells with either 0.15 or 0.3 μM TSA for 48 hours resulted in a significant increase in the cleavage rate and blastocyst yield of SCNT embryos (P < 0.05). Meanwhile, the expression level of HDAC1 in donor cells was also decreased (0.4–0.6 fold, P < 0.05) by TSA treatment, although the expression level of HAT1 was not affected. Further measurement of the epigenetic maker AcH4K8 in buffalo IVF and SCNT embryos at the eight-cell stage revealed that the spatial distribution of acH4K8 staining in SCNT embryos was different from the IVF embryos. Treatment of donor cells with TSA resulted in an increase in the AcH4K8 level of SCNT embryos and similar to fertilized counterparts. These results suggest that treatment of donor cells with TSA can facilitate their nucleus reprogramming by affecting the acetylated status of H4K8 and improving the in vitro development of buffalo SCNT embryos. The AcH4K8 status at the eight-cell stage can be used as an epigenetic marker for predicting the SCNT efficiency in buffalos.  相似文献   

11.
In several mammalian species including rats, successfully cloned animals have been generated using somatic cell nuclear transfer (SCNT). However, in the case of rats, additional treatment with MG132, a proteasome inhibitor, before enucleation of oocytes seems to be required for successful cloning because ovulated rat oocytes are spontaneously activated, and hence, their suppression is the key to successful cloning. A previous study on rats demonstrated that matured oocytes potentially possess lower cytostatic factor (CSF) activity compared to mouse oocytes, resulting in a low incidence of premature chromosome condensation in the reconstructed embryos after SCNT. It is known that mice having more than two pronuclei are generally observed in nuclear-transferred oocytes after induction of premature chromosome condensation, which implies successful reprogramming. This leads us to the hypothesis that MG132 treatment affects not only the inhibition of spontaneous activation but also the reprogramming and developmental ability of reconstructed rat embryos. If so, prolonged MG132 treatment during and/or after SCNT may further improve the survivability. However, the effect of MG132 treatment on reconstructed embryos after SCNT has been very limited in rats and other species. We show here that prolonged MG132 treatment during and after SCNT improves survival and the number of pronuclei in reconstructed rat embryos after activation. These reconstructed embryos treated before, during, and after SCNT showed significantly higher p34(cdc2) kinase activity involving CSF activity compared to that of the control embryos. On the other hand, p34(cdc2) kinase activity was not recovered in nuclear-transferred oocytes without MG132, which suggested that the enucleation had detrimental effects on the development of reconstructed oocytes. Taken together, MG132 treatment during SCNT increases survival and pronuclear numbers in reconstructed rat embryos via maintenance of high CSF activity. The data suggest that MG132 treatment is indispensable for at least rat SCNT.  相似文献   

12.
Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.  相似文献   

13.
14.
15.
Low developmental competence of bovine somatic cell nuclear transfer (SCNT) embryos is a universal problem. Abnormal placentation has been commonly reported in SCNT pregnancies from a number of species. The present study employed Affymetrix bovine expression microarrays to examine global gene expression patterns of SCNT and in vivo produced (AI) blastocysts as well as cotyledons from day‐70 SCNT and AI pregnancies. SCNT and AI embryos and cotyledons were analyzed for differential expression. Also in an attempt to establish a link between abnormal gene expression patterns in early embryos and cotyledons, differentially expressed genes were compared between the two studies. Microarray analysis yielded a list of 28 genes differentially expressed between SCNT and AI blastocysts and 19 differentially expressed cotyledon genes. None of the differentially expressed genes were common to both groups, although major histocompatibility complex I (MHCI) was significant in the embryo data and approached significance in the cotyledon data. This is the first study to report global gene expression patterns in bovine AI and SCNT cotyledons. The embryonic gene expression data reported here adds to a growing body of data that indicates the common occurrence of aberrant gene expression in early SCNT embryos. Mol. Reprod. Dev. 76: 471–482, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
17.
Early studies on cloning of non-human primates by nuclear transfer utilized embryonic blastomeres from preimplantation embryos which resulted in the reproducible birth of live offspring. Soon after, the focus shifted to employing somatic cells as a source of donor nuclei (somatic cell nuclear transfer, SCNT). However, initial efforts were plagued with inefficient nuclear reprogramming and poor embryonic development when standard SCNT methods were utilized. Implementation of several key SCNT modifications was critical to overcome these problems. In particular, a non-invasive method of visualizing the metaphase chromosomes during enucleation was developed to preserve the reprogramming capacity of monkey oocytes. These modifications dramatically improved the efficiency of SCNT, yielding high blastocyst development in vitro. To date, SCNT has been successfully used to derive pluripotent embryonic stem cells (ESCs) from adult monkey skin fibroblasts. These remarkable advances have the potential for development of human autologous ESCs and cures for many human diseases. Reproductive cloning of nonhuman primates by SCNT has not been achieved yet. We have been able to establish several pregnancies with SCNT embryos which, so far, did not progress to term. In this review, we summarize the approaches, obstacles and accomplishments of SCNT in a non-human primate model.  相似文献   

18.
Reproductive efficiency using somatic cell nuclear transfer (SCNT) technology remains suboptimal. Of the various efforts to improve the efficiency, chromatin transfer (CT) and clone-clone aggregation (NTagg) have been reported to produce live cloned animals. To better understand the molecular mechanisms of somatic cell reprogramming during SCNT and assess the various SCNT methods on the molecular level, we performed gene expression analysis on bovine blastocysts produced via standard nuclear transfer (NT), CT, NTagg, in vitro fertilization (IVF), and artificial insemination (AI), as well as on somatic donor cells, using bovine genome arrays. The expression profiles of SCNT (NT, CT, NTagg) embryos were compared with IVF and AI embryos as well as donor cells. NT and CT embryos have indistinguishable gene expression patterns. In comparison to IVF or AI embryos, the number of differentially expressed genes in NTagg embryos is significantly higher than in NT and CT embryos. Genes that were differentially expressed between all the SCNT embryos and IVF or AI embryos are identified. Compared to AI embryos, more than half of the genes found deregulated between SCNT and AI embryos appear to be the result of in vitro culture alone. The results indicate that although SCNT methods have altered differentiated somatic nuclei gene expression to more closely resemble that of embryonic nuclei, combination of insufficient reprogramming and in vitro culture condition compromise the developmental potential of SCNT embryos. This is the first set of comprehensive data for analyzing the molecular impact of various nuclear transfer methods on bovine pre-implantation embryos.  相似文献   

19.
Chromosome alterations, such as those affecting telomere erosion, predictably occur with each cell division, others, which involve changes to the expression and replication of the X-chromosome occur at particular stages of development, while those that involve loss or gain of chromosomes occur in a random and so far unpredictable manner. The production of embryos in vitro and by somatic cell nuclear transfer (SCNT) has been associated with altered expression of marker genes on the X-chromosome and an increased incidence of chromosomally abnormal cells during early development. In the case of SCNT embryos chromosome abnormalities may be associated with the nuclear donor cell. Telomere rebuilding subsequent to SCNT appears to vary according to species and type of donor cell used. It is speculated that the rate of telomere erosion and incidence of chromosome abnormalities affects developmental potential of early embryos and may be potential predictors of developmental outcome.  相似文献   

20.
We produced aggregate chimeric embryos between blastomeres from the somatic cell nuclear transfer (SCNT) embryos and blastomeres from normal embryos. The SCNT embryos were produced by fusing enucleated oocytes with GFP gene introduced fibroblast cells, which were derived from a day 16 fetus. GFP gene-introduced fibroblast cells were cultured and passaged four to 12 times over a period of 45-79 days before SCNT. After transferring them into pseudopregnant recipient rabbits, the 15-day postcoitus fetuses were collected. We examined the existence of the cells derived from SCNT embryos in the fetus stage of pregnancy to detect the GFP gene. Fetuses that were not collected continued to develop into newborn rabbits. Two hundred and thirty-six chimeric embryos were produced using 39 SCNT morula stage embryos, and these embryos were transferred to 11 recipient rabbits. As a result, 27 normally developed and 16 degenerated concepti were obtained. The GFP gene-positive signals were detected in one of the fetuses, two of the placentae, and two of the degenerated concepti. In this study, we found that the rabbit SCNT embryos have the ability to develop and differentiate in vivo. We also demonstrated a novel method of producing a transgenic rabbit using SCNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号