共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ultrastructure of nerve endings in the oviduct visceral muscles of Locusta migratoria was studied by electron microscopy and by immunogold labeling for two kinds of neuromodulators, the pentapeptide proctolin and FMRFamide-related peptides. Nerve endings contained electron-lucent round vesicles and two kinds of granules (round and avoid), and formed two types of synapses or release sites with the muscle. The morphologically distinct nerve endings were classified into three different categories based on the composition of synaptic vesicles and granules. Type-I nerve endings were dominated by electron-lucent round vesicles and contained only a few round electron-dense granules. Type-II nerve endings contained mostly electron-dense round granules and electron-lucent round vesicles. A few electron-dense ovoid granules were also present. Electron-dense ovoid granules dominated the type-III nerve endings, which usually contained less electron-lucent vesicles than either type-I or II nerve endings. Both proctolin and FMRFamide-like immunoreactivity was associated with electron-dense round granules. However, FMRFamide-like immunoreactivity was only found in the type-II nerve endings, while proctolin immunoreactivity was found within type-I nerve endings as well as in some type-II nerve endings. Immunological results therefore allow us to further divide type-II nerve endings into type-IIa (immunonegative for proctolin) and type-IIb (immunopositive for proctolin). Type-III nerve endings show no immunolabeling to either proctolin or FMRFamide. 相似文献
3.
4.
5.
It is interesting to ascertain the adaptive reaction of rat neuromuscular junctions (NMJ) of muscle fibers of different types to a chronic physical load. We examined ultrastructural changes in NMJ following both static load (pre- and postnatal ontogenesis of Wistar rats till a 2 month age took place under a constant rotation on the centrifuge at hypergravity conditions 2G), and after three kinds of dynamic loads (1/run on treadmill with a speed 35 m/min for 6 wks, 10-60 min/day; 2/swimmings, each 10 hrs/day for 10 days; 3/strength exercises on a vertical treadmill with load for 6 wks). Differences in NMJ reaction of muscle fibers of the same type to various loads were established. A low secretory activity of axonal terminals of type I muscle fibers of m. soleus was shown after the static load. The dynamic load (run) is accompanied with a high secretory activity of axonal terminals in m. soleus type I muscle fibers and of some axonal terminals of m. quadriceps femoris IIB type muscle fibers after strength exercises; the secretory activity of axonal terminals of m. quadriceps femoris IIA and IIB types muscle fibers is expressed in a lesser degree after swimming. The NMJ ultrastructure remodelling (terminal renewal) of type I muscle fibers of the 2 month old control rats increases after static and dynamic (run) loads. Some correlations between different kinds of physical load, muscle fiber type and the degree of NMJ ultrastructure transformation have been shown. 相似文献
6.
7.
8.
S. Allen Counter 《Journal of morphology》1978,158(3):361-365
The ultrastructure of neuromuscular junctions in the twitch fibers of the stapedius muscle of Gallus gallus (domesticus) was investigated as part of a series of neurophysiological studies. Among the morphological features observed were elongated end-plates with numerous large and clear synaptic vesicles mixed with larger dense core vesicles and irregular or aperiodic “active sites” in the presynaptic membrane where synaptic vesicles were focused. The most remarkable features of these junctions were large synaptic clefts (50-80 nm) and the absence of junctional folds in the sarcolemmal surface. Unlike the large periodic junctional folds seen in the neuromuscular junctions of frogs and in the fast twitch fibers of the mammalian stapedius, the preparations studied only show small aperiodic invaginations (primitive folds) in the postsynaptic membranes. This morphological feature remains essentially constant from newly hatched to adult chickens. While these smooth junctions are consistent with earlier findings of inconspicuous junctional folds in the twitch fibers of the chicken posterior latissimus dorsi they are unlike those seen in the fast twitch fibers of the mammalian stapedius muscle, or other twitch fibers in general. The morphological findings of the present study may also suggest that the simple, unmodified neuromuscular junctions in the stapedius of Gallus may be a useful preparation for studies of synaptic membrane structures that employ the freeze-fracture technique. 相似文献
9.
Although physiological differences among neuromuscular junctions (NMJs) have long been known, NMJs have usually been considered as one type of synapse, restricting their potential value as model systems to investigate mechanisms controlling synapse assembly and plasticity. Here we discuss recent evidence that skeletal muscles in the mouse can be subdivided into two previously unrecognized subtypes, designated FaSyn and DeSyn muscles. These muscles differ in the pattern of neuromuscular synaptogenesis during embryonic development. Differences between classes are intrinsic to the muscles, and manifest in the absence of innervation or agrin. The distinct rates of synaptogenesis in the periphery may influence processes of circuit maturation through retrograde signals. While NMJs on FaSyn and DeSyn muscles exhibit a comparable anatomical organization in postnatal mice, treatments that challenge synaptic stability result in nerve sprouting, NMJ remodeling, and ectopic synaptogenesis selectively on DeSyn muscles. This anatomical plasticity of NMJs diminishes greatly between 2 and 6 months postnatally. NMJs lacking this plasticity are lost selectively and very early on in mouse models of motoneuron disease, suggesting that disease-associated motoneuron dysfunction may fail to initiate maintenance processes at “non-plastic” NMJs. Transgenic mice overexpressing growth-promoting proteins in motoneurons exhibit greatly enhanced stimulus-induced sprouting restricted to DeSyn muscles, supporting the notion that anatomical plasticity at the NMJ is primarily controlled by processes in the postsynaptic muscle. The discovery that entire muscles in the mouse differ substantially in the anatomical plasticity of their synapses establishes NMJs as a uniquely advantageous experimental system to investigate mechanisms controlling synaptic rearrangements at defined synapses in vivo. 相似文献
10.
11.
12.
13.
14.
15.
16.
Reasons for the progressive age-related loss of skeletal muscle mass and function, namely sarcopenia, are complex. Few studies describe sarcopenia in mice, although this species is the mammalian model of choice for genetic intervention and development of pharmaceutical interventions for muscle degeneration. One factor, important to sarcopenia-associated neuromuscular change, is myofibre denervation. Here we describe the morphology of the neuromuscular compartment in young (3 month) compared to geriatric (29 month) old female C57Bl/6J mice. There was no significant difference in the size or number of motoneuron cell bodies at the lumbar level (L1-L5) of the spinal cord at 3 and 29 months. However, in geriatric mice, there was a striking increase (by ~2.5 fold) in the percentage of fully denervated neuromuscular junctions (NMJs) and associated deterioration of Schwann cells in fast extensor digitorum longus (EDL), but not in slow soleus muscles. There were also distinct changes in myofibre composition of lower limb muscles (tibialis anterior (TA) and soleus) with a shift at 29 months to a faster phenotype in fast TA muscle and to a slower phenotype in slow soleus muscle. Overall, we demonstrate complex changes at the NMJ and muscle levels in geriatric mice that occur despite the maintenance of motoneuron cell bodies in the spinal cord. The challenge is to identify which components of the neuromuscular system are primarily responsible for the marked changes within the NMJ and muscle, in order to selectively target future interventions to reduce sarcopenia. 相似文献
17.
Enzyme patterns in young and old mouse livers and lungs 总被引:3,自引:0,他引:3
P D Wilson 《Gerontologia》1972,18(1):36-54
18.
Mary Kate Worden 《Current opinion in neurobiology》1998,8(6):740-745
Advances in our understanding of how the neuromuscular junction is modulated include an expanded appreciation of the many different types of modulatory influences, from soluble factors to second-messenger systems, to specific proteins in nerve and muscle. Recent studies indicate that modulation of neuromuscular function is effected on both the presynaptic and postsynaptic sides of the neuromuscular junction. 相似文献
19.
20.
Facilitation at crayfish neuromuscular junctions 总被引:1,自引:0,他引:1
George D. Bittner V. Lawrence Sewell 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1976,109(3):287-308
Electrophysical recordings from opener muscle fibers in the crayfishProcambarus clarkii (Fig. 1) show that pre-synaptic facilitation at terminals of the single excitatory axon usually decays in a dual-exponential fashion after a single pulse or after a train of pulses (Figs. 2, 3, 7, 9), as has been reported for frog neuromuscular junctions (Mallart and Martin, 1967) and squid giant synapses (Charlton and Bittner, 1974, 1976). Furthermore, the second component of decay at crayfish synapses is associated with a break in the monotonic decay of the first component, a result which suggests that the decay of facilitation is not due to the simple diffusion of some substance (such as calcium) from specialized release sites.The growth of facilitation at all opener synapses during trains of equalinterval stimuli could not be predicted by assuming that each pulse contributed an equal amount of facilitation which summed linearly with that remaining from all previous stimuli (Figs. 4, 6; Table 2), as reported for synapses in frog and squid. During high frequency stimulation (>40 Hz), those terminals which facilitate dramatically (highF
e synapses) show much greater amounts of facilitation than that predicted by the linear summation model (Figs. 4, 8), whereas other terminals (lowF
e synapses) show much less facilitation than predicted (Fig. 6). The rate of growth of facilitation was often very constant at various stimulus rates in highF
e or mixed type synapses (Figs. 4, 8, 10)-a result not predicted by the linear summation model. Finally, when highF
e synapses were stimulated at different frequencies, the rate of growth of facilitation changed dramatically in a fashion not predictable using linear summation (Mallert and Martin, 1967) or power law (Linder, 1974) models. 相似文献