首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Mesenchymal stem cells (MSCs) are an attractive source of adult stem cells for therapeutic application in clinical study. Genetic modification of MSCs with beneficial genes makes them more effective for therapeutic use. However, it is difficult to transduce genes into MSCs by common transfection methods, especially nonviral methods. In this study, we applied microporation technology as a novel electroporation technique to introduce enhanced green fluorescent protein (EGFP) and brain-derived neurotropfic factor (BDNF) plasmid DNA into human umbilical cord blood-derived MSCs (hUCB-MSCs) with significant efficiency, and investigated the stem cell potentiality of engineered MSCs through their phenotypes, proliferative capacity, ability to differentiate into multiple lineages, and migration ability towards malignant glioma cells.

Results

Using microporation with EGFP as a reporter gene, hUCB-MSCs were transfected with higher efficiency (83%) and only minimal cell damage than when conventional liposome-based reagent (<20%) or established electroporation methods were used (30-40%). More importantly, microporation did not affect the immunophenotype of hUCB-MSCs, their proliferation activity, ability to differentiate into mesodermal and ectodermal lineages, or migration ability towards cancer cells. In addition, the BDNF gene could be successfully transfected into hUCB-MSCs, and BDNF expression remained fairly constant for the first 2 weeks in vitro and in vivo. Moreover, microporation of BDNF gene into hUCB-MSCs promoted their in vitro differentiation into neural cells.

Conclusion

Taken together, the present data demonstrates the value of microporation as an efficient means of transfection of MSCs without changing their multiple properties. Gene delivery by microporation may enhance the feasibility of transgenic stem cell therapy.  相似文献   

2.
3.
Human umbilical cord blood is frequently used as a source of transplantable hematopoietic cells and more recently as a target of gene therapy - a new approach for treatment of various disorders. The aim of our study was optimisation of the transfection conditions of cord blood-derived CD34(+) hematopoietic cells. Mononuclear cells fraction was isolated from cord blood samples by density gradient centrifugation. Subsequently, CD34(+) hematopoietic cells were separated on immunomagnetic MiniMACS columns. Pure population of CD34(+) cells was incubated in a serum free medium supplemented with thrombopoietin, stem cell factor and Flt-3 ligand for 48 h and then transfected with plasmid DNA carrying the enhanced version of green fluorescent protein (EGFP) as a reporter gene. We studied the influence of various pulse settings and DNA concentrations on the transfection efficiency, measured by flow cytometry as the fluorescence of target cells due to the expression of EGFP. The optimal settings were as follows: 4 mm cuvette, 1600 microF, 550 V/cm, and 10 microg of DNA per 500 microl. With these settings we obtained a high transfection frequency (41.2%) without a marked decrease of cell viability. An increase of the pulse capacitance and/or of DNA concentration resulted in a greater electroporation efficiency, but also in a decrease of cell viability. In conclusion, the results described here allow one to recommend electroporation as an efficient method of gene delivery into CD34(+) hematopoietic cells derived from human umbilical cord blood.  相似文献   

4.
5.
6.
When will embryonic stem cells reach the clinic? The answer is simple -- not soon! To produce large quantities of homogeneous tissue for transplantation, without feeder layers, and with the appropriate recipient's immunological phenotype, is a significant scientific hindrance, although adult stem (ADS) cells provide an alternative, more ethically acceptable, source. The annual global 100 million human birth rate proposes umbilical cord blood (UCB) as the largest untouched stem cell source, with advantages of naive immune status and relatively unshortened telomere length. Here, we report the world's first reproducible production of cells expressing embryonic stem cell markers, - cord-blood-derived embryonic-like stem cells (CBEs). UCB, after elective birth by Caesarean section, has been separated by sequential immunomagnetic removal of nucleate granulocytes, erythrocytes and haemopoietic myeloid/lymphoid progenitors. After 7 days of high density culture in microflasks, (10(5) cells/ml, IMDM, FCS 10%, thrombopoietin 10 ng/ml, flt3-ligand 50 ng/ml, c-kit ligand 20 ng/ml). CBE colonies formed adherent to the substrata; these were maintained for 6 weeks, then were subcultured and continued for a minimum 13 weeks. CBEs were positive for TRA-1-60, TRA-1-81, SSEA-4, SSEA-3 and Oct-4, but not SSEA-1, indicative of restriction in the human stem cell compartment. The CBEs were also microgravity--bioreactor cultured with hepatocyte growth medium (IMDM, FCS 10%, HGF 20 ng/ml, bFGF 10 ng/ml, EGF 10 ng/ml, c-kit ligand 10 ng/ml). After 4 weeks the cells were found to express characteristic hepatic markers, cytokeratin-18, alpha-foetoprotein and albumin. Thus, such CBEs are a viable human alternative from embryonic stem cells for stem cell research, without ethical constraint and with potential for clinical applications.  相似文献   

7.
8.
9.
10.
From the time of discovery that among the cord blood mononuclear cell population there are cells capable of changing their fate towards the neural lineage and producing functional neurons and macroglial cells, our attempts have been focused on the understanding of the underlying mechanism of this transition. We have deciphered the first steps of neural stem/progenitor gene induction in aggregating culture of cord blood mononuclear cells, their rapid phenotypic conversion under the influence of neuromorphogenic signals due to mitogen activation and their ability to expand and develop a prototypic, long-living line with neural stem cell properties. Evidence has accumulated that human umbilical cord-derived and neurally committed cells, due to their capacity for self-renewal, multilineage differentiation, plasticity and ability for long-lasting growth in vitro, provide unique material for the cell therapy of a wide spectrum of neurological diseases. The putative regenerating potential of these cord blood-derived neural stem/progenitor cells was evaluated after transplantation in experimental models of brain injury. In spite of initial promising data, the results indicate an urgent need to improve available animal model protocols in order to increase immuno-tolerance toward transplanted human cells.  相似文献   

11.
We have assessed the capacity of human umbilical cord blood (hUCB)-derived stem cells to differentiate into cardiomyocytes and repair angiotensin II induced insult in culture and in mouse hearts when injected. hUCB were able to differentiate into cardiomyocyte-like cells, when induced with 5-azacytidine or co-cultured with rat neonatal cardiomyocytes (NRCM). When co-cultured, hUCB reversed the pathological effects induced by angiotensin II (Ang-II) in NRCM and in mice injected after Ang-II infusion. As assessed by increased heart weight to body mass ratio and Ang-II-induced fibrosis, cardiac hypertrophy was also reduced after hUCB were injected. hUCB also reversed the pathological heart failure markers induced by Ang-II in mice. Further, we observed a shift from pathological hypertrophy towards physiological hypertrophy by hUCB in Ang-II-challenged mice. Our findings support hUCB as a feasible model for experimentation in stem cell therapy and emphasize the relevance of the hUCB in reversing heart failure conditions.  相似文献   

12.
Perivascular cells are known to be ancestors of mesenchymal stem cells (MSCs) and can be obtained from heart, skin, bone marrow, eye, placenta and umbilical cord (UC). However detailed characterization of perivascular cells around the human UC vein and comparative analysis of them with MSCs haven’t been done yet. In this study, our aim is to isolate perivascular cells from human UC vein and characterize them versus UC blood MSCs (UCB-MSCs). For this purpose, perivascular cells around the UC vein were isolated enzymatically and then purified with magnetic activated cell sorting (MACS) method using CD146 Microbead Kit respectively. MSCs were isolated from UCB by Ficoll density gradient solution. Perivascular cells and UCB-MSCs were characterized by osteogenic and adipogenic differentiation procedures, flow cytometric analysis [CD146, CD105, CD31, CD34, CD45 and alpha-smooth muscle actin (α-SMA)], and immunofluorescent staining (MAP1B and Tenascin C). Alizarin red and Oil red O staining results showed that perivascular cells and MSCs had osteogenic and adipogenic differentiation capacity. However, osteogenic differentiation capacity of perivascular cells were found to be less than UCB-MSCs. According to flow cytometric analysis, CD146 expression of perivascular cells were appeared to be 4.8-fold higher than UCB-MSCs. Expression of α-SMA, MAP1B and Tenascin-C from perivascular cells was determined by flow cytometry analysis and immunfluorescent staining. The results appear to support the fact that perivascular cells are the ancestors of MSCs in vascular area. They may be used as alternative cells to MSCs in the field of vascular tissue engineering.  相似文献   

13.
Many studies have drawn attention to the emerging role of MSC (mesenchymal stem cells) as a promising population supporting new clinical concepts in cellular therapy. However, the sources from which these cells can be isolated are still under discussion. Whereas BM (bone marrow) is presented as the main source of MSC, despite the invasive procedure related to this source, the possibility of isolating sufficient numbers of these cells from UCB (umbilical cord blood) remains controversial. Here, we present the results of experiments aimed at isolating MSC from UCB, BM and UCM (umbilical cord matrix) using different methods of isolation and various culture media that summarize the main procedures and criteria reported in the literature. Whereas isolation of MSC were successful from BM (10:10) and (UCM) (8:8), only one cord blood sample (1:15) gave rise to MSC using various culture media [DMEM (Dulbecco's modified Eagle's medium) +5% platelet lysate, DMEM+10% FBS (fetal bovine serum), DMEM+10% human UCB serum, MSCGM®] and different isolation methods [plastic adherence of total MNC (mononuclear cells), CD3+/CD19+/CD14+/CD38+‐depleted MNC and CD133+‐ or LNGFR+‐enriched MNC]. MSC from UCM and BM were able to differentiate into adipocytes, osteocytes and hepatocytes. The expansion potential was highest for MSC from UCM. The two cell populations had CD90+/CD73+/CD105+ phenotype with the additional expression of SSEA4 and LNGFR for BM MSC. These results clearly exclude UCB from the list of MSC sources for clinical use and propose instead UCM as a rich, non‐invasive and abundant source of MSC.  相似文献   

14.
脐血干细胞移植治疗失代偿期肝硬化的临床疗效   总被引:1,自引:0,他引:1  
目的:探讨人脐血干细胞(umbilical cord blood stem cell,UCBSC)外周静脉移植治疗失代偿期肝硬化的临床疗效及可行性.方法:20例失代偿期肝硬化患者采用人UCBSC外周静脉移植治疗,治疗后定期观察患者血清转氨酶(ALT、AST)、总胆红素(TBIL)、白蛋白(ALB)、凝血酶原时间(PT)和纤维蛋白原(FIB)水平变化,并观察患者临床症状及体征的改善情况及不良反应.结果:UCBSC移植治疗后2周,各项肝功能指标较治疗前无显著性差异(P>0.05);治疗后4周,除ALT和AST有所改善外(P<0.05),其余指标无明显改善;治疗后8周各项肝功能指标均有改善(P<0.05),12周有显著性改善(P<0.01).治疗后4周大多数患者的临床症状有明显改善,腹水减少和双下肢浮肿减轻15例(75.0%)、乏力好转16例(80%)、食欲改善13例(65%).UCBSC移植后12周患者总体生存率为90%,其中2例患者分别在UCBSC静脉移植后4周和8周因为肝性昏迷和自发性细菌性腹膜炎而死亡.所有患者均未发现与细胞移植相关的副作用.结论:UCBSC外周静脉移植是治疗失代偿期肝硬化一种安全有效的方法,短期内可以改善失代偿期肝硬化患者肝功能及临床症状,是一种值得推荐的治疗方法.  相似文献   

15.
16.
The in vitro radiation sensitivity of CFU-Meg isolated from human placental and umbilical cord blood was evaluated in plasma clot cultures stimulated by recombinant human cytokines, including thrombopoietin, the FLT3 ligand (FLT3LG), interleukin-3, interleukin-11 and stem cell factor. The CD34(+) cells were irradiated with X rays at a dose rate of 73 cGy/ min. The megakaryocyte colonies were identified by using an FITC-conjugated antibody to glycoprotein IIbIIIa and were classified into two groups based on colony size: large colonies (immature CFU-Meg) and small colonies (mature CFU-Meg). Treatment with thrombopoietin alone or in combination with FLT3LG and/or interleukin-11 gave exponential radiation survival curves (D(0) for immature CFU-Meg = 56-77 cGy, D(0) for mature CFU-Meg = 86 cGy-1.12 Gy), while marked shoulders were observed on the survival curves for colonies supported by the combination of thrombopoietin, interleukin-3 and stem cell factor (D(0) for immature CFU-Meg = 89- 98 cGy; D(0) for mature CFU-Meg = 1. 25-1.31 Gy). Our results showed that the immature CFU-Meg were more radiosensitive than the mature CFU-Meg and that the combination of cytokines, including thrombopoietin, interleukin-3 and stem cell factor, affected the radiation sensitivity of CFU-Meg to the same extent as with thrombopoietin alone or in combination with FLT3LG and/or interleukin-11.  相似文献   

17.
Despite their similarities to bone marrow precursor cells (PC), human umbilical cord blood (HUCB) PCs are more immature and, thus, they exhibit greater plasticity. This plasticity is evident by their ability to proliferate and spontaneously differentiate into almost any cell type, depending on their environment. Moreover, HUCB-PCs yield an accessible cell population that can be grown in culture and differentiated into glial, neuronal and other cell phenotypes. HUCB-PCs offer many potential therapeutic benefits, particularly in the area of neural replacement. We sought to induce the differentiation of HUCB-PCs into glial cells, known as aldynoglia. These cells can promote neuronal regeneration after lesion and they can be transplanted into areas affected by several pathologies, which represents an important therapeutic strategy to treat central nervous system damage. To induce differentiation to the aldynoglia phenotype, HUCB-PCs were exposed to different culture media. Mononuclear cells from HUCB were isolated and purified by identification of CD34 and CD133 antigens, and after 12 days in culture, differentiation of CD34+ HUCB-PCs to an aldynoglia phenotypic, but not that of CD133+ cells, was induced in ensheathing cell (EC)-conditioned medium. Thus, we demonstrate that the differentiation of HUCB-PCs into aldynoglia cells in EC-conditioned medium can provide a new source of aldynoglial cells for use in transplants to treat injuries or neurodegenerative diseases.  相似文献   

18.
To investigate the sensitivity of human hematopoietic stem cell populations to radiation and its relevance to intracellular events, specifically alteration in cellular energy production systems, we examined the frequency of apoptotic cells, generation of superoxide anions (O*2-), and changes in cytosol pH in umbilical cord blood (UCB) CD34+/CD38-, CD34+/CD38+ and CD34-/CD38+ cells before and after 5Gy of X-irradiation. Human UCB mononucleated cells were used in this study. After X-irradiation and staining subgroups of the cells with fluorescence (FITC, PE, or CY)-labeled anti-CD34 and anti-CD38 antibodies, analyses were performed by FACScan using as stains 7-amino-actinomycin D (7-AAD) for the detection of apoptosis, and hydroethidine (HE) for the measurement of O*2- generation in the cells. For intracellular pH, image analysis was conducted using confocal laser microscopy after irradiation and staining with carboxy-SNAFR-1. The frequency of apoptotic cells, as determined by cell staining with 7-AAD, was highest in the irradiated CD34+/CD38- cell population, where the level of O*2- detected by the oxidation of HE was also most highly elevated. Intracellular pH measured with carboxy-SNARF-1-AM by image cytometer appeared to be lowest in the same irradiated CD34+/CD38- cell population, and this intracellular pH decreased as early as 4 h post-irradiation, virtually simultaneous with the significant elevation of O*2- generation. These results suggest that the CD34+/CD38- stem cell population is sensitive to radiation-induced apoptosis as well as production of intracellular O*2-, compare to more differentiated CD34+/CD38+ and CD34-/CD38+ cells and that its intracellular pH declines at an early phase in the apoptosis process.  相似文献   

19.
To investigate the behavior of hematopoietic stem cells (HSCs) in cord blood (CB), we analyzed the expression and function of TIE2, a tyrosine kinase receptor. A subpopulation of Lineage (Lin)(-/low)CD34(+) cells in CB expressed TIE2 (18.8%). Assays for long-term culture-initiating cells (LTC-IC) and cobble-stone formation revealed that Lin(-/low)CD34(+)TIE2(+) cells showed to have a capacity of primitive hematopoietic precursor cells in vitro. When Lin(-/low)CD34(+)TIE2(+) cells were cultured on the stromal cells, they transmigrated under the stromal layers and kept an immature character for a few weeks. By contrast, Lin(-/low)CD34(+)TIE2(-) cells differentiated immediately within a few weeks. Finally, we confirmed that 1x10(4)Lin(-/low)CD34(+)TIE2(+) cells were engrafted in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, while 1x10(4)Lin(-/low)CD34(+)TIE2(-) cells were not. Taken together, we conclude that TIE2 is a marker of HSCs in CB. A ligand for TIE2, Ang-1 promoted the adhesion of sorted primary Lin(-/low)CD34(+)TIE2(+) cells to fibronectin (FN), and this adhesion may play a critical role in keeping HSCs in an immature status under the stromal cells.  相似文献   

20.
The generation of Th1 responses is important for resistance to intracellular pathogens, including the parasite, Leishmania major. Although IFN-gammaR/STAT1 signaling promotes a Th1 response via the up-regulation of T-bet, the requirement for STAT1 in Th1 cell differentiation remains controversial. Although in some cases Th1 cells develop independently of STAT1, STAT1(-/-) mice fail to develop a Th1 response during L. major infection. However, the interpretation of this result is complicated by the role STAT1 plays in Ag presentation and, more importantly, in elimination of parasites by macrophages, because both defective Ag presentation and increased parasite burden can influence Th cell development. To resolve this issue, we assessed the ability of STAT1(-/-) T cells to become Th1 cells and protect mice against L. major following adoptive transfer into STAT1-sufficient mice. We found that whereas T-bet is critical for the differentiation of protective Th1 cells during L. major infection, IFN-gammaR and STAT1 are dispensable. Given that a STAT1-independent Th1 cell response was generated by STAT1-sufficient APCs, but not by STAT1(-/-) cells, we next addressed whether dendritic cells (DCs) require STAT1 signaling to effectively present Ag. We found that STAT1(-/-) DCs had impaired up-regulation of MHC and costimulatory molecules, and, as a consequence, the absence of STAT1 resulted in reduced Th1 cell priming. Taken together, these results demonstrate that T cell expression of STAT1 is not required for the development of Th1 cells protective against L. major and instead stress the importance of STAT1 signaling in DCs for the optimal induction of Th1 responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号