首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have established a collection of 2460 lethal or semi-lethal mutant lines using a procedure thought to insert single P elements into vital genes on the third chromosome of Drosophila melanogaster. More than 1200 randomly selected lines were examined by in situ hybridization and 90% found to contain single insertions at sites that mark 89% of all lettered subdivisions of the Bridges' map. A set of chromosomal deficiencies that collectively uncover ~25% of the euchromatin of chromosome 3 reveal lethal mutations in 468 lines corresponding to 145 complementation groups. We undertook a detailed analysis of the cytogenetic interval 86E-87F and identified 87 P-element-induced mutations falling into 38 complementation groups, 16 of which correspond to previously known genes. Twenty-one of these 38 complementation groups have at least one allele that has a P-element insertion at a position consistent with the cytogenetics of the locus. We have rescued P elements and flanking chromosomal sequences from the 86E-87F region in 35 lines with either lethal or genetically silent P insertions, and used these as probes to identify cosmids and P1 clones from the Drosophila genome projects. This has tied together the physical and genetic maps and has linked 44 previously identified cosmid contigs into seven ``supercontigs' that span the interval. STS data for sequences flanking one side of the P-element insertions in 49 lines has identified insertions in the αγ element at 87C, two known transposable elements, and the open reading frames of seven putative single copy genes. These correspond to five known genes in this interval, and two genes identified by the homology of their predicted products to known proteins from other organisms.  相似文献   

3.
We have conducted a genetic analysis of the region flanking the 68C glue gene cluster in Drosophila melanogaster by isolating lethal and semilethal mutations uncovered by deficiencies which span this region. Three different mutagens were used: ethyl methanesulfonate (EMS), ethyl nitrosourea (ENU) and diepoxybutane (DEB). In the region from 68A3 to 68C11, 64 lethal, semilethal, and visible mutations were recovered. These include alleles of 13 new lethal complementation groups, as well as new alleles of rotated, low xanthine dehydrogenase, lethal(3)517 and lethal(3)B76. Six new visible mutations from within this region were recovered on the basis of their reduced viability; all proved to be semiviable alleles of lethal complementation groups. No significant differences were observed in the distributions of lethals recovered using the three different mutagens. Each lethal was mapped on the basis of complementation with overlapping deficiencies; mutations that mapped within the same interval were tested for complementation, and the relative order of the lethal groups within each interval was determined by recombination. The cytological distribution of genes within the 68A3-68C11 region is not uniform: the region from 68A2,3 to 68B1,3 (seven to ten polytene chromosome bands) contains at least 13 lethal complementation groups and the mutation low xanthine dehydrogenase; the adjoining region from 68B1,3 to 68C5,6 (six to nine bands) includes the 68C glue gene cluster, but no known lethal or visible complementation groups; and the interval from 68C5,6 to 68C10,11 (three to five bands) contains at least three lethal complementation groups and the visible mutation rotated. The developmental stage at which lethality is observed was determined for a representative allele from each lethal complementation group.  相似文献   

4.
A cytogenetic analysis of the 43A-E region of chromosome 2 in Drosophila melanogaster is presented. Within this interval 27 complementation groups have been identified by extensive F(2) screens and ordered by deletion mapping. The region includes the cellular polarity genes prickle and spiny-legs, the segmentation genes costa and torso, the morphogenetic locus sine oculis and is bounded on its distal side by the eye-color gene cinnabar. In addition 19 novel lethal complementation groups and two semi-lethal complementation groups with morphogenetic escaper phenotypes are described.  相似文献   

5.
A. M. Hoogwerf  M. Akam    D. Roberts 《Genetics》1988,118(4):665-670
We describe a genetic analysis of the region 68C8-69B5 defined by Df(3L)vin-7. We have induced 35 new lethal mutations in this region, which together with 20 existing lethal mutations, visible mutations, genes identified by protein products and one gene deduced from complementation data fall into 37 complementation groups in this 35-band interval. Using existing and newly induced deficiencies we have assigned these to 11 intervals defined by deficiency breakpoints. Those mutations which fell in the same breakpoint interval as the Lsp-2 gene, which codes for the abundant larval serum protein 2, were the subject of detailed study. None was rescued by the active Lsp-2 gene transformed on to chromosome II and we conclude that, as yet, we have no lethal mutations of Lsp-2.  相似文献   

6.
E. M. Rinchik 《Genetics》1994,137(3):855-865
Numerous new mutations at the brown (b) locus in mouse chromosome 4 have been recovered over the years in germ-cell mutagenesis experiments performed at the Oak Ridge National Laboratory. A large series of radiation- and chemical-induced b mutations known to be chromosomal deletions, and also known to be prenatally lethal when homozygous, were analyzed by pairwise complementation crosses as well as by pseudodominance tests involving flanking loci defined by externally visible phenotypes. These crosses were designed to determine the extent of each deletion on the genetic and phenotype map of the chromosomal region surrounding the b locus; the crosses also provided basic data that assigned deletions to complementation groups and defined four new loci associated with aberrancies in normal development. Specifically, the pseudodominance tests identified deletions that include the proximally mapping whirler (wi) and the distally mapping depilated (dep) genes, thereby bracketing these loci defined by visible developmental abnormalities with landmarks (deletion breakpoints) that are easily identified on the physical map. Furthermore, the complementation crosses, which were supplemented with additional crosses that allowed determination of the gross time of lethality of selected deletions, defined four new loci required for normal development. Homozygous deletion of one of these loci (b-associated fitness, baf) results in a runting syndrome evident during postnatal development; deletion of one locus [l(4)2Rn] causes death in the late gestation/neonatal period; and deletion of either of two loci [l(4)1Rn or l(4)3Rn] results in embryonic death, most likely in pre-, peri- or postimplantation stages. The placement of these new functionally defined loci on the evolving molecular map of the b region should be useful for continuing the analysis of the roles played in development by genes in this segment of chromosome 4.  相似文献   

7.
The cytogenetic region 46C-F on the right arm of Drosophila chromosome 2, which contains the homolog of the human jun proto-oncogene, has been genetically mapped and characterized. This project led to the identification and characterization of a Jra (jun-related antigen) mutation, which has been described in detail elsewhere. Three mutagens, EMS, DEB and gamma-rays, were used to isolate 126 lethal lines for this interval. Complementation analysis of the 126 lethal lines identified 29 lethal complementation groups in the region; nine of which have now been correlated with known genes or phenotypes. The region has been subdivided into ten intervals using various small deletions, seven intervals in 46C/D and three intervals in 46E/F. Sixteen P-element lines have been mapped to this interval and are allelic to eight of our complementation groups. The remaining unidentified complementation groups have been analyzed for critical phase, which is when the first observable defect arises and/or when death occurs. There are twelve embryonic lethal groups and seven larval lethal groups. Three lines show visible abnormalities in gut and tracheal development prior to death.  相似文献   

8.
The chromosomal region 36C on 2L contains two maternal-effect loci, dorsal (dl) and Bicaudal-D (Bic-D), which are involved in establishing polarity of the Drosophila embryo along the dorsal-ventral and anterior-posterior axes, respectively. To analyze the region genetically, we isolated X-ray-induced dorsal alleles, which we recognized by virtue of the haplo-insufficient temperature-sensitive dorsal-dominant phenotype in progeny of single females heterozygous for a mutagenized chromosome. From the 20,000 chromosomes tested, we isolated three deficiencies, two inversions with breakpoint in dl and one apparent dl point mutant. One of the deficiencies, Df(2L)H20 (36A6,7; 36F1,2) was used to screen for EMS-induced lethal- and maternal-effect mutants mapping in the vicinity of dl and Bic-D. We isolated 44 lethal mutations defining 11 complementation groups. We also recovered as maternal-effect mutations four dl alleles, as well as six alleles of quail and one allele of kelch, two previously identified maternal-effect genes. Through complementation tests with various viable mutants and deficiencies in the region, a total of 18 loci were identified in an interval of about 30 cytologically visible bands. The region was subdivided into seven subregions by deficiency breakpoints. One lethal complementation group as well as the two maternal loci, Bic-D and quail, are located in the same deficiency interval as is dl.  相似文献   

9.
The genetic organization of interval 62B3-4 to 62D3-4 on the Drosophila third chromosome was investigated. The region (designated DRE) includes four known loci: Roughened (R; 3-1.4), defined by a dominant mutation disrupting eye morphology; the nonvital locus Aprt, structural gene for adenine phosphoribosyltransferase; Dras3, a homolog of the vertebrate ras oncogene; and 1(3)ecdysoneless (1(3)ecd), a gene that has been implicated in the regulation of larval molting hormone (ecdysteroid) synthesis. Overlapping chromosomal deletions of the region were generated by gamma-ray-induced reversion of the R mutation. Recessive lethal mutations were isolated based upon failure to complement the recessive lethality of Df(3L)RR2, a deletion of the DRE region that removes 16-18 polytene chromosome bands. A total of 117 mutations were isolated following ethyl methanesulfonate and gamma-ray mutagenesis. These and two additional define 13 lethal complementation groups. Mutations at two loci were recovered at disproportionately high rates. One of these loci is preferentially sensitive to radiation-induced mutational alterations. Additionally, an unusually low recovery rate for cytologically detectable rearrangement breakpoints within the gamma-ray-sensitive locus suggests that an interval of the DRE region closely linked to the R locus may be dominantly sensitive to position effects. Lethal phase analysis of mutant hemizygotes indicates that a high proportion of DRE-region loci (11 of 13) are necessary for larval development. Mutations in five loci cause predominantly first-instar larval lethality, while mutations in four other loci cause predominantly second-instar lethality. Mutations in two loci cause late-larval lethality associated with abnormal imaginal disc development. A temperature-sensitive allele of one newly identified complementation group blocks ecdysteroid-induced pupariation. This developmental block is overcome by dietary 20-hydroxyecdysone, suggesting that a second locus in the region in addition to l(3)ecd may play a role in the regulation of late larval ecdysteroid levels.  相似文献   

10.
We have analyzed the FMRFamide neuropeptide gene region of Drosophila melanogaster. This gene maps to the 46C region of chromosome 2R; this interval previously was not well characterized. For this genetic and molecular analysis, we have used X-ray mutagenesis, EMS mutagenesis, and the recently reported local P element transposition method. We identified four overlapping deletions, two of which have proximal breakpoints that define a 50-60-kb region surrounding the FMRFamide gene in 46C. To this small region, we mapped three lethal complementation groups; 10 additional lethal complementation groups were mapped to more distal regions of 46CD. One of these groups corresponds to even-skipped, the other 12 are previously unidentified. Using various lines of evidence we excluded the possibility that FMRFamide corresponds to any of the three lethal complementation groups mapping to its immediate 50-60-kb vicinity. The positions of two of the three lethal complementation groups were identified with P elements using a local transposition scheme. The third lethal complementation group was excluded as being FMRFamide mutants by sequence analysis and by immunocytochemistry with proFMRFamide precursor-specific antibodies. This analysis has (1) provided a genetic map of the 46CD chromosomal region and a detailed molecular map of a portion of the 46C region and (2) provided additional evidence of the utility of local transposition for targeting nearby genes.  相似文献   

11.
The region of the third chromosome (84D-F) of Drosophila melanogaster that contains the doublesex (dsx) locus has been cytogenetically analyzed. Twenty nine newly induced, and 42 preexisting rearrangements broken in dsx and the regions flanking dsx have been cytologically and genetically characterized. These studies established that the dsx locus is in salivary chromosome band 84E1-2. In addition, these observations provide strong evidence that the dsx locus functions only to regulate sexual differentiation and does not encode a vital function. To obtain new alleles at the dsx locus and to begin to analyze the genes flanking dsx, 59 lethal and visible mutations in a region encompassing dsx were induced. These mutations together with preexisting mutations in the region were deficiency mapped and placed into complementation groups. Among the mutations we isolated, four new mutations affecting sexual differentiation were identified. All proved to be alleles of dsx, suggesting that dsx is the only gene in this region involved in regulating sexual differentiation. All but one of the new dsx alleles have equivalent effects in males and females. The exception, dsxEFH55, strongly affects female sexual differentiation, but only weakly affects male sexual differentiation. The interactions of dsxEFH55 with mutations in other genes affecting sexual differentiation are described. These results are discussed in terms of the recent molecular findings that the dsx locus encodes sex-specific proteins that share in common their amino termini but have different carboxyl termini. The 72 mutations in this region that do not affect sexual differentiation identify 25 complementation groups. A translocation, T(2;3)Es that is associated with a lethal allele in one of these complementation groups is also broken at the engrailed (en) locus on the second chromosome and has a dominant phenotype that may be due to the expression of en in the anterior portion of the abdominal tergites where en is not normally expressed. The essential genes found in the 84D-F region are not evenly distributed throughout this region; most strikingly the 84D1-11 region appears to be devoid of essential genes. It is suggested that the lack of essential genes in this region is due to the region (1) containing genes with nonessential functions and (2) being duplicated, possibly both internally and elsewhere in the genome.  相似文献   

12.
We have performed an F2 genetic screen to identify lethal mutations that map to the 44D-45B region of the Drosophila melanogaster genome. By screening 8500 mutagenized chromosomes for lethality over Df(2R)Np3, a deficiency which encompasses nearly 1% of the D. melanogaster euchromatic genome, we recovered 125 lines with lethal mutations that represent 38 complementation groups. The lethal mutations have been mapped to deficiencies that span the 44D-45B region, producing an approximate map position for each complementation group. Lethal mutations were analyzed to determine the phase of development at which lethality occurred. In addition, we have linked some of the complementation groups to P element-induced lethals that map to 44D-45B, thus possibly providing new alleles of a previously tagged gene. Some of the complementation groups represent potentially novel alleles of previously identified genes that map to the region. Several genes have been mapped by molecular means to the 44D-45B region, but do not have any reported mutant alleles. This screen may have uncovered mutant alleles of these genes. The results of complementation tests with previously identified genes in 44D-45B suggests that over half of the complementation groups identified in this screen may be novel. Received: 13 July 1999 / Accepted: 4 November 1999  相似文献   

13.
The region between 86F1,2 and 87B15 on chromosome 3 of Drosophila melanogaster, which contains about 27 polytene chromosome bands including the 87A7 heat-shock locus, has been screened for EMS-induced visible and lethal mutations. We have recovered 268 lethal mutations that fall into 25 complementation groups. Cytogenetic localization of the complementation groups by deficiency mapping is consistent with the notion that each band encodes a single genetic function. We have also screened for mutations at the 87A7 heat shock locus, using a chromosome that has only one copy of the gene encoding the 70,000 dalton heat-shock protein (hsp70). No lethal or visible mutations at 87A7 were identified from 10,719 mutagenized chromosomes, and no female-sterile mutations at 87A7 were recovered from the 1,520 chromosomes whose progeny were tested for female fertility. We found no evidence that a functional hsp70 gene is required for development under laboratory conditions.  相似文献   

14.
The Punch locus of Drosophila melanogaster which encodes the pteridine biosynthetic enzyme, GTP cyclohydrolase, is genetically complex. Lethal alleles of the locus resolve into an array of interallelic complementation groups, and at least one class of mutations is developmentally specific, affecting GTP cyclohydrolase activity only in the heads of adults. All previously isolated Punch alleles were identified on the basis of a mutant eye color phenotype. By screening mutagenized chromosomes over Punch region deficiencies, we have now isolated new alleles on the basis of lethal and visible phenotypes. Most of these alleles fall into previously identified genetic classes, but two new classes of mutations were also found. One class contains two alleles that behave as dominant lethal mutations in some genetic backgrounds. The other class represents a second developmentally specific set of alleles that affect the function of the Punch locus only during embryogenesis.  相似文献   

15.
Forty-seven lethal mutations and alleles of nine visible loci (including alcohol dehydrogenase) have been mapped by both deficiency mapping and, in most cases, by recombination mapping to a small region (34D-35C) of chromosome arm 2L of Drosophila melanogaster. The lethals fall into approximately 21 complementation groups, and we estimate that the total number of lethal plus visible complementation groups within the 34-band deficiency, Df(2L)64j, is approximately 34, a remarkable numerical coincidence. The possible genetic significance of this coincidence is discussed. Lethals mapping close to the structural gene for alcohol dehydrogenase, both distally and proximally, have been identified and will be used for the construction of selective crosses for the study of exchange within this locus. Despite many abnormal cytological features (e.g., ectopic pairing, weak points) region 35 of chromosome arm 2L does not display any unusual genetic features; indeed, in terms of the amount of recombination per band and the average map distance between adjacent loci, this region is similar to that between zeste and white on the X chromosome.  相似文献   

16.
17.
S. D. Harris  J. R. Pringle 《Genetics》1991,127(2):279-285
In a previous attempt to identify as many as possible of the essential genes on Saccharomyces cerevisiae chromosome I, temperature-sensitive (Ts(-)) lethal mutations that had been induced by ethyl methanesulfonate or nitrosoguanidine were analyzed. Thirty-two independently isolated mutations that mapped to chromosome I identified only three complementation groups, all of which had been known previously. In contrast, molecular analyses of segments of the chromosome have suggested the presence of numerous additional essential genes. In order to assess the degree to which problems of mutagen specificity had limited the set of genes detected using Ts(-) lethal mutations, we isolated a new set of such mutations after mutagenesis with UV or nitrogen mustard. Surprisingly, of 21 independently isolated mutations that mapped to chromosome I, 17 were again in the same three complementation groups as identified previously, and two of the remaining four mutations were apparently in a known gene involved in cysteine biosynthesis. Of the remaining two mutations, one was in one of the essential genes identified in the molecular analyses, and the other was too leaky to be mapped. These results suggest that only a minority of the essential genes in yeast can be identified using Ts(-) lethal mutations, regardless of the mutagen used, and thus emphasize the need to use multiple genetic strategies in the investigation of cellular processes.  相似文献   

18.
19.
Mohler J  Pardue ML 《Genetics》1984,106(2):249-265
The region containing subdivisions 93C, 93D and 93E on chromosome 3 of Drosophila melanogaster has been screened for visible and lethal mutations. Treatment with three mutagens, γ irradiation, ethyl methanesulfonate and diepoxybutane, has produced mutations that fall into 20 complementation groups, including the previously identified ebony locus. No point mutations affecting the heat shock locus in 93D were detected; however, a pair of deficiencies that overlap in the region of this locus was isolated. Flies heterozygous in trans for this pair of deficiencies are capable of producing all of the major heat shock puffs (except 93D) and the major heat shock proteins. In addition, these flies show recovery of normal protein synthesis following a heat shock.  相似文献   

20.
P. F. Lasko  M. L. Pardue 《Genetics》1988,120(2):495-502
The region of the second chromosome of Drosophila melanogaster defined by Df(2R)vgB was screened for recessive lethal and visible mutations. Fifty-eight new recessive alleles fall into 17 complementation groups. Many new vg alleles were also isolated in a screen for new vg deficiencies. The breakpoints of the new vg deficiencies were nonrandomly distributed. The distal breakpoints of twelve of 20 deficiencies overlapping Df(2R)vgB are genetically identical to that of Df(2R)vgD, coinciding with the position of a complex, pleiotropic locus, l(2)49Ea-Psc-Su(z)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号