首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During the course of our research into new anti-malaria drugs, Plasmodium falciparum thymidylate kinase (PfTMK) has emerged as an important drug target because of its unique substrate specificity. Compared with human thymidylate kinase (HsTMK), PfTMK shows broader substrate specificity, which includes both purine and pyrimidine nucleotides. PfTMK accepts both 2'-deoxyguanosine monophosphate (dGMP) and thymidine monosphosphate (TMP) as substrates. We have evaluated the inhibitory activity of seven carbocyclic thymidine analogs and report the first structure-activity relationship for these inhibitors against PfTMK. The 2',3' dideoxycarbocyclic derivative of thymidine showed the most potent inhibition of the enzyme. The K(i)(dTMP) and K(i)(dGMP) values were 20 and 7 μM respectively. Thus, further modifications of carbocyclic thymidine analogs represent a good strategy for developing more powerful thymidylate kinase inhibitors.  相似文献   

2.
Vaccinia virus thymidylate kinase, although similar in sequence to human TMP kinase, has broader substrate specificity and phosphorylates (E)-5-(2-bromovinyl)-dUMP and dGMP. Modified guanines such as glyoxal-dG, 8-oxo-dG, O6-methyl-dG, N2-ethyl-dG and N7-methyl-dG were found present in cancer cell DNA. Alkylated and oxidized dGMP analogs were examined as potential substrates for vaccinia TMP kinase and also for human TMP and GMP kinases. Molecular models obtained from structure-based docking rationalized the enzymatic data. All tested nucleotides are found surprisingly substrates of vaccinia TMP kinase and also of human GMP kinase. Interestingly, O6-methyl-dGMP is the only analog specific for the vaccinia enzyme. Thus, O6-Me-dGMP could be useful for designing new compounds of medical interest either in antipoxvirus therapy or in experimental combined gene/chemotherapy of cancer. These results also provide new insights regarding dGMP analog reaction with human GMP kinase and their slow recycling by salvage pathway nucleotide kinases.  相似文献   

3.
Gene 1.7 protein is the only known nucleotide kinase encoded by bacteriophage T7. The enzyme phosphorylates dTMP and dGMP to dTDP and dGDP, respectively, in the presence of a phosphate donor. The phosphate donors are dTTP, dGTP, and ribo-GTP as well as the thymidine and guanosine triphosphate analogs ddTTP, ddGTP, and dITP. The nucleotide kinase is found in solution as a 256-kDa complex consisting of ~12 monomers of the gene 1.7 protein. The two molecular weight forms co-purify as a complex, but each form has nearly identical kinase activity. Although gene 1.7 protein does not require a metal ion for its kinase activity, the presence of Mg(2+) in the reaction mixture results in either inhibition or stimulation of the rate of kinase reactions depending on the substrates used. Both the dTMP and dGMP kinase reactions are reversible. Neither dTDP nor dGDP is a phosphate acceptor of nucleoside triphosphate donors. Gene 1.7 protein exhibits two different equilibrium patterns toward deoxyguanosine and thymidine substrates. The K(m) of 4.4 × 10(-4) m obtained with dTTP for dTMP kinase is ~3-fold higher than that obtained with dGTP for dGMP kinase (1.3 × 10(-4) m), indicating that a higher concentration of dTTP is required to saturate the enzyme. Inhibition studies indicate a competitive relationship between dGDP and both dGTP, dGMP, whereas dTDP appears to have a mixed type of inhibition of dTMP kinase. Studies suggest two functions of dTTP, as a phosphate donor and a positive effector of the dTMP kinase reaction.  相似文献   

4.
Anti-poxvirus therapies are currently limited to cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine], but drug-resistant strains have already been characterized. In the aim of finding a new target, the thymidylate (TMP) kinase from vaccinia virus, the prototype of Orthopoxvirus, has been overexpressed in Escherichia coli after cloning the gene (A48R). Specific inhibitors and alternative substrates of pox TMP kinase should contribute to virus replication inhibition. Biochemical characterization of the enzyme revealed distinct catalytic features when compared to its human counterpart. Sharing 42% identity with human TMP kinase, the vaccinia virus enzyme was assumed to adopt the common fold of nucleoside monophosphate kinases. The enzyme was purified to homogeneity and behaves as a homodimer, like all known TMP kinases. Initial velocity studies showed that the Km for ATP-Mg2+ and dTMP were 0.15 mm and 20 microM, respectively. Vaccinia virus TMP kinase was found to phosphorylate dTMP, dUMP and also dGMP from any purine and pyrimidine nucleoside triphosphate. 5-Halogenated dUMP such as 5-iodo-2'-deoxyuridine 5'-monophosphate (5I-dUMP) and 5-bromo-2'-deoxyuridine 5'-monophosphate (5Br-dUMP) were also efficient alternative substrates. Using thymidine-5'-(4-N'-methylanthraniloyl-aminobutyl)phosphoramidate as a fluorescent probe of the dTMP binding site, we detected an ADP-induced conformational change enhancing the binding affinity of dTMP and analogues. Several thymidine and dTMP derivatives were found to bind the enzyme with micromolar affinities. The present study provides the basis for the design of specific inhibitors or substrates for poxvirus TMP kinase.  相似文献   

5.
The reactions of free and DNA-bound 2,2,5,5-tetramethylpyrrolidine-N-oxyl (PROXYL) probes with radicals generated during radiolysis of dilute aqueous solutions of DNA were examined. For the free PROXYL probe in deaerated solution with each of the four nucleotides (dAMP, dCMP, dGMP, and TMP) it was found that the pyrimidine radicals were more reactive toward the probe than were the purine radicals. Reactions of the electron adduct of TMP and the hydroxyl radical adducts of dAMP, dGMP, and TMP with the probe resulted in little or no reduction of the probe. For TMP these results are consistent with the fact that both the protonated electron and hydroxyl radical adducts of TMP will covalently bind to the nitroxide function of the probe. Reduction of the PROXYL probe was observed in reactions with the hydroxyl radical adduct of dCMP and with the electron adducts of dAMP, dCMP, and dGMP. Results of the radiolysis of the free PROXYL probe in deaerated dilute solution of DNA suggest that the PROXYL probe protects the DNA from water radical attack as the ratio of DNA bases to PROXYL probe increases above 50:1. Reactions of DNA-bound probes are dependent on the depth of the nitroxide function in relation to the major groove of the DNA helix. Two probes with tether lengths which are less than the depth of the major groove show an expected increase in reactions with DNA base radicals as compared to a probe with a tether that extends beyond the groove. The longer probe is involved largely in reactions with sugar and water radicals along the periphery of the DNA helix. In the presence of oxygen, there is a dramatic decrease in the loss of both the free and DNA-bound probes due to the lack of reaction of these probes with peroxyl radicals formed by the addition of molecular oxygen to DNA radicals.  相似文献   

6.
Guanylate kinase was purified from human erythrocytes by affinity chromatography using GMP-agarose, and the four isozymes which are present were separated by chromatofocusing. The kinetic properties of each isozyme were analyzed with respect to the natural substrates GMP and dGMP, and the 5'-monophosphate derivatives of the antiviral nucleoside analogs 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG) and 9-(2-hydroxyethoxymethyl)guanine (ACV, Acyclovir). The analysis of substrate kinetics yielded Km values for DHPG 5'-monophosphate which were similar with all isozymes (42-54 microM), and about 3-fold higher than the Km values obtained for GMP. Km values obtained with ACV 5'-monophosphate were 10-20-fold higher than the GMP values and varied nearly 4-fold among isozymes (209-753 microM). GMP produced the highest enzyme velocities with all isozymes, followed by dGMP, DHPG 5'-monophosphate, and ACV 5'-monophosphate, in that order. Differences in maximal velocities among isozymes were generally small. DHPG 5'-monophosphate inhibited the isozymes by a simple competitive mechanism with respect to GMP. In contrast, ACV 5'-monophosphate acted as an apparent hyperbolic mixed-type inhibitor. Similar patterns of inhibition were obtained with all isozymes. It is probable that differences is the reactivity of DHPG 5'-monophosphate and ACV 5'-monophosphate with individual guanylate kinase isozymes do not contribute significantly to differences in their antiviral effects.  相似文献   

7.
Thymidine kinase was isolated and purified 1600-fold from sea urchin (Strongylocentrotus intermedius) oocytes. The molecular mass of the enzyme is 66 kDa, pI is 5.2. The enzyme activity needs Mg2+, ATP and the corresponding phosphate acceptor. The pH optimum of the enzyme activity is at 9.0-9.5. The isolated enzyme does not exhibit any strict substrate specificity and can phosphorylate thymidine, deoxycytidine and some other pyrimidine nucleosides and their derivatives, the phosphorylation rate being maximal for thymidine, ATP or dATP. The TMP formed via the enzymatic reaction does not influence the thymidine kinase activity.  相似文献   

8.
Guanylate kinase catalyzes the phosphorylation of either GMP to GDP or dGMP to dGDP and is an important enzyme in nucleotide metabolic pathways. Because of its essential intracellular role, guanylate kinase is a target for a number of cancer chemotherapeutic agents such as 6-thioguanine and 8-azaguanine and is involved in antiviral drug activation. Guanylate kinase shares a similarity in function and structure to other nucleoside monophosphate kinases especially with that of the well-studied adenylate kinase. Amino acid substitutions were made within the GMP binding site of mouse guanylate kinase to alter the polarity of the side chains that interact with GMP as a means of evaluating the role that these residues play on substrate interaction. One of these mutants, E72Q/D103N, was shown by functional complementation and enzyme assays to embody both guanylate kinase activity and a novel adenylate kinase activity.  相似文献   

9.
Deoxyguanosine kinase, which catalyses the phosphorylation of deoxyguanosine to form deoxyguanosine 5'-monophosphate, was purified 1024-fold from extracts to newborn-pig skin. This activity requires the presence of a bivalent cation and a nucleoside triphosphate, which functions as a phosphate donor, ATP being twice as effective as CTP or GTP and 4 times as effective as UTP. The enzyme appears to have a molecular weight of 58500 as determined by Sephadex-column chromatography. Optimal enzymic activity was observed at pH 8.0; however, the enzyme remained active over a broad pH range of 5.5-9.0. Several deoxyribonucleoside and ribonucleoside monophosphates and triphosphates were tested as effectors of catalytic activity. Effective inhibitors were dGMP [Ki(app.) = 7.6 x 10(-5) M] and dGTP [Ki(app.) = 2.1 x 10(-5) M]. Both of these inhibitors acted in a competitive manner. A Km(app.) of 3.2 x 10(-7) M was measured for deoxyguanosine and a Km(app.) of 3.3 mM was determined for MgATP. Of the four major deoxynucleosides tested, this catalytic activity appears to phosphorylate only deoxyguanosine; thus the enzyme is a specific deoxyguanosine kinase.  相似文献   

10.
Previously undescribed products of dGMP, GMP, AMP, dCMP and TMP aminoethylation by ethylenimine and N,N',N"-triethylenethiophosphoamide (thio-TEPA) have been obtained and shown to be aminoethyl esters of nucleotides with the free or substituted amino group. In case of dGMP and GMP ethylenimine and tio-TEPA alkylate not only phosphate but also the base residue at the N7 position. The 7-aminoethyl derivatives of dGMP and GMP, which thio-TEPA afforded, were characterized whereas the corresponding ethylenimine derivatives are decomposed under alkaline conditions in the course of the isolation. Possible reasons of extreme instability of these compounds are given. For the first time the ability of thio-TEPA to alkylate DNA at position 7 of guanine residue is shown by means of the luninescence method.  相似文献   

11.
The activity of deoxyguanosine kinase purified from human placenta was regulated by various nucleotides. dTTP, an activator, only increased the Vmax value of the enzyme. The feedback inhibition by dGTP, dGDP and dGMP were competitive with respect to deoxyguanosine. Both the activation by dTTP and the inhibition by dGTP were reversible.  相似文献   

12.
Plasmodium deoxyguanylate pathways are an attractive area of investigation for future metabolic and drug discovery studies due to their unique substrate specificities. We investigated the energetic contribution to guanylate kinase substrate binding and the forces underlying ligand recognition. In the range from 20 to 35°C, the thermodynamic profiles displayed marked decrease in binding enthalpy, while the free energy of binding showed little changes. GMP produced a large binding heat capacity change of -356 cal mol(-1) K(-1), indicating considerable conformational changes upon ligand binding. Interestingly, the calculated ΔCp was -32 cal mol(-1) K(-1), indicating that the accessible surface area is not the central change in substrate binding, and that other entropic forces, including conformational changes, are more predominant. The thermodynamic signature for GMP is inconsistent with rigid-body association, while dGMP showed more or less rigid-body association. These binding profiles explain the poor catalytic efficiency and low affinity for dGMP compared with GMP. At low temperature, the ligands bind to the receptor site under the effect of hydrophobic forces. Interestingly, by increasing the temperature, the entropic forces gradually vanish and proceed to a nonfavorable contribution, and the interaction occurs mainly through bonding, electrostatic forces, and van der Waals interactions.  相似文献   

13.
NMP kinases catalyse the phosphorylation of the canonical nucleotides to the corresponding diphosphates using ATP as a phosphate donor. Bacteriophage T4 deoxynucleotide kinase (DNK) is the only member of this family of enzymes that recognizes three structurally dissimilar nucleotides: dGMP, dTMP and 5-hydroxymethyl-dCMP while excluding dCMP and dAMP. The crystal structure of DNK with its substrate dGMP has been determined at 2.0 A resolution by single isomorphous replacement. The structure of the ternary complex with dGMP and ATP has been determined at 2.2 A resolution. The polypeptide chain of DNK is folded into two domains of equal size, one of which resembles the mononucleotide binding motif with the glycine-rich P-loop. The second domain, consisting of five alpha-helices, forms the NMP binding pocket. A hinge connection between the domains allows for large movements upon substrate binding which are not restricted by dimerization of the enzyme. The mechanism of active centre formation via domain closure is described. Comparison with other P-loop-containing proteins indicates an induced-fit mode of NTP binding. Protein-substrate interactions observed at the NMP and NTP sites provide the basis for understanding the principles of nucleotide discrimination.  相似文献   

14.
The kinome of the human malaria parasite Plasmodium falciparum includes two genes encoding mitogen-activated protein kinase (MAPK) homologues, pfmap-1 and pfmap-2, but no clear orthologue of the MAPK kinase (MAPKK) family, raising the question of the mode of activation and function of the plasmodial MAPKs. Functional studies in the rodent malaria model Plasmodium berghei recently showed the map-2 gene to be dispensable for asexual growth and gametocytogenesis, but essential for male gametogenesis in the mosquito vector. Here, we demonstrate by using a reverse genetics approach that the map-2 gene is essential for completion of the asexual cycle of P. falciparum, an unexpected result in view of the non-essentiality of the orthologous gene for P. berghei erythrocytic schizogony. This validates Pfmap-2 as a potential target for chemotherapeutic intervention. In contrast, the other P. falciparum MAPK, Pfmap-1, is required neither for in vitro schizogony and gametocytogenesis in erythrocytes, nor for gametogenesis and sporogony in the mosquito vector. However, Pfmap-2 protein levels are elevated in pfmap-1(-) parasites, suggesting that Pfmap-1 fulfils an important function in asexual parasites that necessitates compensatory adaptation in parasites lacking this enzyme.  相似文献   

15.
Nuclei isolated from Yoshida sarcoma cells had activity for conversion of dGTP to dGMP dependent on DNA synthesis. The ratio of nucleotide generation/generation + incorporation was 0.4 ± 0.1, indicating that approx. 40% of the incorporated dGMP was excised. Two lines of evidence indicated the dependence of this activity on DNA synthesis. (1) The activity was observed only in the presence of ATP, which is essential for nuclear DNA synthesis. (2) Inhibitors of DNA synthesis, such as N-ethylmaleimide, aphidicolin, spermine and KCl, also inhibited ATP- or DNA synthesis-dependent dGMP generation. Although nuclei contain nucleoside triphosphatase (N-nucleotidase), this enzyme was not involved appreciably in DNA synthesis-dependent dGMP generation. The reason for this was explained by the following findings. (a) Inhibitors did not decrease dGMP production in the complete absence of DNA synthesis. (b) Inhibitors did not inactivate N-nucleotidase to the same degree as they inhibited DNA synthesis-dependent dGMP generation. (c) Addition of ATP reduced dGTP hydrolysis catalyzed by N-nucleotidase. (d) GDP had no appreciable effect on DNA synthesis-dependent dGMP generation, but had a diluting effect on dGMP production catalyzed by N-nucleotidase. These results show that the pathway of dGMP generation in isolated nuclei was switched on addition of ATP from a N-nucleotidase-catalyzed one to a DNA polymerase-exonuclease-catalyzed one.  相似文献   

16.
The X-ray structure of Mycobacterium tuberculosis TMP kinase at 1.95 A resolution is described as a binary complex with its natural substrate TMP. Its main features involve: (i) a clear magnesium-binding site; (ii) an alpha-helical conformation for the so-called LID region; and (iii) a high density of positive charges in the active site. There is a network of interactions involving highly conserved side-chains of the protein, the magnesium ion, a sulphate ion mimicking the beta phosphate group of ATP and the TMP molecule itself. All these interactions conspire in stabilizing what appears to be the closed form of the enzyme. A complete multialignment of all (32) known sequences of TMP kinases is presented. Subtle differences in the TMP binding site were noted, as compared to the Escherichia coli, yeast and human enzyme structures, which have been reported recently. These differences could be used to design specific inhibitors of this essential enzyme of nucleotide metabolism. Two cases of compensatory mutations were detected in the TMP binding site of eukaryotic and prokaryotic enzymes. In addition, an intriguing high value of the electric field is reported in the vicinity of the phosphate group of TMP and the putative binding site of the gamma phosphate group of ATP.  相似文献   

17.
Gene 1 of bacteriophage T4 has been cloned into a lambda pL expression vector, resulting in the overproduction of deoxynucleotide kinase. A procedure that includes affinity chromatography on Cibacron Blue F3GA-agarose has been used to purify milligram quantities of enzymes from a 2-liter culture. The enzyme has been partially characterized in vitro and in vivo, and it appears to be identical to the deoxynucleotide kinase isolated from T4-infected Escherichia coli. These results prove the earlier contention that the phosphorylation of three dissimilar deoxynucleotides (5-hydroxymethyldeoxycytidylate, dTMP, and dGMP), to the exclusion of most others, is catalyzed by a single protein.  相似文献   

18.
Reactivity of thiamin monophosphate (TMP) as calf intestinal alkaline phosphatase substrate in model transformations is lower comparing with thiamin diphosphate (TDP) reactivity. Under these conditions alkaline phosphatase catalyzes TDP, ADP and AMP hydrolysis approximately at same rate. It was shown that TDP competes with p-nitrophenyl phosphate more effectively than TMP for the binding in the active site. At pH 8.5 and 30 degrees C Km values are as follows: (5.2 +/- 1.6) x 10(-3) M for TMP and (3.0 +/- 0.8) x 10(-4) M for TDP. Under the same conditions the Vmax/Km value for TDP hydrolysis is 53 times higher than the one for corresponding reaction of TMP. It was suggested that positively charged thiazolium ion of TMP interacts with the nearest environment at the active center and by this way reduces enzyme activity.  相似文献   

19.
川芎嗪对猪冠状动脉平滑肌细胞大电导钙激活钾通道的作用   总被引:14,自引:0,他引:14  
Yang YY  Yang Y  Zeng XR  Liu ZF  Cai F  Li ML  Zhou W  Pei J 《生理学报》2006,58(1):83-89
本工作旨在研究川芎嗪对猪冠状动脉平滑肌细胞钾通道的作用,为阐明其扩张冠状动脉血管的机制提供实验依据。采用膜片钳细胞贴附式和内面向外式记录方式观察川芎嗪对猪冠状动脉平滑肌细胞大电导钙激活钾通道(large-conductance Ca2+- activated potassium channels,BKCa channels)的作用,分别用蛋白激酶A(protein kinase A,PKA)抑制剂H-89和蛋白激酶G (protein kinase G,PKG)抑制剂KT-5823处理细胞,再观察川芎嗪对BKCa通道作用的变化。结果表明在研究的0.73-8.07 mmol/L浓度范围,川芎嗪可以剂量依赖性地激活BKCa通道,使通道的开放概率从(0.01±0.003)增加到(0.03±0.01)-(.21± 0.18)(P<0.01,n=10),使通道平均关闭时间从(732.33±90.67)ms降低到(359.67±41.30)-(2.96±0.52)ms(P<0.01, n=10)。川芎嗪的这种激活作用在浴液游离钙离子浓度接近0 mmol/L时也存在。PKA的特异性抑制剂H-89(3 μmol/L)和 PKG的特异性抑制剂KT-5823(1 μmol/L)对川芎嗪激活BKCa通道的作用无影响。以上结果提示:川芎嗪能直接激活冠状动脉平滑肌BKCa通道,这种作用可能是川芎嗪扩张冠状动脉血管的一种重要机制。  相似文献   

20.
Two members of the mitogen-activated protein kinase (MAPK) family have been previously characterized in Plasmodium falciparum, but in vitro attempts at identifying MAP kinase kinase (MAPKK) homologues have failed. Here we report the characterization of a novel plasmodial protein kinase, PfPK7, whose top scores in blastp analysis belong to the MAPKK3/6 subgroup of MAPKKs. However, homology to MAPKKs is restricted to regions of the C-terminal lobe of the kinase domain, whereas the N-terminal region is closer to fungal protein kinase A enzymes (PKA, members of the AGC group of protein kinases). Hence, PfPK7 is a 'composite' enzyme displaying regions of similarity to more than one protein kinase family, similar to a few other plasmodial protein kinases. PfPK7 is expressed in several developmental stages of the parasite, both in the mosquito vector and in the human host. Recombinant PfPK7 displayed kinase activity towards a variety of substrates, but was unable to phosphorylate the two P. falciparum MAPK homologues in vitro, and was insensitive to PKA and MEK inhibitors. Together with the absence of a typical MAPKK activation site in its T-loop, this suggests that PfPK7 is not a MAPKK orthologue, despite the fact that this enzyme is the most 'MAPKK-like' enzyme encoded in the P. falciparum genome. This is consistent with recent observations that the plasmodial MAPKs are not true orthologues of the ERK1/2, p38 or JNK MAPKs, and strengthens the evidence that classical three-component module-dependent MAPK signalling pathways do not operate in malaria parasites, a feature that has not been described in any other eukaryote.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号