首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kramer RA  Dekker N  Egmond MR 《FEBS letters》2000,468(2-3):220-224
Escherichia coli outer membrane protease OmpT has been characterised as a serine protease based on its inhibitor profile, but serine protease consensus sequences are absent. By site-directed mutagenesis we substituted all conserved serines and histidines. Substitution of His(101) and His(212) by Ala, Asn or Gln resulted in variant enzymes with 0.01 and 9-20% residual enzymatic activity towards a fluorogenic pentapeptide substrate, respectively. The mutations S140A and S201A did not decrease activity, while variants S40A and S99A yielded 0.5 and 0.2% residual activities, respectively. When measured with a dipeptide substrate the variant S40A demonstrated full activity, whereas variant S99A displayed at least 500-fold reduced activity. We conclude that Ser(99) and His(212) are essential active site residues. We propose that OmpT is a novel serine protease with Ser(99) as the active site nucleophile and His(212) as general base.  相似文献   

2.
Signal peptide peptidases (SPPs) are enzymes involved in the initial degradation of signal peptides after they are released from the precursor proteins by signal peptidases. In contrast to the eukaryotic enzymes that are aspartate peptidases, the catalytic mechanisms of prokaryotic SPPs had not been known. In this study on the SPP from the hyperthermophilic archaeon Thermococcus kodakaraensis (SppA(Tk)), we have identified amino acid residues that are essential for the peptidase activity of the enzyme. DeltaN54SppA(Tk), a truncated protein without the N-terminal 54 residues and putative transmembrane domain, exhibits high peptidase activity, and was used as the wild-type protein. Sixteen residues, highly conserved among archaeal SPP homologue sequences, were selected and replaced by alanine residues. The mutations S162A and K214A were found to abolish peptidase activity of the protein, whereas all other mutant proteins displayed activity to various extents. The results indicated the function of Ser(162) as the nucleophilic serine and that of Lys(214) as the general base, comprising a Ser/Lys catalytic dyad in SppA(Tk). Kinetic analyses indicated that Ser(184), His(191) Lys(209), Asp(215), and Arg(221) supported peptidase activity. Intriguingly, a large number of mutations led to an increase in activity levels of the enzyme. In particular, mutations in Ser(128) and Tyr(165) not only increased activity levels but also broadened the substrate specificity of SppA(Tk), suggesting that these residues may be present to prevent the enzyme from cleaving unintended peptide/protein substrates in the cell. A detailed alignment of prokaryotic SPP sequences strongly suggested that the majority of archaeal enzymes, along with the bacterial enzyme from Bacillus subtilis, adopt the same catalytic mechanism for peptide hydrolysis.  相似文献   

3.
Leader peptidase, typical of inner membrane proteins of Escherichia coli, does not have an amino-terminal leader sequence. This protein contains an internal signal peptide, residues 51-83, which is essential for assembly and remains as a membrane anchor domain. We have employed site-directed mutagenesis techniques to either delete residues within this domain or substitute a charged amino acid for one of these residues to determine the important properties of the internal signal. The deletion analysis showed that a very small apolar domain, residues 70-76, is essential for assembly, whereas residues that flank it are dispensable for its function. However, point mutations with charged amino acid residues within the polar sequence (residues 77-82) slow or abolish leader peptidase membrane assembly. Thus, a polar region, Arg-Ser-Phe-Ile-Tyr-Glu, is important for the signal peptide function of leader peptidase, unlike other signals identified thus far.  相似文献   

4.
We have performed the first biochemical characterization of a putative archaeal signal peptide peptidase (SppA(Tk)) from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. SppA(Tk), comprised of 334 residues, was much smaller than its counterpart from Escherichia coli (618 residues) and harbored a single predicted transmembrane domain near its N terminus. A truncated mutant protein without the N-terminal 54 amino acid residues (deltaN54SppA(Tk)) was found to be stable against autoproteolysis and was examined further. DeltaN54SppA(Tk) exhibited peptidase activity towards fluorogenic peptide substrates and was found to be highly thermostable. Moreover, the enzyme displayed a remarkable stability and preference for alkaline pH, with optimal activity detected at pH 10. DeltaN54SppA(Tk) displayed a K(m) of 240 +/- 18 microM and a V(max) of 27.8 +/- 0.7 micromol min(-1) mg(-1) towards Ala-Ala-Phe-4-methyl-coumaryl-7-amide at 80 degrees C and pH 10. The substrate specificity of the enzyme was examined in detail with a FRETS peptide library. By analyzing the cleavage products with liquid chromatography-mass spectrometry, deltaN54SppA(Tk) was found to efficiently cleave peptides with a relatively small side chain at the P-1 position and a hydrophobic or aromatic residue at the P-3 position. The positively charged Arg residue was preferred at the P-4 position, while substrates with negatively charged residues at the P-2, P-3, or P-4 position were not cleaved. When predicted signal sequences from the T. kodakaraensis genome sequence were examined, we found that the substrate specificity of deltaN54SppA(Tk) was in good agreement with its presumed role as a signal peptide peptidase in this archaeon.  相似文献   

5.
Signal peptide peptidase A (SppA) is a membrane-bound self-compartmentalized serine protease that functions to cleave the remnant signal peptides left behind after protein secretion and cleavage by signal peptidases. SppA is found in plants, archaea and bacteria. Here, we report the first crystal structure of a Gram-positive bacterial SppA. The 2.4-Å-resolution structure of Bacillus subtilis SppA (SppABS) catalytic domain reveals eight SppABS molecules in the asymmetric unit, forming a dome-shaped octameric complex. The octameric state of SppABS is supported by analytical size-exclusion chromatography and multi-angle light scattering analysis. Our sequence analysis, mutagenesis and activity assays are consistent with Ser147 serving as the nucleophile and Lys199 serving as the general base; however, they are located in different region of the protein, more than 29 Å apart. Only upon assembling the octamer do the serine and lysine come within close proximity, with neighboring protomers each providing one-half of the catalytic dyad, thus producing eight separate active sites within the complex, twice the number seen within Escherichia coli SppA (SppAEC). The SppABS S1 substrate specificity pocket is deep, narrow and hydrophobic, but with a polar bottom. The S3 pocket, which is constructed from two neighboring proteins, is shallower, wider and more polar than the S1 pocket. A comparison of these pockets to those seen in SppAEC reveals a significant difference in the size and shape of the S1 pocket, which we show is reflected in the repertoire of peptides the enzymes are capable of cleaving.  相似文献   

6.
Salmonella enterica serovar Typhimurium peptidase E (PepE) is an N-terminal Asp-specific dipeptidase. PepE is not inhibited by any of the classical peptidase inhibitors, and its amino acid sequence does not place it in any of the known peptidase structural classes. A comparison of the amino acid sequence of PepE with a number of related sequences has allowed us to define the amino acid residues that are strongly conserved in this family. To ensure the validity of this comparison, we have expressed one of the most distantly related relatives (Xenopus) in Escherichia coli and have shown that it is indeed an Asp-specific dipeptidase with properties very similar to those of serovar Typhimurium PepE. The sequence comparison suggests that PepE is a serine hydrolase. We have used site-directed mutagenesis to change all of the conserved Ser, His, and Asp residues and have found that Ser120, His157, and Asp135 are all required for activity. Conversion of Ser120 to Cys leads to severely reduced (10(4)-fold) but still detectable activity, and this activity but not that of the parent is inhibited by thiol reagents; these results confirm that this residue is likely to be the catalytic nucleophile. These results suggest that PepE is the prototype of a new family of serine peptidases. The phylogenetic distribution of the family is unusual, since representatives are found in eubacteria, an insect (Drosophila), and a vertebrate (Xenopus) but not in the Archaea or in any of the other eukaryotes for which genome sequences are available.  相似文献   

7.
8.
ClpB from Escherichia coli is a member of a protein-disaggregating multi-chaperone system that also includes DnaK, DnaJ, and GrpE. The sequence of ClpB contains two ATP-binding domains that are enclosed between the amino-terminal and carboxyl-terminal regions. The N-terminal sequence region does not contain known functional sequence motifs. Here, we performed site-directed mutagenesis of four polar residues within the N-terminal domain of ClpB (Thr7, Ser84, Asp103 and Glu109). These residues are conserved in several ClpB homologs. We found that the mutations, T7A, S84A, D103A, and E109A did not significantly affect the secondary structure and thermal stability of ClpB, nor did they inhibit the self-association of ClpB, its basal ATPase activity, or the enhanced rate of the ATP hydrolysis by ClpB in the presence of poly-L-lysine. We observed, however, that three mutations, T7A, D103A, and E109A, reduced the casein-induced activation of the ClpB ATPase. The same three mutant ClpB variants also showed low chaperone activity in the luciferase reactivation assay. We found, however, that the four ClpB mutants, as well as the wild-type, bound similar amounts of inactivated luciferase. In summary, we have identified three essential amino acid residues within the N-terminal region of ClpB that participate in the coupling between a protein-binding signal and the ATP hydrolysis, and also support the chaperone activity of ClpB.  相似文献   

9.
In this study, a gene coding for thermophilic serine protease of the ClpP class from the thermoacidophilic archaeon Thermoplasma volcanium (Tpv) was cloned and expressed in Escherichia coli. The primary sequence and domain analysis of this enzyme showed similarities (50–60% similarity) to signal peptide peptidases (SppA) of bacteria and other archaea. An increase of about tenfold in the activity was achieved by overexpression of Tpv SppA in E. coli, as detected by enzyme assays conducted using Ala-Ala-Phe-pNa and N-Suc-Ala-Ala-Pro-Phe-pNA as substrates. The recombinant enzyme, purified using an anion exchange column chromatography, displayed an apparent molecular mass of 26 kDa on SDS-PAGE analysis. Purified Tpv SppA was active in a broad range of pH and temperature with maximal activity at 60°C and between pH 7.5 and pH 8.0. The activity of the enzyme was strongly inhibited by inhibitors typical for serine proteases, i.e., chymostatin and PMSF. The activity of the Tpv SppA and the stability at high temperature were significantly enhanced in the presence of 5 mM Ca2+ ions. Our multiple sequence alignment data revealed a conserved Ser/Lys catalytic dyad in Tpv SppA that comprised Ser76 (nucleophile) and Lys128 (general base) residues. A search for a transmembrane domain using automated programs did not predict any signal peptide associated with the Tpv SppA and, therefore, suggested a cytoplasmic location for this enzyme.  相似文献   

10.
Signal peptide peptidase (Spp) is the enzyme responsible for cleaving the remnant signal peptides left behind in the membrane following Sec-dependent protein secretion. Spp activity appears to be present in all cell types, eukaryotic, prokaryotic and archaeal. Here we report the first structure of a signal peptide peptidase, that of the Escherichia coli SppA (SppAEC). SppAEC forms a tetrameric assembly with a novel bowl-shaped architecture. The bowl has a dramatically hydrophobic interior and contains four separate active sites that utilize a Ser/Lys catalytic dyad mechanism. Our structural analysis of SppA reveals that while in many Gram-negative bacteria as well as characterized plant variants, a tandem duplication in the protein fold creates an intact active site at the interface between the repeated domains, other species, particularly Gram-positive and archaeal organisms, encode half-size, unduplicated SppA variants that could form similar oligomers to their duplicated counterparts, but using an octamer arrangement and with the catalytic residues provided by neighboring monomers. The structure reveals a similarity in the protein fold between the domains in the periplasmic Ser/Lys protease SppA and the monomers seen in the cytoplasmic Ser/His/Asp protease ClpP. We propose that SppA may, in addition to its role in signal peptide hydrolysis, have a role in the quality assurance of periplasmic and membrane-bound proteins, similar to the role that ClpP plays for cytoplasmic proteins.  相似文献   

11.
12.
Leader peptidase   总被引:10,自引:1,他引:9  
The Escherichia coli leader peptidase has been vital for unravelling problems in membrane assembly and protein export. The role of this essential peptidase is to remove amino-terminal leader peptides from exported proteins after they have crossed the plasma membrane. Strikingly, almost all periplasmic proteins, many outer membrane proteins, and a few inner membrane proteins are made with cleavable leader peptides that are removed by this peptidase. This enzyme of 323 amino acid residues spans the membrane twice, with its large carboxyl-terminal domain protruding into the periplasm. Recent discoveries show that its membrane orientation is controlled by positively charged residues that border (on the cytosolic side) the transmembrane segments. Cleavable pre-proteins must have small residues at -1 and a small or aliphatic residue at -3 (with respect to the cleavage site). Leader peptidase does not require a histidine or cysteine amino acid for catalysis. Interestingly, serine 90 and aspartic acid 153 are essential for catalysis and are also conserved in a mitochondrial leader peptidase, which is 30.7% homologous with the bacterial enzyme over a 101-residue stretch.  相似文献   

13.
Lacticin 481 is a lanthionine-containing bacteriocin (lantibiotic) produced by Lactococcus lactis subsp. lactis. The final steps of lacticin 481 biosynthesis are proteolytic removal of an N-terminal leader sequence from the prepeptide LctA and export of the mature lantibiotic. Both proteolysis and secretion are performed by the dedicated ATP-binding cassette (ABC) transporter LctT. LctT belongs to the family of AMS (ABC transporter maturation and secretion) proteins whose prepeptide substrates share a conserved double-glycine type cleavage site. The in vitro activity of a lantibiotic protease has not yet been characterized. This study reports the purification and in vitro activity of the N-terminal protease domain of LctT (LctT150), and its use for the in vitro production of lacticin 481. The G(-2)A(-1) cleavage site and several other conserved amino acid residues in the leader peptide were targeted by site-directed mutagenesis to probe the substrate specificity of LctT as well as shed light upon the role of these conserved residues in lantibiotic biosynthesis. His 10-LctT150 did not process most variants of the double glycine motif and processed mutants of Glu-8 only very slowly. Furthermore, incorporation of helix-breaking residues in the leader peptide resulted in greatly decreased proteolytic activity by His 10-LctT150. On the other hand, His 10-LctT150 accepted all peptides containing mutations in the propeptide or at nonconserved positions of LctA. In addition, the protease domain of LctT was investigated by site-directed mutagenesis of the conserved residues Cys12, His90, and Asp106. The proteolytic activities of the resulting mutant proteins are consistent with a cysteine protease.  相似文献   

14.
The Serratia marcescens serine protease, which is directed by the gene encoding a precursor composed of a typical NH2-terminal signal sequence, a mature enzyme domain, and a large COOH-terminal domain, was excreted through the outer membrane of Escherichia coli. The precursor, with the expected molecular size (110 kilodaltons), was detected in an insoluble form in the periplasmic space of E. coli cells after induction with isopropyl-beta-D-thiogalactopyranoside of the expression of the gene under the control of the tac promoter. Upon membrane fractionation of the disrupted cells by sucrose density gradient centrifugation, the precursor was recovered from a fraction slightly heavier than the outer membrane fraction but not from the inner membrane fraction. Conversion of the precursor into the mature form, which was accompanied by its excretion into the medium, was observed even in the absence of de novo protein synthesis caused by the addition of chloramphenicol. The mutated gene product lacking all of the COOH-terminal domain was localized in the periplasmic space only and was not excreted into the medium. Additional mutant genes were generated by site-directed mutagenesis to test the role of some amino acids in the excretion of this protease in E. coli. The mutant protein with no protease activity because of the change of the catalytic residue Ser-341 to Thr was still excreted into the medium but with abnormal processing. Both self-processing and host-dependent processing of the precursor seem to be involved in the excretion of the mature enzyme. Replacement of the four Cys residues, two in the mature enzyme and two in the COOH-terminal domain, with Ser in different combinations caused a distinct or complete loss of excretion, suggesting that a certain conformation possibly formed via disulfide bonding was important for the excretion of the S. marcescens protease.  相似文献   

15.
Site-directed mutagenesis studies of the signal peptidase of the methanogenic archaeon Methanococcus voltae identified three conserved residues (Ser52, His122, and Asp148) critical for activity. The requirement for one conserved aspartic acid residue distinguishes the archaeal enzyme from both the Escherichia coli and yeast Sec11 enzymes.  相似文献   

16.
Soluble forms of Bacillus signal peptidases which lack their unique amino-terminal membrane anchor are prone to degradation, which precludes their high-level production in the cytoplasm of Escherichia coli. Here, we show that the degradation of soluble forms of the Bacillus signal peptidase SipS is largely due to self-cleavage. First, catalytically inactive soluble forms of this signal peptidase were not prone to degradation; in fact, these mutant proteins were produced at very high levels in E. coli. Second, the purified active soluble form of SipS displayed self-cleavage in vitro. Third, as determined by N-terminal sequencing, at least one of the sites of self-cleavage (between Ser15 and Met16 of the truncated enzyme) strongly resembles a typical signal peptidase cleavage site. Self-cleavage at the latter position results in complete inactivation of the enzyme, as Ser15 forms a catalytic dyad with Lys55. Ironically, self-cleavage between Ser15 and Met16 cannot be prevented by mutagenesis of Gly13 and Ser15, which conform to the -1, -3 rule for signal peptidase recognition, because these residues are critical for signal peptidase activity.  相似文献   

17.
Introduction of a cysteine protease active site into trypsin   总被引:12,自引:0,他引:12  
J N Higaki  L B Evnin  C S Craik 《Biochemistry》1989,28(24):9256-9263
Active site serine 195 of rat anionic trypsin was replaced with a cysteine by site-specific mutagenesis in order to determine if a thiol group could function as the catalytic nucleophile in serine protease active site environment. Two genetically modified rat thiol trypsins were generated; the first variant contained a single substitution of Ser195 with Cys (trypsin S195C) while the second variant contained the Ser195 to Cys as well as an Asp102 to Asn substitution (trypsin D102N,S195C) that more fully mimics the putative catalytic triad of papain. Both variants were expressed as his J signal peptide-trypsin fusion proteins to high levels under the control of the tac promoter. The mature forms of both variants were secreted into the periplasmic space of Escherichia coli. Trypsin S195C shows a low level of activity toward the activated ester substrate Z-Lys-pNP, while both trypsin S195C and trypsin D102N,S195C were active toward the fluorogenic tripeptide substrate Z-GPR-AMC. Esterase and peptidase activities of both thiol trypsin variants were inhibited by known Cys protease inhibitors as well as by specific trypsin inhibitors. The kcat of trypsin S195C was reduced by a factor of 6.4 x 10(5) relative to that of trypsin while the kcat of trypsin D102N,S195C was lowered by a factor of 3.4 x 10(7) with Z-GPR-AMC as substrate. Km values were unaffected. The loss of activity of trypsin D102N,S195C was partially attributed to an inappropriate Asn102-His57 interaction that precludes the formation of the catalytically competent His57-Cys195 ion pair although loss of the negative charge of D102 at the active site probably contributes to diminished activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The Serratia marcescens serine protease gene encoding a 1,045-amino-acid precursor protein of 112 kDa directs excretion of the mature protease of ca. 58 kDa through the outer membrane of Escherichia coli. A typical signal peptide of 27 amino acids and a large COOH-terminal domain of the precursor are both functionally essential for the excretion of the mature protease into the medium. Sequence analysis of the fragment peptides of the mature protease as well as site-directed mutagenesis indicated that the COOH-terminus of the mature enzyme was Asp645. By using the polyclonal antibody against the 112-kDa precursor protein, not only the intact precursor but also two proteins, C-1 (40 kDa) and C-2 (38 kDa), corresponding to the processed COOH-terminal domains were detected in the insoluble fraction of E. coli cells. Further fractionation by sucrose density gradient centrifugation showed that C-1 and C-2 were localized in the outer membrane. The NH2-terminal residues of C-1 and C-2 were determined to be Ala702 and Phe717, respectively. All these data suggest that the precursor is cleaved at three positions, between Asp645-Ser646, Glu701-Ala702, and Gly716-Phe717, probably by the self-processing activity in the normal excretion pathway through the outer membrane.  相似文献   

19.
We have performed a site-directed mutagenesis study showing that residues comprising the type I signal peptidase signature in the two catalytic subunits of the yeast inner membrane protease, Imp1p and Imp2p, are functionally important, consistent with the idea that these subunits contain a serine/lysine catalytic dyad. Previous studies have shown that Imp1p cleaves signal peptides having asparagine at the -1 position, which deviates from the typical signal peptide possessing a small uncharged amino acid at this position. To determine whether asparagine is responsible for the nonoverlapping substrate specificities exhibited by the inner membrane protease subunits, we have substituted asparagine with 19 amino acids in the Imp1p substrate i-cytochrome (cyt) b(2). The resulting signal peptides containing alanine, serine, cysteine, leucine, and methionine can be cleaved efficiently by Imp1p. The remaining mutant signal peptides are cleaved inefficiently or not at all. Surprisingly, none of the amino acid changes results in the recognition of i-cyt b(2) by Imp2p, whose natural substrate, i-cyt c(1), has alanine at the -1 position. The data demonstrate that (i) although the -1 residue is important in substrates recognized by Imp1p, signal peptides having standard and nonstandard cleavage sites can be processed by Imp1p, and (ii) a -1 asparagine does not govern the substrate specificity of the inner membrane protease subunits.  相似文献   

20.
A new component of the chloroplast proteolytic machinery from Arabidopsis thaliana was identified as a SppA-type protease. The sequence of the mature protein, deduced from a full-length cDNA, displays 22% identity to the serine-type protease IV (SppA) from Escherichia coli and 27% identity to Synechocystis SppA1 (sll1703) but lacks the putative transmembrane spanning segments predicted from the E. coli sequence. The N-terminal sequence exhibits typical features of a cleavable chloroplast stroma-targeting sequence. The chloroplast localization of SppA was confirmed by in organello import experiments using an in vitro expression system and by immunodetection with antigen-specific antisera. Subfractionation of intact chloroplasts demonstrated that SppA is associated exclusively with thylakoid membranes, predominantly stroma lamellae, and is a part of some high molecular mass complex of about 270 kDa that exhibits proteolytic activity. Treatments with chaotropic salts and proteases showed that SppA is largely exposed to the stroma but that it behaves as an intrinsic membrane protein that may have an unusual monotopic arrangement in the thylakoids. We demonstrate that SppA is a light-inducible protease and discuss its possible involvement in the light-dependent degradation of antenna and photosystem II complexes that both involve serine-type proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号