首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viral satellites are small RNAs that depend on the presence of the specific helper virus for replication and that can modulate viral disease expression. The in vivo subcellular location of the double-stranded (ds) form of different Cucumovirus-associated satellite RNAs, which accumulate in large quantities in infected tobacco plants, is reported here. Subcellular fractions were obtained by differential centrifugation and characterized by their specific nucleic acid content and by electron microscopy. Results indicate that the viral and satellite ds-RNAs copurify with a size-homogeneous vesicular fraction. A similar vesicular fraction was also isolated from healthy tobacco plants. The results suggest that the replication of satellite RNAs occurs in close association with these vesicles and are consistent with the hypothesis of the satellite dependence on the viral-coded replicase.  相似文献   

2.
3.
Protein synthesis initiation on prokaryotic mRNAs involves base-pairing of a site preceding the initiation codon with the 3' terminal sequence of 16 S rRNA. It has been suggested that a similar situation may prevail in eukaryotic mRNAs. This suggestion is not based on experiments, but on observation of complementarities between mRNA 5' noncoding sequences and a conserved sequence near the 18 S rRNA 3' terminus. The hypothesis can be evaluated by comparing the number of potential binding sites found in the 5' noncoding sequences with the number of such sites expected to occur by chance. A method for computing this number is presented. The 5' noncoding sequences contain more binding sites than expected for a random RNA chain, but the same is true for 3' noncoding sequences. The effect can be traced to a clustering of purines and pyrimidines, common to noncoding sequences. In conclusion, a close inspection of the available mRNA sequences does not reveal any indication of a specific base-pairing ability between their 5' noncoding segments and the 18 S rRNA 3' terminus.  相似文献   

4.
《Genomics》2020,112(3):2583-2589
Knowledge of the sub-cellular localization of the most diverse class of transcribed RNA, long non-coding RNAs (lncRNAs) will lead us to identify different types of cancers and other diseases as lncRNAs play key role in related cellular functions. In recent days with the exponential growth of known records, it becomes essential to establish new machine learning based techniques to identify the new one due to faster and cheaper solutions provided compared to laboratory methods. In this paper, we propose Locate-R, a novel method for predicting the sub-cellular location of lncRNAs. We have used only n-gapped l-mer composition and l-mer composition as features and select best 655 features to build the model. This model is based locally deep support vector machines which significantly enhance the prediction accuracy with respect to exiting state-of-the-art methods. Our predictor is readily available for use as a stand-alone web application from: http://locate-r.azurewebsites.net/.  相似文献   

5.
The R7 family of regulators of G protein signaling (RGS) is involved in many functions of the nervous system. This family includes RGS6, RGS7, RGS9, and RGS11 gene products and is defined by the presence of the characteristic first found in Disheveled, Egl-10, Pleckstrin (DEP), DEP helical extension (DHEX), Gγ-like, and RGS domains. Herein, we examined the subcellular localization of RGS7, the most broadly expressed R7 member. Our immunofluorescence studies of retinal and dorsal root ganglion neurons showed that RGS7 concentrated at the plasma membrane of cell bodies, in structures resembling lamellipodia or filopodia along the processes, and at the dendritic tips. At the plasma membrane of dorsal root ganglia neurons, RGS7 co-localized with its known binding partners R7 RGS binding protein (R7BP), Gαo, and Gαq. More than 50% of total RGS7-specific immunofluorescence was present in the cytoplasm, primarily within numerous small puncta that did not co-localize with R7BP. No specific RGS7 or R7BP immunoreactivity was detected in the nuclei. In transfected cell lines, ectopic RGS7 had both diffuse cytosolic and punctate localization patterns. RGS7 also localized in centrosomes. Structure-function analysis showed that the punctate localization was mediated by the DEP/DHEX domains, and centrosomal localization was dependent on the DHEX domain.  相似文献   

6.
We have examined the subcellular distribution of histone mRNA-containing polysomes in HeLa S3 cells to assess the possible relationship between localization of histone mRNAs and the regulation of cellular histone mRNA levels. The distribution of histone mRNAs on free and membrane bound polysomes was examined as well as the association of histone mRNA-containing polysomes with the cytoskeleton. The subcellular localization of histone mRNAs was compared with that of HLA-B7 mRNAs which encode a cell surface antigen. Histone mRNAs were localized predominantly on the free polysomes, whereas the HLA-B7 mRNA was found almost exclusively on membrane bound polysomes. However, both species of mRNA were found associated with the cytoskeleton. Interruption of DNA synthesis by hydroxyurea treatment resulted in a rapid and selective destabilization of histone mRNAs in each subcellular fraction; in contrast, the stability of HLA-B7 mRNA appeared unaffected. The results presented confirm that histone mRNAs are predominantly located on non-membrane bound polysomes and suggest that these polysomes are associated with the cytoskeletal framework.  相似文献   

7.
8.
To determine the subcellular location of the Streptococcus mutans P1 protein C-terminal anchor, cell envelope fractionation experiments were conducted in combination with Western immunoblotting, using monoclonal antibody MAb 6-8C specific for an epitope that maps near the C terminus of P1 protein and also a polyclonal antibody preparation directed against the P1 C-terminal 144 amino acids (P1COOH). P1 protein was detected in cell walls but not the membrane purified from S. mutans cells by the monoclonal antibody. In contrast, P1 protein was not detected in the same cell wall preparation using the anti-P1COOH polyclonal antibody. However, proteins released from the cell walls by treatment with mutanolysin contained antigen that was recognized by the anti-P1COOH antibody, suggesting that the epitopes recognized by the antibody were masked by peptidoglycan in the cell wall preparations. When cell walls were treated with boiling trichloroacetic acid to solubilize cell-wall-associated carbohydrate, P1 antigen could not be detected in either the solubilized carbohydrate, or in the remaining peptidoglycan, regardless of whether polyclonal or monoclonal antibody was used. However, when the peptidoglycan was treated with mutanolysin, P1 antigen could be detected in the mutanolysin solubilized fraction by MAb 6-8C. Collectively, these data suggest that the C-terminal 144 amino acids of the P1 protein are embedded within the cell wall, and associated exclusively with the peptidoglycan. Furthermore, the ability of the anti-P1COOH antibody to recognize P1 antigen only after mutanolysin treatment of cell walls suggests these C-terminal 144 amino acids are tightly intercalated within the peptidoglycan strands.  相似文献   

9.
The enzymatic activity of recombinant influenza virus RNA polymerase is strictly dependent on the addition of a template RNA containing 5' and 3' viral sequences. Here we report the analysis of the binding specificity and physical characterization of the complex by using gel shift, modification interference, and density gradient techniques. The 13S complex binds specifically to short synthetic RNAs that mimic the partially double stranded panhandle structures found at the termini of both viral RNA and cRNA. The polymerase will also bind independently to the single-stranded 5' or 3' ends of viral RNA. It binds most strongly to specific sequences within the 5' end but is unable to bind these sequences in the context of a completely double stranded structure. Modification interference analysis identified the short sequence motifs at the 5' ends of the viral RNA and cRNA templates that are critical for binding.  相似文献   

10.
11.
12.
Ornithine decarboxylase (ODC) and the antizyme inhibitors (AZIN1 and AZIN2), regulatory proteins of polyamine levels, are antizyme‐binding proteins. Although it is widely recognized that ODC is mainly a cytosolic enzyme, less is known about the subcellular distribution of AZIN1 and AZIN2. We found that these proteins, which share a high degree of homology in their amino acid sequences, presented differences in their subcellular location in transfected mammalian cells. Whereas ODC was mainly present in the cytosol, and AZIN1 was found predominantly in the nucleus, interestingly, AZIN2 was located in the ER‐Golgi intermediate compartment (ERGIC) and in the cis‐Golgi network, apparently not related to any known cell‐sorting sequence. Our results rather suggest that the N‐terminal region may be responsible for this particular location, since its deletion abrogated the incorporation of the mutated AZIN2 to the ERGIC complex and, on the other hand, the substitution of this sequence for the corresponding sequence in ODC, translocated ODC from cytosol to the ERGIC compartment. Furthermore, the coexpression of AZIN2 with any members of the antizyme family induced a shift of AZIN2 from the ERGIC to the cytosol. These findings underline the complexity of the AZs/AZINs regulatory system, supporting early evidence that relates these proteins with additional functions other than regulating polyamine homeostasis. J. Cell. Biochem. 107: 732–740, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Wang P  Wu Y  Ge X  Ma L  Pei G 《The Journal of biological chemistry》2003,278(13):11648-11653
beta-Arrestin1 and beta-arrestin2 play a key role in the regulation of G protein-coupled receptor-mediated signaling, whereas the subcellular distribution of beta-arrestin1 and beta-arrestin2 has been shown to be quite different. In this study, we found that although both beta-arrestin1 and beta-arrestin2 are able to interact with ubiquitin-protein isopeptide ligase (E3) Mdm2, only expression of beta-arrestin2 leads to the relocalization of Mdm2 from the nucleus to the cytoplasm. Further study reveals that beta-arrestin2 but not beta-arrestin1 shuttles between the cytoplasm and nucleus in a leptomycin B-sensitive manner. A hydrophobic amino acid-rich region (VXXXFXXLXL) at the C terminus of beta-arrestin2 was further demonstrated to serve as a nuclear export signal responsible for the extranuclear localization of beta-arrestin2. In the corresponding region of beta-arrestin1, there is a single amino acid difference (Glu instead of Leu in beta-arrestin2), and mutation of Glu to Leu conferred to beta-arrestin1 similar subcellular distribution to that of beta-arrestin2. Moreover, data from a series of deletion mutations demonstrated that the N domain (residues 1-185) was indispensable for the nuclear localization of both beta-arrestins, and the results from a Val to Asp point mutation in the N domain also supported this notion. In addition, our data showed that nucleocytoplasmic shuttling of beta-arrestin2 was required, via protein/protein interaction, for the cytoplasmic relocalization of Mdm2 and JNK3, another well known beta-arrestin2-binding protein. Our study thus suggests that both the nuclear export signal motif and the N domain of beta-arrestins are critical for the regulation of their subcellular localization and that beta-arrestin2 may modulate the function of its binding partners such as Mdm2 and JNK3 by alteration of their subcellular distribution.  相似文献   

14.
U5 snRNA interacts with exon sequences at 5' and 3' splice sites.   总被引:55,自引:0,他引:55  
A J Newman  C Norman 《Cell》1992,68(4):743-754
U5 snRNA is an essential pre-mRNA splicing factor whose function remains enigmatic. Specific mutations in a conserved single-stranded loop sequence in yeast U5 snRNA can activate cleavage of G1----A mutant pre-mRNAs at aberrant 5' splice sites and facilitate processing of dead-end lariat intermediates to mRNA. Activation of aberrant 5' cleavage sites involves base pairing between U5 snRNA and nucleotides upstream of the cleavage site. Processing of dead-end lariat intermediates to mRNA correlates with base pairing between U5 and the first two bases in exon 2. The loop sequence in U5 snRNA may therefore by intimately involved in the transesterification reactions at 5' and 3' splice sites. This pattern of interactions is strikingly reminiscent of exon recognition events in group II self-splicing introns and is consistent with the notion that U5 snRNA may be related to a specific functional domain from a group II-like self-splicing ancestral intron.  相似文献   

15.
16.
17.
In site-directed spin labeling (SDSL), a nitroxide moiety containing a stable, unpaired electron is covalently attached to a specific site within a macromolecule, and structural and dynamic information at the labeling site is obtained via electron paramagnetic resonance (EPR) spectroscopy. Successful SDSL requires efficient site-specific incorporation of nitroxides. Work reported here presents a new method for facile nitroxide labeling at the 5' terminus of nucleic acids of arbitrary sizes. T4-polynucleotide kinase was used to enzymatically substitute a phosphorothioate group at the 5' terminus of a nucleic acid, and the resulting phosphorothioate was then reacted with an iodomethyl derivative of a nitroxide. The method was successfully demonstrated on both chemically synthesized and naturally occurring nucleic acids. The attached nitroxides reported duplex formation as well as tertiary folding of nucleic acids, indicating that they serve as a valid probe in nucleic acid studies.  相似文献   

18.
In order to provide some insight into the mechanism of hyaluronate synthesis, the subcellular localization of the synthetase system for hyaluronate was determined in eukaryotic cells. The mouse oligodendroglioma cell line G26-24, which produces copious amounts of hyaluronate in culture, was chosen as a system for these studies. Protease treatment and homogenization of cells followed by hyaluronate synthetase assay suggested that nucleotide-binding sites and trypsin-sensitive synthetase sites were not exposed at the outer membrane surface. Protease treatment following homogenization did result in decreased activity. Membrane fragments, prepared by gentle homogenization in iso- and hypotonic buffers, were subjected to differential centrifugation followed by several continuous and discontinuous sucrose equilibrium and velocity gradient systems. Hyaluronate synthetase activity co-fractionated with a plasma membrane marker in all systems, including those in which Golgi markers were separable. Treatment of intact cells in culture with several hyaluronidases resulted in a marked stimulation of cell-free synthetase activity. The stimulated activity was also found exclusively in plasma membrane-enriched fractions.  相似文献   

19.
alpha-Methylacyl-CoA racemase plays an important role in the beta-oxidation of branched-chain fatty acids and fatty acid derivatives because it catalyzes the conversion of several (2R)-methyl-branched-chain fatty acyl-CoAs to their (S)-stereoisomers. Only stereoisomers with the 2-methyl group in the (S)-configuration can be degraded via beta-oxidation. Patients with a deficiency of alpha-methylacyl-CoA racemase accumulate in their plasma pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid, which are all substrates of the peroxisomal beta-oxidation system. Subcellular fractionation experiments, however, revealed that both in humans and rats alpha-methylacyl-CoA racemase is bimodally distributed to both the peroxisome and the mitochondrion. Our findings show that the peroxisomal and mitochondrial enzymes are produced from the same gene and that, as a consequence, the bimodal distribution pattern must be the result of differential targeting of the same gene product. In addition, we investigated the physiological role of the enzyme in the mitochondrion. Both in vitro studies with purified heterologously expressed protein and in vivo studies in fibroblasts of patients with an alpha-methylacyl-CoA racemase deficiency revealed that the mitochondrial enzyme plays a crucial role in the mitochondrial beta-oxidation of the breakdown products of pristanic acid byconverting (2R,6)-dimethylheptanoyl-CoA to its (S)-stereoisomer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号