首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clinical isolates of different Enterobacteriaceae strains and genetically modified variants which were resistant to the disinfectant formaldehyde were investigated. In cell-free extracts of all formaldehyde-resistant strains a glutathione-dependent formaldehyde dehydrogenase activity was demonstrated. In contrast cell extracts from formaldehyde sensitive strains did not show any formaldehyde dehydrogenase activity. The enzymatic degradation of formaldehyde seems to play an important role in formaldehyde resistance.  相似文献   

2.
The preparation, stability both in vitro and in vivo and resistance to bacterial collagenase of trypsin-purified pig dermal collagen cross-linked with a range of concentrations of formaldehyde in phosphate-buffered saline, was studied using 14C-labelled formaldehyde as a tracer. Washing in phosphate-buffered saline at 37°C produced rapid loss of formaldehyde over 6 weeks before stability was reached. After 19 weeks washing, 12–20% of the initial radioactivity remained, representing 6, 18 and 35 μmol formaldehyde/g of collagen after 21 days reaction with 0.1, 1 and 5% formaldehyde, respectively. Collagen, incorporating stable-bound formaldehyde arising from reaction with formaldehyde in concentrations of 0.5% or over, was totally resistant to bacterial collagenase.The stabilizing effect of formaldehyde cross-linking was also demonstrated by implants of fibrous pig dermal collagen in rats. After 8 weeks a significant constant amount of formaldehyde was retained in all implants. There was no net loss of mass over a 24 week period when pre-treated with 1% formaldehyde but some loss when pre-treated with 0.1% formaldehyde.  相似文献   

3.
Sporostatic and Sporocidal Properties of Aqueous Formaldehyde   总被引:5,自引:1,他引:4  
Aqueous formaldehyde is shown to exert both sporostatic and sporocidal effects on Bacillus subtilis spores. The sporostatic effect is a result of the reversible inhibition of spore germination occasioned by aqueous formaldehyde; the sporocidal effect is due to temperature-dependent inactivation of these spores in aqueous formaldehyde. The physicochemical state of formaldehyde in solution provides a framework with which to interpret both the sporostatic and sporocidal properties of aqueous formaldehyde.  相似文献   

4.
2012年食用菌“平菇甲醛”事件浅析   总被引:2,自引:0,他引:2  
对2012年4月媒体报道的青岛平菇中检测发现甲醛所引发的争论进行了剖析。综合分析国内外对食用菌和其他天然食品中甲醛含量的研究结果,以及甲醛自身的理化特性,作者认为食用菌中含有微量甲醛是食用菌自身新陈代谢的产物,从食品安全的角度考虑是安全的。文中介绍了国内外对部分食用菌中甲醛含量的测定、代谢机理和风险评估情况,其中食用菌甲醛的代谢机理值得进一步关注和探讨。  相似文献   

5.
In the present study, Methylobacterium sp. FD1 utilizing formaldehyde was isolated from soil. The resting cells of FD1 degraded high concentrations of formaldehyde (~2.7 M) and produced formic acid and methanol that were molar equivalents of one-half of the degraded formaldehyde. This result suggests that formaldehyde degradation by FD1 is caused by formaldehyde dismutase. The optimal temperature and pH for formaldehyde degradation by the resting cells of FD1 were 40 °C and 5–7, respectively. The lyophilized cells of FD1 also degraded high concentrations of formaldehyde. The formaldehyde degradation activity of the lyophilized cells was maintained as the initial activity at 25 °C for 287 days. These results suggest that the lyophilized cells of FD1 are useful as formaldehyde degradation materials.  相似文献   

6.
The foliar uptake and transport rates of formaldehyde as well as the abilities of leaf extracts to breakdown formaldehyde were investigated to discuss the formaldehyde removal efficiency and mechanism by five species of plants from air. Results showed that formaldehyde could be transported from air via leaves and roots to rhizosphere water. When exposed to 0.56 mg·m?3 formaldehyde, the formaldehyde removal rate ranged from 18.64 to 38.47 μg·h?1g?1 FW (fresh weight). According to the mass balance in the air–plant–water system, the main mechanism of the formaldehyde loss was its breakdown in plant tissues caused by both enzymatic reaction and redox reaction. Higher oxidation potentials of the leaf-extracts of Wedelia chinensis and Desmodium motorium corresponded well to higher abilities to breakdown added formaldehyde than other plants. Based on the different abilities of fresh and boiled leaf-extracts to dissipate formaldehyde, the enzymatic reaction in Chenopodium album L. was the dominant mechanism while the redox reaction in Kochia scoparia (L.) Schrad. and Silene conoidea L. was the main formaldehyde breakdown mechanism when exposed to low-level formaldehyde in air. The redox mechanism suggested that the formaldehyde removal may be increased by an increasing level of reactive oxygen species (ROS) induced by the environmental stress.  相似文献   

7.
Summary The addition of 2% phenol had a marked accelerating effect on neutral buffered 4% formaldehyde as a fixative. Histopathological material fixed in buffered phenol—formaldehyde (pH7.0) and rapidly advanced to paraffin in an enclosed tissue-processor showed improved nuclear and cytoplasmic detail, reduced shrinkage and distortion, and an absence of formalin pigment. Good results were obtained in less time when sequential fixation in phenol—formaldehyde buffered to pH7.0 and pH5.5 was carried out at an elevated temperature (40°C) in the enclosed tissue-processor. Standard histological stains and immunoperoxidase methods worked well. In resin-embedded tissue, buffered phenol—formaldehyde (pH7.0) gave satisfactory ultrastructural results. The penetration rate of buffered phenol—formaldehyde (pH7.0) in gelatin models did not differ from that of neutral buffered 4% formaldehyde. Polyacrylamide gel electrophoresis showed enhanced protein polymer formation with buffered phenol—formaldehyde (pH7.0) as compared with neutral buffered 4% formaldehyde. Protein polymer formation increased in response to increased time and temperature. Cells fixed in suspension in buffered phenol—formaldehyde (pH7.0) and neutral buffered 4% formaldehyde showed similar volume changes.  相似文献   

8.
In the present study, formaldehyde dismutase from Methylobacterium sp. FD1 was partially purified and analyzed by nanoLC–MS/MS; it was then cloned from the genomic DNA of FD1 by PCR. The open reading frame of the formaldehyde dismutase gene of FD1 was estimated to be 1203 bp in length. The molecular weight and pI of formaldehyde dismutase (401 aa), as deduced from the FD1 gene, were calculated at 42,877.32 and 6.56, respectively. NAD(H)-binding residues and zinc-binding residues were found in the amino acid sequence of the deduced formaldehyde dismutase of FD1 by BLAST search. The resting Escherichia coli cells that were transformed with the FD1 formaldehyde dismutase gene degraded high concentrations of formaldehyde and produced formic acid and methanol that were molar equivalents of one-half of the degraded formaldehyde. The lyophilized cells of the recombinant E. coli also degraded high concentrations of formaldehyde.  相似文献   

9.
Two methods of fixation of sheep erythrocytes with formaldehyde for the titration of tetanus antitoxin by the indirect haemagglutination (IHA) test have been compared. The cells fixed with 3% formaldehyde at 4-8 degrees C for 24 h (formaldehyde (I) fixed cells) were less sensitive than the cells fixed with 3% formaldehyde at 4-8 degrees C for 24 h and subsequently treated with 40% formaldehyde at 4-8 degrees C for a further 24 h (formaldehyde (II) fixed cells). The correlation between the toxin neutralization (TN) and IHA titres using formaldehyde (I) fixed cells was better than that obtained with formaldehyde (II) fixed cells. There was no statistically significant difference between TN and IHA titres after treatment of the sera with 2-Mercaptoethanol using formaldehyde (I) fixed cells. Formaldehyde (I) fixed cells can be used for two months with adequate sensitivity to detect the minimum protective level of tetanus antitoxin in the sera.  相似文献   

10.
11.
Previous results have shown that cyanamide or crotonaldehyde are effective inhibitors of the oxidation of formaldehyde by the low-Km mitochondrial aldehyde dehydrogenase, but do not affect the activity of the glutathione-dependent formaldehyde dehydrogenase. These compounds were used to evaluate the enzyme pathways responsible for the oxidation of formaldehyde generated during the metabolism of aminopyrine or methanol by isolated hepatocytes. Both cyanamide and crotonaldehyde inhibited the production of 14CO2 from 14C-labeled aminopyrine by 30-40%. These agents caused an accumulation of formaldehyde which was identical to the loss in CO2 production, indicating that the inhibition of CO2 production reflected an inhibition of formaldehyde oxidation. The oxidation of methanol was stimulated by the addition of glyoxylic acid, which increases the rate of H2O2 generation. Crotonaldehyde inhibited CO2 production from methanol, but caused a corresponding increase in formaldehyde accumulation. The partial sensitivity of CO2 production to inhibition by cyanamide or crotonaldehyde suggests that both the mitochondrial aldehyde dehydrogenase and formaldehyde dehydrogenase contribute towards the metabolism of formaldehyde which is generated from mixed-function oxidase activity or from methanol, just as both enzyme systems contribute towards the metabolism of exogenously added formaldehyde.  相似文献   

12.
A study of conventional formaldehyde fumigation methods   总被引:2,自引:0,他引:2  
The currently recommended methods for the formaldehyde fumigation of rooms have been studied with the aid of an instrument designed to monitor the temperature, humidity and formaldehyde concentration. The results show that although the procedures are generally effective as measured by microbiological methods the conditions within the areas treated are not those expected from calculations based on the room volume and the amount of formaldehyde used. The measured formaldehyde levels in particular are much lower than predicted and indicate that formaldehyde vapour may be effective at lower concentrations than previously supposed.  相似文献   

13.
A study of conventional formaldehyde fumigation methods   总被引:1,自引:1,他引:0  
The currently recommended methods for the formaldehyde fumigation of rooms have been studied with the aid of an instrument designed to monitor the temperature, humidity and formaldehyde concentration. The results show that although the procedures are generally effective as measured by microbiological methods the conditions within the areas treated are not those expected from calculations based on the room volume and the amount of formaldehyde used. The measured formaldehyde levels in particular are much lower than predicted and indicate that formaldehyde vapour may be effective at lower concentrations than previously supposed.  相似文献   

14.
An unadapted mixed methanogenic sludge transformed formaldehyde into methanol and formate. The methanol to formate ratio obtained was 1:1. Formaldehyde conversion proceeded without any lag phase, suggesting the constitutive character of the formaldehyde conversion enzymes involved. Because the rate of formaldehyde conversion declined at increased formaldehyde additions, we hypothesized that some enzymes and/or cofactors might become denatured as a result of the excess of formaldehyde. Furthermore, formaldehyde was found to be toxic to acetoclastic methanogenesis in a dual character. Formaldehyde toxicity was partly reversible because once the formaldehyde concentration was extremely low or virtually removed from the system, the methane production rate was partially recovered. Because the degree of this recovery was not complete, we conclude that formaldehyde toxicity was partly irreversible as well. The irreversible toxicity likely can be attributed to biomass formaldehyde-related decay. Independent of the mode of formaldehyde addition (i.e., slug or continuous), the irreversible toxicity was dependent on the total amount of formaldehyde added to the system. This finding suggests that to treat formaldehyde-containing waste streams, a balance between formaldehyde-related decay and biomass growth should be attained.  相似文献   

15.
The activity of enzymes involved in methanol oxidation and assimilation as well as the levels of formaldehyde and glutathione were determined during batch cultivation of Candida boidinii KD1 in a medium with methanol. The distribution of [14C]methanol between oxidative and biosynthetic processes in the yeast was analysed. Changes in the concentrations of formaldehyde and glutathione were found to correlate with the activity of formaldehyde dehydrogenase. The results indicate that an increase in the concentration of reduced glutathione (GSH) at the early logarithmic phase of the yeast growth stimulates formaldehyde oxidation via formate to carbon dioxide whereas a subsequent decrease in the concentration of GSH favours formaldehyde assimilation.  相似文献   

16.
Summary The study compared the effects of mercaptoethanol-formaldehyde and formaldehyde alone, on tissue fixation and protein retention in human and mouse tissues. Shrinkage of tissues and the penetration rate of the fixatives were assessed. The cross-linking ability of the fixatives was determined by viscometry, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and spectrophotometry, using bovine serum albumin and human haemoglobin. Tissues fixed in buffered 0.0025% mercaptoethanol-4% formaldehyde showed good nuclear and cytoplasmic detail, better than those fixed in buffered 4% formaldehyde. There was no significant difference in shrinkage. A mixture of 0.0025% mercaptoethanol-4% formaldehyde penetrated faster into adult liver than 4% formaldehyde. The mean penetration rate (±SE) or coefficient of diffusibility of 0.0025% mercaptoethanol-4% formaldehyde into adult liver was 1.32±0.01 and that of 4% formaldehyde was 1.12±0.06 (p<0.04). Both fixatives diffused more rapidly into mouse liver than into human liver. The cross-linking ability of mercaptoethanol-formaldehyde depends on the concentration of the fixative and the time of fixation. Bovine serum albumin (15%) and 0.1% mercaptoethanol alone formed a gel, whilst electrophoresis showed monomers in the supernatant. Mercaptoethanol (0.1%) also rapidly decreased the absorption at 420 nm, suggesting denaturation. It seems that mercaptoethanol increases the number of thiol groups available to form cross-links with formaldehyde. This study demonstrated that mercaptoethanol-formaldehyde fixed and cross-linked tissues better than formaldehyde at 3 h and 4 h, but not at 1 h and 2 h. The most effective concentration of mercaptoethanol for tissue fixation in 4% formaldehyde is 0.0025%.  相似文献   

17.
Formaldehyde is present in several industrial wastewaters including petrochemical wastes. In this study, the toxicity and degradability of formaldehyde in anaerobic systems were investigated. Formaldehyde showed severe toxicity to an acetate enrichment methanogenic culture. As low as 10 mg/L (0.33 mM) of formaldehyde in the reactor completely inhibited acetate utilization. Formaldehyde, however, was degraded while acetate utilization was inhibited. Degradation of formaldehyde (Initial concentration /=60 mg/L), formaldehyde degradation was inhibited and partial degradation was possible. The initial formaldehyde to biomass ratio, S(0)/X(0), was useful to predict the degradation potential of high formaldehyde concentrations in batch systems. When S(0)/X(0) /= 0.29, formaldehyde at higher than 60 mg/L was only partially degraded. The inhibition of formaldehyde degradation in batch systems could be avoided by repeated additions of low concentrations of formaldehyde (up to 30 mg/L). Chemostats (14-day retention time) showed degradation of 74 mg/L-d (1110 mg/L) of influent formaldehyde with a removal capacity of 164 mg/g VSS-day. A spike of 30 mg/L (final concentration in the chemostat) formaldehyde to the chemostat caused only a small increase in effluent acetate concentration for 3 days. But a spike of 60 mg/L (final concentration in the chemostat) formaldehyde to the chemostat resulted in a dramatic increase in acetate concentration in the effluent. The results also showed that the acetate enrichment culture was not acclimated to formaldehyde even after 226 days. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 727-736, 1997.  相似文献   

18.
高效降解甲醛菌株的分离鉴定及其特性   总被引:4,自引:0,他引:4  
谢文娟  王洁  孙珮石  邹平 《微生物学通报》2011,38(11):1626-1631
首先对新分离的、能高效降解甲醛的两菌株A1和A2在形态学特征、生理生化特性及16S rDNA序列分析等方面进行了系统研究; 随后通过测定在液体培养过程中甲醛浓度的变化, 确定新分离菌株A1、A2降解溶液中甲醛的性能; 最后利用菌株A1、A2分别进行生物填料塔的挂膜实验, 确定其对甲醛气体的净化性能。结果表明: 菌株A1属于假单胞菌属(Pseudomonas), 菌株A2为鞘氨醇单胞菌属(Sphingomonas); 当甲醛初始浓度<1 200 mg/L时,菌株A1、A2都能完全降解溶液中的甲醛, 当甲醛浓度增高至1 600 mg/L时, 菌株A1在48 h后的甲醛降解率为50%, 菌株A2在104 h后的甲醛降解率为74.3%; 菌株A1、A2对甲醛气体的净化效率均能达到99%以上, 菌株A1的甲醛生化去除量能达到26.4 mg/(L?h), 菌株A2的甲醛生化去除量可达20.6 mg/(L?h)。  相似文献   

19.
Nie CL  Wei Y  Chen X  Liu YY  Dui W  Liu Y  Davies MC  Tendler SJ  He RG 《PloS one》2007,2(7):e629
Recent studies have shown that neurodegeneration is closely related to misfolding and aggregation of neuronal tau. Our previous results show that neuronal tau aggregates in formaldehyde solution and that aggregated tau induces apoptosis of SH-SY5Y and hippocampal cells. In the present study, based on atomic force microscopy (AFM) observation, we have found that formaldehyde at low concentrations induces tau polymerization whilst acetaldehyde does not. Neuronal tau misfolds and aggregates into globular-like polymers in 0.01-0.1% formaldehyde solutions. Apart from globular-like aggregation, no fibril-like polymerization was observed when the protein was incubated with formaldehyde for 15 days. SDS-PAGE results also exhibit tau polymerizing in the presence of formaldehyde. Under the same experimental conditions, polymerization of bovine serum albumin (BSA) or alpha-synuclein was not markedly detected. Kinetic study shows that tau significantly misfolds and polymerizes in 60 minutes in 0.1% formaldehyde solution. However, presence of 10% methanol prevents protein tau from polymerization. This suggests that formaldehyde polymerization is involved in tau aggregation. Such aggregation process is probably linked to the tau's special "worm-like" structure, which leaves the epsilon-amino groups of Lys and thiol groups of Cys exposed to the exterior. Such a structure can easily bond to formaldehyde molecules in vitro and in vivo. Polymerizing of formaldehyde itself results in aggregation of protein tau. Immunocytochemistry and thioflavin S staining of both endogenous and exogenous tau in the presence of formaldehyde at low concentrations in the cell culture have shown that formaldehyde can induce tau into amyloid-like aggregates in vivo during apoptosis. The significant protein tau aggregation induced by formaldehyde and the severe toxicity of the aggregated tau to neural cells may suggest that toxicity of methanol and formaldehyde ingestion is related to tau misfolding and aggregation.  相似文献   

20.
Formaldehyde can be oxidized primarily by two different enzymes, the low-Km mitochondrial aldehyde dehydrogenase and the cytosolic GSH-dependent formaldehyde dehydrogenase. Experiments were carried out to evaluate the effects of diethyl maleate or phorone, agents that deplete GSH from the liver, on the oxidation of formaldehyde. The addition of diethyl maleate or phorone to intact mitochondria or to disrupted mitochondrial fractions produced inhibition of formaldehyde oxidation. The kinetics of inhibition of the low-Km mitochondrial aldehyde dehydrogenase were mixed. Mitochondria isolated from rats treated in vivo with diethyl maleate or phorone had a decreased capacity to oxidize either formaldehyde or acetaldehyde. The activity of the low-Km, but not the high-Km, mitochondrial aldehyde dehydrogenase was also inhibited. The production of CO2 plus formate from 0.2 mM-[14C]formaldehyde by isolated hepatocytes was only slightly inhibited (15-30%) by incubation with diethyl maleate or addition of cyanamide, suggesting oxidation primarily via formaldehyde dehydrogenase. However, the production of CO2 plus formate was increased 2.5-fold when the concentration of [14C]formaldehyde was raised to 1 mM. This increase in product formation at higher formaldehyde concentrations was much more sensitive to inhibition by diethyl maleate or cyanamide, suggesting an important contribution by mitochondrial aldehyde dehydrogenase. Thus diethyl maleate and phorone, besides depleting GSH, can also serve as effective inhibitors in vivo or in vitro of the low-Km mitochondrial aldehyde dehydrogenase. Inhibition of formaldehyde oxidation by these agents could be due to impairment of both enzyme systems known to be capable of oxidizing formaldehyde. It would appear that a critical amount of GSH, e.g. 90%, must be depleted before the activity of formaldehyde dehydrogenase becomes impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号