首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Membrane Cholesterol Regulates Smooth Muscle Phasic Contraction   总被引:1,自引:0,他引:1  
The regulation of contractile activity in smooth muscle cells involves rapid discrimination and processing of a multitude of simultaneous signals impinging on the membrane before an integrated functional response can be generated. The sarcolemma of smooth muscle cells is segregated into caveolar regions-largely identical with cholesterol-rich membrane rafts—and actin-attachment sites, localized in non-raft, glycerophospholipid regions. Here we demonstrate that selective extraction of cholesterol abolishes membrane segregation and disassembles caveolae. Simultaneous measurements of force and [Ca2+]i in rat ureters demonstrated that extraction of cholesterol resulted in inhibition of both force and intracellular Ca2+ signals. Considering the major structural reorganization of cholesterol-depleted sarcolemma, it is intriguing to note that decreased levels of membrane cholesterol are accompanied by a highly specific inhibition of phasic, but not tonic contractions. This implies that signalling cascades that ultimately lead to either phasic or tonic response may be spatially segregated in the plane of the sarcolemma. Replenishment of cholesterol restores normal contractile behavior. In addition, the tissue function is re-established by inhibiting the large-conductance K+-channel. Sucrose gradient ultracentrifugation in combination with Western blotting analysis demonstrates that its -subunit is associated with detergent-resistant membranes, suggesting that the channel might be localized within the membrane rafts in vivo. These findings are important in understanding the complex signalling pathways in smooth muscle and conditions such as premature labor and hypertension.  相似文献   

2.
The localization of the membrane-bound cyclic 3,5-AMP phosphodiesterasein cardiac tissues of both, rat and dog was studied by cytochemical method.40 µm thick slices from glutaraldehyde fixed heart tissue wereincubated in the medium with cAMP as a substrate and Pb ions as a capturemetal of the reaction product. The cAMP-PDE activity in the rat ventriclewas only shown positive on the sarcolemma. Whereas, in canine ventriculartissue the cAMP-PDE activity in cardiomyocytes was shown on the sarcolemma,on the junctional sarcoplasmic reticulum and on subsarcolemmal cisternae.The results confirm differences in the localization of cAMP-PDE in dog andrat heart.  相似文献   

3.
The localization of three key signal transduction components was indicated in rat heart tissue by immunocytochemical and histochemical experiment. It was shown that:
  1. The M2 muscarinic receptors are localized along outer cell membranes and T-tubule membranes of cardiomyocytes but additionally at membranes of endothelial cells and fibroblasts.
  2. G was found along outer cell membranes of cardiomyocytes and other cells of the heart and also inside the cells of the perinuclear space in close contact to the nuclei envelope and the endoplasmic reticulum membranes. G were found to be associated mainly in atrial tissue, especially at the nerval (neuronal) endings located among the cardiac muscle cells. This was shown in parallel incubation with specific neuronal antibody as a marker for these structures.
  3. Adenylyl cyclase was localized along the sarcolemma and the T-tubule membranes in normal cardiomyocytes of rat and guinea pig hearts. Under ischemic conditions, the adenylyl cyclase was also seen in junctional sarcoplasmic reticulum membranes. The reasons for this changed localization need further elucidation. Binding of the adenylyl cyclase within the molecular structure of the membrane or variation of the marker penetration remain to be clarified.
  相似文献   

4.
5.
Summary The regulation of cyclic AMP metabolism in the rat erythrocyte has been investigated during chronic exposure to the agonist isoproterenol. A triphasic response is observed: 1) an acute increase in cyclic AMP to levels four- to fivefold greater than basal, maximal by 1 minute (Phase I); 2) a gradual decline in cAMP content to levels near basal during the next 15–20 minutes (Phase II) and a second sustained rise in cAMP, maximal by 60 minutes, to a concentration greater than that observed during the first minute (Phase III). Extensively washed Phase II and Phase III cells are refractory to a second challenge by isoproterenol. In phosphodiesterase-inhibited intact Phase II and III cells adenylate cyclase activity is maximally activated. Isoproterenol has no effect on soluble phosphodiesterase activity but increases membrane-bound phosphodiesterase activity 3- and 2.2-fold in Phase II and Phase III cells, respectively. The activation of this membrane-bound enzyme activity appears to be mediated by the calcium-dependent regulatory protein, calmodulin, because 1) the amount of exogenous calmodulin required to achieve half-maximal activation of membrane-bound phosphodiesterase is 3.7, 2.0, and 1.2 g in control, Phase III and Phase II membranes, respectively; and 2) there is less calmodulin in membrane-free lysates prepared from Phase II cells than control cells. These data support the idea that the major mechanism regulating cAMP content in the rat erythrocyte during chronic isoproterenol stimulation is the membranebound phosphodiesterase and that there is a translocation of calmodulin from the cytoplasm to the membrane during hormone stimulation. Established Investigator of the American Heart Association  相似文献   

6.
We have examined whether differential expression of UT receptors in cardiovascular tissues from rats and humans may account for the diverse vascular actions reported for urotensin-II. We found UT immunoreactivity ubiquitously expressed in arterial and venous smooth muscle and cardiomyocytes in both species, however, compared to human, levels of UT immunoreactivity in rat vascular endothelial cells was below the level for detection. In rat skeletal muscle cells UT receptor localized to the sarcolemma, a pattern comparable to that for isoforms of nitric oxide synthase suggesting that urotensin-II mediated hindquarter vasodilatation may involve release of nitric oxide from skeletal muscle fibers.  相似文献   

7.
Cyclic AMP plays an important role in heart functions under normal as well as pathological conditions. Since phosphodiesterase (PDE), responsible for the hydrolysis of cAMP, is equally important as synthesizing adenylyl cyclase, we decided to determine its activity by cytochemical procedure after exposure of rats to restraint stress or an acute dose of amphetamine. Sprague-Dawley (S-D) and Lewis (LE) rats, the latter known to have a deficient hypothalamo-pituitary-adrenal axis activity, were used in order to disclose the possible significance of rat strain on PDE activity. Animals were divided into 3 groups: controls, rats treated with an acute dose of amphetamine (8 mg/kg, i.p., for 60 min) and rats under restraint stress for 60 min. Control hearts of both strains revealed PDE activity on sarcolemma of cardiomyocytes and plasmalemma of endothelial cells of microvessels. In LE rats we observed an additional enzyme reaction in junctional sarcoplasmic reticulum. In addition, cardiomyocytes of LE rats revealed a higher PDE activity when compared to S-D rats. Restraint stress decreased PDE activity in cardiomyocytes of LE rats while amphetamine markedly inhibited enzyme activity in cardiomyocytes of S-D rats. Endothelial PDE was more resistant to stress. Our results indicate differences in PDE localization and variations in sensitivity of myocardial cAMP-PDE of LE and S-D rat strains to restraint stress and amphetamine application.  相似文献   

8.
The localization of the ai adrenoceptors (1-AR) in the heart tissues from rat and human and in the cultured heart cells from neonatal rats was studied by indirect immunofluorescence and postembedding electronmicroscopical immuno-gold technique. With antipeptide antibodies directed against the second extracellular loop of the human 1-AR (AS sequence 192–218), this receptor was found to be localized along the sarcolemma in both human and rat hearts. Similar localization sites were detected in cultivated rat neonatal cardiomyocytes. Beside the localization in cardiomyocytes, 1-AR were identified in endothelial cells of capillaries and smooth muscle cells of coronary vessels, in neuronal endings, in mast cells of cultivated heart cells but not, or in less amount in fibroblasts. Interestingly, in the right atrium of rat heart the localization of 1-AR was found to be near or on atrial natriuretic factor (ANF) granules, providing the basis for the -adrenergic influence on ANF release. The immunocytochemical studies further confirm and complete the findings known by using autoradiographic binding studies with specific ligands.  相似文献   

9.
Using immunofluorescence and 3-dimensional confocal microscopy techniques, the present study was designed to verify if NHE-1 is present at the level of the nuclear membrane in cells that are known to express this type of exchanger. Nuclei were isolated from aortic tissues of adult human, rabbit, and rats, as well as from liver tissues of human fetus, and adult rabbit and rat. In addition, cultured ventricular cardiomyocytes were isolated from 2-week-old rat. Our results showed the presence of NHE-1 in isolated nuclei of aortic vascular smooth muscle and liver of human, rabbit, and rat. NHE-1 seems to be distributed throughout the isolated nucleus and more particularly at the level of the nuclear membranes. The relative fluorescence density of NHE-1 was significantly higher (p < 0.05) in isolated liver nuclei of human, when compared with those of rabbit and rat. However, in isolated nuclei of aortic vascular smooth muscle, the relative fluorescence density of NHE-1 was significantly (p < 0.001) higher in the rabbit when compared with human and rat. In cultured rat ventricular cardiomyocytes, NHE-1 fluorescent labeling could be easily seen throughout the cell, including the nucleus, and more particularly at both the sarcolemma and the nuclear membranes. In rat cardiomyocytes, the relative fluorescence density of NHE-1 of the sarcolemma membrane, including the cytosol, was significantly lower than that of the whole nucleus (including the nuclear envelope membranes). In conclusion, our results showed that NHE-1 is present at the nuclear membranes and in the nucleoplasm and its distribution and density may depend on cell type and species used. These results suggest that nuclear membranes' NHE-1 may play a role in the modulation of intranuclear pH.  相似文献   

10.
The plasmalemma of smooth muscle cells is periodically banded. This arrangement ensures efficient transmission of contractile activity, via the firm, actin-anchoring regions, while the more elastic caveolae-containing "hinge" regions facilitate rapid cellular adaptation to changes in cell length. Since cellular mechanics are undoubtedly regulated by components of the membrane and cytoskeleton, we have investigated the potential role played by annexins (a family of phospholipid- and actin-binding, Ca(2+)-regulated proteins) in regulating sarcolemmal organization. Stimulation of smooth muscle cells elicited a relocation of annexin VI from the cytoplasm to the plasmalemma. In smooth, but not in striated muscle extracts, annexins II and VI coprecipitated with actomyosin and the caveolar fraction of the sarcolemma at elevated Ca(2+) concentrations. Recombination of actomyosin, annexins, and caveolar lipids in the presence of Ca(2+) led to formation of a structured precipitate. Participation of all 3 components was required, indicating that a Ca(2+)-dependent, cytoskeleton-membrane complex had been generated. This association, which occurred at physiological Ca(2+) concentrations, corroborates our biochemical fractionation and immunohistochemical findings and suggests that annexins play a role in regulating sarcolemmal organization during smooth muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号